Mercurial > public > ostc4
annotate Small_CPU/Src/compass.c @ 342:ea3fda8eb93e FlightMode_Improvment
Removed averaging of pressure and temperatur values
On RTE side data was copied once a second while the average function is called several time a second => no real averaging. In generell a datta value should be processed only once (in RTE) and then only be consumption. Otherwise a risk of inconsistent computations could be raised
author | ideenmodellierer |
---|---|
date | Tue, 01 Oct 2019 19:13:41 +0200 |
parents | 49f5db6139d5 |
children | c3d511365552 |
rev | line source |
---|---|
38 | 1 /** |
2 ****************************************************************************** | |
3 * @file compass.c | |
4 * @author heinrichs weikamp gmbh | |
5 * @date 27-March-2014 | |
6 * @version V0.2.0 | |
7 * @since 21-April-2016 | |
8 * @brief for Honeywell Compass and ST LSM303D | |
9 * | |
10 @verbatim | |
11 ============================================================================== | |
12 ##### How to use ##### | |
13 ============================================================================== | |
14 V0.1.0 09-March-2016 | |
15 V0.2.0 21-April-2016 Orientation fixed for LSM303D, | |
16 roll and pitch added to calibration output, | |
17 orientation double checked with datasheets and layout | |
18 as well as with value output during calibration | |
19 V0.2.1 19-May-2016 New date rate config and full-scale selection | |
20 | |
21 @endverbatim | |
22 ****************************************************************************** | |
23 * @attention | |
24 * | |
25 * <h2><center>© COPYRIGHT(c) 2016 heinrichs weikamp</center></h2> | |
26 * | |
27 ****************************************************************************** | |
28 */ | |
29 | |
30 #include <math.h> | |
31 #include <string.h> | |
32 | |
33 #include "compass.h" | |
34 #include "compass_LSM303D.h" | |
35 | |
36 #include "i2c.h" | |
219 | 37 #include "spi.h" |
38 | 38 #include "RTE_FlashAccess.h" // to store compass_calib_data |
39 | |
40 #include "stm32f4xx_hal.h" | |
41 | |
42 #define TEST_IF_HMC5883L | |
43 //#define COMPASS_DEACTIVATE | |
44 | |
45 /// split byte to bits | |
46 typedef struct{ | |
47 uint8_t bit0:1; ///< split byte to bits | |
48 uint8_t bit1:1; ///< split byte to bits | |
49 uint8_t bit2:1; ///< split byte to bits | |
50 uint8_t bit3:1; ///< split byte to bits | |
51 uint8_t bit4:1; ///< split byte to bits | |
52 uint8_t bit5:1; ///< split byte to bits | |
53 uint8_t bit6:1; ///< split byte to bits | |
54 uint8_t bit7:1; ///< split byte to bits | |
55 } ubit8_t; | |
56 | |
57 | |
58 /// split byte to bits | |
59 typedef union{ | |
60 ubit8_t ub; ///< split byte to bits | |
61 uint8_t uw; ///< split byte to bits | |
62 } bit8_Type; | |
63 | |
64 | |
65 /// split word to 2 bytes | |
66 typedef struct{ | |
67 uint8_t low; ///< split word to 2 bytes | |
68 uint8_t hi; ///< split word to 2 bytes | |
69 } two_byte; | |
70 | |
71 | |
72 /// split word to 2 bytes | |
73 typedef union{ | |
74 two_byte Byte; ///< split word to 2 bytes | |
75 uint16_t Word; ///< split word to 2 bytes | |
76 } tword; | |
77 | |
78 | |
79 /// split signed word to 2 bytes | |
80 typedef union{ | |
81 two_byte Byte; ///< split signed word to 2 bytes | |
82 int16_t Word; ///< split signed word to 2 bytes | |
83 } signed_tword; | |
84 | |
85 | |
86 /// split full32 to 2 words | |
87 typedef struct{ | |
88 uint16_t low16; ///< split word to 2 bytes | |
89 uint16_t hi16; ///< split word to 2 bytes | |
90 } two_word; | |
91 | |
92 typedef union{ | |
93 two_word Word16; ///< split word to 2 bytes | |
94 uint32_t Full32; ///< split word to 2 bytes | |
95 } tfull32; | |
96 | |
97 | |
98 /// crazy compass calibration stuff | |
99 typedef struct | |
100 { | |
101 unsigned short int compass_N; | |
102 float Su, Sv, Sw; | |
103 float Suu, Svv, Sww, Suv, Suw, Svw; | |
104 float Suuu, Svvv, Swww; | |
105 float Suuv, Suuw, Svvu, Svvw, Swwu, Swwv; | |
106 } SCompassCalib; | |
107 | |
108 | |
109 #define Q_PI (18000) | |
110 #define Q_PIO2 (9000) | |
111 | |
112 #define HMC5883L (1) ///< id used with hardwareCompass | |
113 #define LSM303D (2) ///< id used with hardwareCompass | |
114 #define COMPASS_NOT_RECOGNIZED (4) ///< id used with hardwareCompass | |
115 | |
116 | |
117 ////////////////////////////////////////////////////////////////////////////// | |
118 // fifth order of polynomial approximation of atan(), giving 0.05 deg max error | |
119 // | |
120 #define K1 (5701) // Needs K1/2**16 | |
121 #define K2 (1645) // Needs K2/2**48 WAS NEGATIV | |
122 #define K3 ( 446) // Needs K3/2**80 | |
123 | |
124 const float PI = 3.14159265; ///< pi, used in compass_calc() | |
125 | |
126 typedef short int Int16; | |
127 typedef signed char Int8; | |
128 typedef Int16 Angle; | |
129 | |
130 | |
131 /// The (filtered) components of the magnetometer sensor | |
132 int16_t compass_DX_f; ///< output from sensor | |
133 int16_t compass_DY_f; ///< output from sensor | |
134 int16_t compass_DZ_f; ///< output from sensor | |
135 | |
136 | |
137 /// Found soft-iron calibration values, deduced from already filtered values | |
138 int16_t compass_CX_f; ///< calibration value | |
139 int16_t compass_CY_f; ///< calibration value | |
140 int16_t compass_CZ_f; ///< calibration value | |
141 | |
142 | |
143 /// The (filtered) components of the accelerometer sensor | |
144 int16_t accel_DX_f; ///< output from sensor | |
145 int16_t accel_DY_f; ///< output from sensor | |
146 int16_t accel_DZ_f; ///< output from sensor | |
147 | |
148 | |
149 /// The compass result values | |
150 float compass_heading; ///< the final result calculated in compass_calc() | |
151 float compass_roll; ///< the final result calculated in compass_calc() | |
152 float compass_pitch; ///< the final result calculated in compass_calc() | |
153 | |
154 | |
155 uint8_t compass_gain; ///< 7 on start, can be reduced during calibration | |
156 | |
157 uint8_t hardwareCompass = 0; ///< either HMC5883L or LSM303D or not defined yet ( = 0 ) | |
158 | |
159 /// LSM303D variables | |
160 uint8_t magDataBuffer[6]; ///< here raw data from LSM303D is stored, can be local | |
161 uint8_t accDataBuffer[6]; ///< here raw data from LSM303D is stored, can be local | |
162 | |
163 //uint16_t velMag = 0; | |
164 //uint16_t velAcc = 0; | |
165 | |
166 //uint16_t magODR[] = {31,62,125,250,500,1000,2000}; | |
167 //uint16_t accODR[] = {0,31,62,125,250,500,1000,2000,4000,8000,16000}; | |
168 //uint8_t fastest = 10; //no sensor is the fastest | |
169 //uint8_t datas1 = 0; | |
170 //uint8_t zoffFlag = 0; | |
171 //uint8_t sendFlag = 0; | |
172 | |
173 | |
174 // all by pixhawk code: | |
175 | |
176 // struct accel_scale _accel_scale; | |
177 unsigned _accel_range_m_s2; | |
178 float _accel_range_scale; | |
179 unsigned _accel_samplerate; | |
180 unsigned _accel_onchip_filter_bandwith; | |
181 | |
182 // struct mag_scale _mag_scale; | |
183 unsigned _mag_range_ga; | |
184 float _mag_range_scale; | |
185 unsigned _mag_samplerate; | |
186 | |
187 // default scale factors | |
188 float _accel_scale_x_offset = 0.0f; | |
189 float _accel_scale_x_scale = 1.0f; | |
190 float _accel_scale_y_offset = 0.0f; | |
191 float _accel_scale_y_scale = 1.0f; | |
192 float _accel_scale_z_offset = 0.0f; | |
193 float _accel_scale_z_scale = 1.0f; | |
194 | |
195 float _mag_scale_x_offset = 0.0f; | |
196 float _mag_scale_x_scale = 1.0f; | |
197 float _mag_scale_y_offset = 0.0f; | |
198 float _mag_scale_y_scale = 1.0f; | |
199 float _mag_scale_z_offset = 0.0f; | |
200 float _mag_scale_z_scale = 1.0f; | |
201 | |
202 | |
203 /* External function prototypes ----------------------------------------------*/ | |
204 | |
205 extern void copyCompassDataDuringCalibration(int16_t dx, int16_t dy, int16_t dz); | |
206 | |
207 /* Private function prototypes -----------------------------------------------*/ | |
208 | |
209 void compass_reset_calibration(SCompassCalib *g); | |
210 void compass_add_calibration(SCompassCalib *g); | |
211 void compass_solve_calibration(SCompassCalib *g); | |
212 | |
213 void compass_init_HMC5883L(uint8_t fast, uint8_t gain); | |
214 void compass_sleep_HMC5883L(void); | |
215 void compass_read_HMC5883L(void); | |
216 | |
217 void accelerator_init_MMA8452Q(void); | |
218 void accelerator_sleep_MMA8452Q(void); | |
219 void acceleration_read_MMA8452Q(void); | |
220 | |
221 void compass_init_LSM303D(uint8_t fast, uint8_t gain); | |
222 void compass_sleep_LSM303D(void); | |
223 void compass_read_LSM303D(void); | |
224 void acceleration_read_LSM303D(void); | |
225 | |
226 int LSM303D_accel_set_onchip_lowpass_filter_bandwidth(unsigned bandwidth); | |
227 int compass_calib_common(void); | |
228 | |
229 void compass_calc_roll_pitch_only(void); | |
230 | |
231 void rotate_mag_3f(float *x, float *y, float *z); | |
232 void rotate_accel_3f(float *x, float *y, float *z); | |
233 | |
234 | |
235 /* Exported functions --------------------------------------------------------*/ | |
236 | |
237 | |
238 // =============================================================================== | |
239 // compass_init | |
240 /// @brief This might be called several times with different gain values during calibration | |
241 /// On first call it figures out which hardware is integrated | |
242 /// | |
243 /// @param gain: 7 is max gain, compass_calib() might reduce it | |
244 // =============================================================================== | |
245 | |
246 uint8_t testCompassTypeDebug = 0xFF; | |
247 | |
248 void compass_init(uint8_t fast, uint8_t gain) | |
249 { | |
250 // quick off | |
251 #ifdef COMPASS_DEACTIVATE | |
252 hardwareCompass = COMPASS_NOT_RECOGNIZED; | |
253 #endif | |
254 | |
255 // don't call again with fast, gain in calib mode etc. | |
256 // if unknown | |
257 if(hardwareCompass == COMPASS_NOT_RECOGNIZED) | |
258 { | |
259 return; | |
260 } | |
261 | |
262 // old code but without else | |
263 if(hardwareCompass == 0) | |
264 { | |
265 uint8_t data = WHO_AM_I; | |
266 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1); | |
267 I2C_Master_Receive( DEVICE_COMPASS_303D, &data, 1); | |
268 if(data == WHOIAM_VALUE) | |
269 hardwareCompass = LSM303D; | |
70 | 270 else |
271 hardwareCompass = HMC5883L; | |
38 | 272 } |
273 | |
180 | 274 /* No compass identified => Retry */ |
38 | 275 if(hardwareCompass == 0) |
276 { | |
277 uint8_t data = WHO_AM_I; | |
278 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1); | |
279 I2C_Master_Receive( DEVICE_COMPASS_303D, &data, 1); | |
280 if(data == WHOIAM_VALUE) | |
281 hardwareCompass = LSM303D; | |
282 else | |
283 hardwareCompass = HMC5883L; | |
284 } | |
70 | 285 |
180 | 286 /* Assume that a HMC5883L is equipped by default if detection still failed */ |
38 | 287 if(hardwareCompass == 0) |
288 hardwareCompass = HMC5883L; | |
289 | |
290 #ifdef TEST_IF_HMC5883L | |
291 HAL_StatusTypeDef resultOfOperationHMC_MMA = HAL_TIMEOUT; | |
292 | |
293 if(hardwareCompass == HMC5883L) | |
294 { | |
295 uint8_t data = 0x2A; // CTRL_REG1 of DEVICE_ACCELARATOR_MMA8452Q | |
296 resultOfOperationHMC_MMA = I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, &data, 1); | |
297 if(resultOfOperationHMC_MMA == HAL_OK) | |
298 { | |
299 hardwareCompass = HMC5883L; // all fine, keep it | |
300 } | |
301 else | |
302 { | |
303 hardwareCompass = COMPASS_NOT_RECOGNIZED; | |
304 testCompassTypeDebug = 0xEC; | |
305 } | |
306 } | |
307 #endif | |
308 | |
309 if(hardwareCompass == LSM303D) | |
310 { | |
311 compass_init_LSM303D(fast, gain); | |
312 } | |
313 else | |
314 if(hardwareCompass == HMC5883L) | |
315 { | |
316 compass_init_HMC5883L(fast, gain); | |
317 } | |
318 | |
319 tfull32 dataBlock[4]; | |
320 if(BFA_readLastDataBlock((uint32_t *)dataBlock) == BFA_OK) | |
321 { | |
322 compass_CX_f = dataBlock[0].Word16.low16; | |
323 compass_CY_f = dataBlock[0].Word16.hi16; | |
324 compass_CZ_f = dataBlock[1].Word16.low16; | |
325 } | |
326 | |
327 } | |
328 | |
329 | |
330 // =============================================================================== | |
331 // compass_calib | |
332 /// @brief with onchip_lowpass_filter configuration for accelerometer of LSM303D | |
333 // =============================================================================== | |
334 int compass_calib(void) | |
335 { | |
336 if(hardwareCompass == LSM303D) | |
337 { | |
338 LSM303D_accel_set_onchip_lowpass_filter_bandwidth(773); | |
339 int out = compass_calib_common(); | |
340 LSM303D_accel_set_onchip_lowpass_filter_bandwidth(LSM303D_ACCEL_DEFAULT_ONCHIP_FILTER_FREQ); | |
341 return out; | |
342 } | |
343 else | |
344 if(hardwareCompass == HMC5883L) | |
345 { | |
346 return compass_calib_common(); | |
347 } | |
348 else | |
349 { | |
350 return 0; // standard answer of compass_calib_common(); | |
351 } | |
352 | |
353 | |
354 } | |
355 | |
356 | |
357 // =============================================================================== | |
358 // compass_sleep | |
359 /// @brief low power mode | |
360 // =============================================================================== | |
361 void compass_sleep(void) | |
362 { | |
363 if(hardwareCompass == LSM303D) | |
364 { | |
365 compass_sleep_LSM303D(); | |
366 } | |
367 else | |
368 if(hardwareCompass == HMC5883L) | |
369 { | |
370 compass_sleep_HMC5883L(); | |
371 } | |
372 } | |
373 | |
374 | |
375 // =============================================================================== | |
376 // compass_read | |
377 /// @brief reads magnetometer and accelerometer for LSM303D, | |
378 /// otherwise magnetometer only | |
379 // =============================================================================== | |
380 void compass_read(void) | |
381 { | |
382 if(hardwareCompass == LSM303D) | |
383 { | |
384 compass_read_LSM303D(); | |
385 } | |
386 else | |
387 if(hardwareCompass == HMC5883L) | |
388 { | |
389 compass_read_HMC5883L(); | |
390 } | |
391 } | |
392 | |
393 | |
394 // =============================================================================== | |
395 // accelerator_init | |
396 /// @brief empty for for LSM303D | |
397 // =============================================================================== | |
398 void accelerator_init(void) | |
399 { | |
400 if(hardwareCompass == HMC5883L) | |
401 accelerator_init_MMA8452Q(); | |
402 } | |
403 | |
404 | |
405 // =============================================================================== | |
406 // accelerator_sleep | |
407 /// @brief empty for for LSM303D | |
408 // =============================================================================== | |
409 void accelerator_sleep(void) | |
410 { | |
411 if(hardwareCompass == HMC5883L) | |
412 accelerator_sleep_MMA8452Q(); | |
413 } | |
414 | |
415 | |
416 // =============================================================================== | |
417 // acceleration_read | |
418 /// @brief empty for for LSM303D | |
419 // =============================================================================== | |
420 void acceleration_read(void) | |
421 { | |
422 if(hardwareCompass == LSM303D) | |
423 { | |
424 acceleration_read_LSM303D(); | |
425 } | |
426 else | |
427 if(hardwareCompass == HMC5883L) | |
428 { | |
429 acceleration_read_MMA8452Q(); | |
430 } | |
431 } | |
432 | |
433 | |
434 /* Private functions ---------------------------------------------------------*/ | |
435 | |
436 // =============================================================================== | |
437 // LSM303D_read_reg | |
438 /// @brief tiny helpers by pixhawk | |
439 // =============================================================================== | |
440 uint8_t LSM303D_read_reg(uint8_t addr) | |
441 { | |
442 uint8_t data; | |
443 | |
444 I2C_Master_Transmit( DEVICE_COMPASS_303D, &addr, 1); | |
445 I2C_Master_Receive( DEVICE_COMPASS_303D, &data, 1); | |
446 return data; | |
447 } | |
448 | |
449 | |
450 // =============================================================================== | |
451 // LSM303D_write_reg | |
452 /// @brief tiny helpers by pixhawk | |
453 // =============================================================================== | |
454 void LSM303D_write_reg(uint8_t addr, uint8_t value) | |
455 { | |
456 uint8_t data[2]; | |
457 | |
458 /* enable accel*/ | |
459 data[0] = addr; | |
460 data[1] = value; | |
461 I2C_Master_Transmit( DEVICE_COMPASS_303D, data, 2); | |
462 } | |
463 | |
464 | |
465 // =============================================================================== | |
466 // LSM303D_write_checked_reg | |
467 /// @brief tiny helpers by pixhawk. This runs unchecked at the moment. | |
468 // =============================================================================== | |
469 void LSM303D_write_checked_reg(uint8_t addr, uint8_t value) | |
470 { | |
471 LSM303D_write_reg(addr, value); | |
472 } | |
473 | |
474 | |
475 // =============================================================================== | |
476 // LSM303D_modify_reg | |
477 /// @brief tiny helpers by pixhawk | |
478 // =============================================================================== | |
479 void LSM303D_modify_reg(unsigned reg, uint8_t clearbits, uint8_t setbits) | |
480 { | |
481 uint8_t val; | |
482 | |
483 val = LSM303D_read_reg(reg); | |
484 val &= ~clearbits; | |
485 val |= setbits; | |
486 LSM303D_write_checked_reg(reg, val); | |
487 } | |
488 | |
489 /* | |
490 // =============================================================================== | |
491 // LSM303D_accel_set_range | |
492 /// @brief tiny helpers by pixhawk | |
493 // =============================================================================== | |
494 int LSM303D_accel_set_range(unsigned max_g) | |
495 { | |
496 uint8_t setbits = 0; | |
497 uint8_t clearbits = REG2_FULL_SCALE_BITS_A; | |
498 float new_scale_g_digit = 0.0f; | |
499 | |
500 if (max_g == 0) { | |
501 max_g = 16; | |
502 } | |
503 | |
504 if (max_g <= 2) { | |
505 _accel_range_m_s2 = 2.0f * LSM303D_ONE_G; | |
506 setbits |= REG2_FULL_SCALE_2G_A; | |
507 new_scale_g_digit = 0.061e-3f; | |
508 | |
509 } else if (max_g <= 4) { | |
510 _accel_range_m_s2 = 4.0f * LSM303D_ONE_G; | |
511 setbits |= REG2_FULL_SCALE_4G_A; | |
512 new_scale_g_digit = 0.122e-3f; | |
513 | |
514 } else if (max_g <= 6) { | |
515 _accel_range_m_s2 = 6.0f * LSM303D_ONE_G; | |
516 setbits |= REG2_FULL_SCALE_6G_A; | |
517 new_scale_g_digit = 0.183e-3f; | |
518 | |
519 } else if (max_g <= 8) { | |
520 _accel_range_m_s2 = 8.0f * LSM303D_ONE_G; | |
521 setbits |= REG2_FULL_SCALE_8G_A; | |
522 new_scale_g_digit = 0.244e-3f; | |
523 | |
524 } else if (max_g <= 16) { | |
525 _accel_range_m_s2 = 16.0f * LSM303D_ONE_G; | |
526 setbits |= REG2_FULL_SCALE_16G_A; | |
527 new_scale_g_digit = 0.732e-3f; | |
528 | |
529 } else { | |
530 return -1; | |
531 } | |
532 | |
533 _accel_range_scale = new_scale_g_digit * LSM303D_ONE_G; | |
534 | |
535 | |
536 LSM303D_modify_reg(ADDR_CTRL_REG2, clearbits, setbits); | |
537 | |
538 return 0; | |
539 } | |
540 */ | |
541 /* | |
542 // =============================================================================== | |
543 // LSM303D_mag_set_range | |
544 /// @brief tiny helpers by pixhawk | |
545 // =============================================================================== | |
546 int LSM303D_mag_set_range(unsigned max_ga) | |
547 { | |
548 uint8_t setbits = 0; | |
549 uint8_t clearbits = REG6_FULL_SCALE_BITS_M; | |
550 float new_scale_ga_digit = 0.0f; | |
551 | |
552 if (max_ga == 0) { | |
553 max_ga = 12; | |
554 } | |
555 | |
556 if (max_ga <= 2) { | |
557 _mag_range_ga = 2; | |
558 setbits |= REG6_FULL_SCALE_2GA_M; | |
559 new_scale_ga_digit = 0.080e-3f; | |
560 | |
561 } else if (max_ga <= 4) { | |
562 _mag_range_ga = 4; | |
563 setbits |= REG6_FULL_SCALE_4GA_M; | |
564 new_scale_ga_digit = 0.160e-3f; | |
565 | |
566 } else if (max_ga <= 8) { | |
567 _mag_range_ga = 8; | |
568 setbits |= REG6_FULL_SCALE_8GA_M; | |
569 new_scale_ga_digit = 0.320e-3f; | |
570 | |
571 } else if (max_ga <= 12) { | |
572 _mag_range_ga = 12; | |
573 setbits |= REG6_FULL_SCALE_12GA_M; | |
574 new_scale_ga_digit = 0.479e-3f; | |
575 | |
576 } else { | |
577 return -1; | |
578 } | |
579 | |
580 _mag_range_scale = new_scale_ga_digit; | |
581 | |
582 LSM303D_modify_reg(ADDR_CTRL_REG6, clearbits, setbits); | |
583 | |
584 return 0; | |
585 } | |
586 */ | |
587 | |
588 // =============================================================================== | |
589 // LSM303D_accel_set_onchip_lowpass_filter_bandwidth | |
590 /// @brief tiny helpers by pixhawk | |
591 // =============================================================================== | |
592 int LSM303D_accel_set_onchip_lowpass_filter_bandwidth(unsigned bandwidth) | |
593 { | |
594 uint8_t setbits = 0; | |
595 uint8_t clearbits = REG2_ANTIALIAS_FILTER_BW_BITS_A; | |
596 | |
597 if (bandwidth == 0) { | |
598 bandwidth = 773; | |
599 } | |
600 | |
601 if (bandwidth <= 50) { | |
602 setbits |= REG2_AA_FILTER_BW_50HZ_A; | |
603 _accel_onchip_filter_bandwith = 50; | |
604 | |
605 } else if (bandwidth <= 194) { | |
606 setbits |= REG2_AA_FILTER_BW_194HZ_A; | |
607 _accel_onchip_filter_bandwith = 194; | |
608 | |
609 } else if (bandwidth <= 362) { | |
610 setbits |= REG2_AA_FILTER_BW_362HZ_A; | |
611 _accel_onchip_filter_bandwith = 362; | |
612 | |
613 } else if (bandwidth <= 773) { | |
614 setbits |= REG2_AA_FILTER_BW_773HZ_A; | |
615 _accel_onchip_filter_bandwith = 773; | |
616 | |
617 } else { | |
618 return -1; | |
619 } | |
620 | |
621 LSM303D_modify_reg(ADDR_CTRL_REG2, clearbits, setbits); | |
622 | |
623 return 0; | |
624 } | |
625 | |
626 | |
627 // =============================================================================== | |
628 // LSM303D_accel_set_driver_lowpass_filter | |
629 /// @brief tiny helpers by pixhawk. This one is not used at the moment! | |
630 // =============================================================================== | |
631 int LSM303D_accel_set_driver_lowpass_filter(float samplerate, float bandwidth) | |
632 { | |
633 /* | |
634 _accel_filter_x_set_cutoff_frequency(samplerate, bandwidth); | |
635 _accel_filter_y_set_cutoff_frequency(samplerate, bandwidth); | |
636 _accel_filter_z_set_cutoff_frequency(samplerate, bandwidth); | |
637 */ | |
638 return 0; | |
639 } | |
640 | |
641 /* unused 170821 | |
642 // =============================================================================== | |
643 // LSM303D_accel_set_samplerate | |
644 /// @brief tiny helpers by pixhawk | |
645 // =============================================================================== | |
646 int LSM303D_accel_set_samplerate(unsigned frequency) | |
647 { | |
648 uint8_t setbits = 0; | |
649 uint8_t clearbits = REG1_RATE_BITS_A; | |
650 | |
651 // if (frequency == 0 || frequency == ACCEL_SAMPLERATE_DEFAULT) { | |
652 frequency = 1600; | |
653 // } | |
654 | |
655 if (frequency <= 3) { | |
656 setbits |= REG1_RATE_3_125HZ_A; | |
657 _accel_samplerate = 3; | |
658 | |
659 } else if (frequency <= 6) { | |
660 setbits |= REG1_RATE_6_25HZ_A; | |
661 _accel_samplerate = 6; | |
662 | |
663 } else if (frequency <= 12) { | |
664 setbits |= REG1_RATE_12_5HZ_A; | |
665 _accel_samplerate = 12; | |
666 | |
667 } else if (frequency <= 25) { | |
668 setbits |= REG1_RATE_25HZ_A; | |
669 _accel_samplerate = 25; | |
670 | |
671 } else if (frequency <= 50) { | |
672 setbits |= REG1_RATE_50HZ_A; | |
673 _accel_samplerate = 50; | |
674 | |
675 } else if (frequency <= 100) { | |
676 setbits |= REG1_RATE_100HZ_A; | |
677 _accel_samplerate = 100; | |
678 | |
679 } else if (frequency <= 200) { | |
680 setbits |= REG1_RATE_200HZ_A; | |
681 _accel_samplerate = 200; | |
682 | |
683 } else if (frequency <= 400) { | |
684 setbits |= REG1_RATE_400HZ_A; | |
685 _accel_samplerate = 400; | |
686 | |
687 } else if (frequency <= 800) { | |
688 setbits |= REG1_RATE_800HZ_A; | |
689 _accel_samplerate = 800; | |
690 | |
691 } else if (frequency <= 1600) { | |
692 setbits |= REG1_RATE_1600HZ_A; | |
693 _accel_samplerate = 1600; | |
694 | |
695 } else { | |
696 return -1; | |
697 } | |
698 | |
699 LSM303D_modify_reg(ADDR_CTRL_REG1, clearbits, setbits); | |
700 return 0; | |
701 } | |
702 // =============================================================================== | |
703 // LSM303D_mag_set_samplerate | |
704 /// @brief tiny helpers by pixhawk | |
705 // =============================================================================== | |
706 int LSM303D_mag_set_samplerate(unsigned frequency) | |
707 { | |
708 uint8_t setbits = 0; | |
709 uint8_t clearbits = REG5_RATE_BITS_M; | |
710 | |
711 if (frequency == 0) { | |
712 frequency = 100; | |
713 } | |
714 | |
715 if (frequency <= 3) { | |
716 setbits |= REG5_RATE_3_125HZ_M; | |
717 _mag_samplerate = 25; | |
718 | |
719 } else if (frequency <= 6) { | |
720 setbits |= REG5_RATE_6_25HZ_M; | |
721 _mag_samplerate = 25; | |
722 | |
723 } else if (frequency <= 12) { | |
724 setbits |= REG5_RATE_12_5HZ_M; | |
725 _mag_samplerate = 25; | |
726 | |
727 } else if (frequency <= 25) { | |
728 setbits |= REG5_RATE_25HZ_M; | |
729 _mag_samplerate = 25; | |
730 | |
731 } else if (frequency <= 50) { | |
732 setbits |= REG5_RATE_50HZ_M; | |
733 _mag_samplerate = 50; | |
734 | |
735 } else if (frequency <= 100) { | |
736 setbits |= REG5_RATE_100HZ_M; | |
737 _mag_samplerate = 100; | |
738 | |
739 } else { | |
740 return -1; | |
741 } | |
742 | |
743 LSM303D_modify_reg(ADDR_CTRL_REG5, clearbits, setbits); | |
744 return 0; | |
745 } | |
746 */ | |
747 | |
748 | |
749 // rotate_mag_3f: nicht genutzt aber praktisch; rotate_accel_3f wird benutzt | |
750 // =============================================================================== | |
751 // rotate_mag_3f | |
752 /// @brief swap axis in convient way, by hw | |
753 /// @param *x raw input is set to *y input | |
754 /// @param *y raw input is set to -*x input | |
755 /// @param *z raw is not touched | |
756 // =============================================================================== | |
757 void rotate_mag_3f(float *x, float *y, float *z) | |
758 { | |
759 return; | |
760 /* | |
761 *x = *x; // HMC: *x = -*y | |
762 *y = *y; // HMC: *y = *x // change 20.04.2016: zuvor *y = -*y | |
763 *z = *z; // HMC: *z = *z | |
764 */ | |
765 } | |
766 | |
767 | |
768 // =============================================================================== | |
769 // rotate_accel_3f | |
770 /// @brief swap axis in convient way, by hw, same as MMA8452Q | |
771 /// @param *x raw input, output is with sign change | |
772 /// @param *y raw input, output is with sign change | |
773 /// @param *z raw input, output is with sign change | |
774 // =============================================================================== | |
775 void rotate_accel_3f(float *x, float *y, float *z) | |
776 { | |
777 *x = -*x; | |
778 *y = -*y; | |
779 *z = -*z; | |
780 /* tested: | |
781 x = x, y =-y, z=-z: does not work with roll | |
782 x = x, y =y, z=-z: does not work with pitch | |
783 x = x, y =y, z=z: does not work at all | |
784 */ | |
785 } | |
786 | |
787 | |
788 // =============================================================================== | |
789 // compass_init_LSM303D by PIXhawk (LSM303D::reset()) | |
790 // https://raw.githubusercontent.com/PX4/Firmware/master/src/drivers/lsm303d/lsm303d.cpp | |
791 /// @brief The new ST 303D | |
792 /// This might be called several times with different gain values during calibration | |
793 /// but gain change is not supported at the moment. | |
794 /// | |
795 /// @param gain: 7 is max gain and set with here, compass_calib() might reduce it | |
796 // =============================================================================== | |
797 | |
798 //uint8_t testCompassLS303D[11]; | |
799 | |
800 void compass_init_LSM303D(uint8_t fast, uint8_t gain) | |
801 { | |
802 // matthias version 160620 | |
803 if(fast == 0) | |
804 { | |
805 LSM303D_write_checked_reg(ADDR_CTRL_REG0, 0x00); | |
806 LSM303D_write_checked_reg(ADDR_CTRL_REG1, 0x3F); // mod 12,5 Hz 3 instead of 6,25 Hz 2 | |
807 LSM303D_write_checked_reg(ADDR_CTRL_REG2, 0xC0); | |
808 LSM303D_write_checked_reg(ADDR_CTRL_REG3, 0x00); | |
809 LSM303D_write_checked_reg(ADDR_CTRL_REG4, 0x00); | |
810 LSM303D_write_checked_reg(ADDR_CTRL_REG5, 0x68); // mod 12,5 Hz 8 instead of 6,25 Hz 4 | |
811 } | |
812 else | |
813 { | |
814 LSM303D_write_checked_reg(ADDR_CTRL_REG0, 0x00); | |
815 LSM303D_write_checked_reg(ADDR_CTRL_REG1, 0x6F); // 100 Hz | |
816 LSM303D_write_checked_reg(ADDR_CTRL_REG2, 0xC0); | |
817 LSM303D_write_checked_reg(ADDR_CTRL_REG3, 0x00); | |
818 LSM303D_write_checked_reg(ADDR_CTRL_REG4, 0x00); | |
819 LSM303D_write_checked_reg(ADDR_CTRL_REG5, 0x74); // 100 Hz | |
820 } | |
821 LSM303D_write_checked_reg(ADDR_CTRL_REG6, 0x00); | |
822 LSM303D_write_checked_reg(ADDR_CTRL_REG7, 0x00); | |
823 | |
824 /* | |
825 uint8_t data; | |
826 for(int i=0;i<11;i++) | |
827 { | |
828 data = ADDR_INT_THS_L_M + i; | |
829 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1); | |
830 I2C_Master_Receive( DEVICE_COMPASS_303D, &testCompassLS303D[i], 1); | |
831 } | |
832 */ | |
833 | |
834 return; | |
835 /* | |
836 LSM303D_accel_set_range(LSM303D_ACCEL_DEFAULT_RANGE_G); // modifies ADDR_CTRL_REG2 | |
837 LSM303D_accel_set_samplerate(LSM303D_ACCEL_DEFAULT_RATE); // modifies ADDR_CTRL_REG1 | |
838 | |
839 LSM303D_mag_set_range(LSM303D_MAG_DEFAULT_RANGE_GA); | |
840 LSM303D_mag_set_samplerate(LSM303D_MAG_DEFAULT_RATE); | |
841 */ | |
842 | |
843 /* | |
844 // my stuff hw | |
845 // enable accel | |
846 LSM303D_write_checked_reg(ADDR_CTRL_REG1, | |
847 REG1_X_ENABLE_A | REG1_Y_ENABLE_A | REG1_Z_ENABLE_A | REG1_BDU_UPDATE | REG1_RATE_800HZ_A); | |
848 | |
849 // enable mag | |
850 LSM303D_write_checked_reg(ADDR_CTRL_REG7, REG7_CONT_MODE_M); | |
851 LSM303D_write_checked_reg(ADDR_CTRL_REG5, REG5_RES_HIGH_M | REG5_ENABLE_T); | |
852 LSM303D_write_checked_reg(ADDR_CTRL_REG3, 0x04); // DRDY on ACCEL on INT1 | |
853 LSM303D_write_checked_reg(ADDR_CTRL_REG4, 0x04); // DRDY on MAG on INT2 | |
854 | |
855 LSM303D_accel_set_range(LSM303D_ACCEL_DEFAULT_RANGE_G); | |
856 LSM303D_accel_set_samplerate(LSM303D_ACCEL_DEFAULT_RATE); | |
857 LSM303D_accel_set_driver_lowpass_filter((float)LSM303D_ACCEL_DEFAULT_RATE, (float)LSM303D_ACCEL_DEFAULT_DRIVER_FILTER_FREQ); | |
858 //LSM303D_accel_set_onchip_lowpass_filter_bandwidth(773); // factory setting | |
859 | |
860 // we setup the anti-alias on-chip filter as 50Hz. We believe | |
861 // this operates in the analog domain, and is critical for | |
862 // anti-aliasing. The 2 pole software filter is designed to | |
863 // operate in conjunction with this on-chip filter | |
864 if(fast) | |
865 LSM303D_accel_set_onchip_lowpass_filter_bandwidth(773); // factory setting | |
866 else | |
867 LSM303D_accel_set_onchip_lowpass_filter_bandwidth(LSM303D_ACCEL_DEFAULT_ONCHIP_FILTER_FREQ); | |
868 | |
869 | |
870 LSM303D_mag_set_range(LSM303D_MAG_DEFAULT_RANGE_GA); | |
871 LSM303D_mag_set_samplerate(LSM303D_MAG_DEFAULT_RATE); | |
872 */ | |
873 } | |
874 | |
875 | |
876 // =============================================================================== | |
877 // compass_sleep_LSM303D | |
878 /// @brief The new compass chip, hopefully this works! | |
879 // =============================================================================== | |
880 void compass_sleep_LSM303D(void) | |
881 { | |
882 LSM303D_write_checked_reg(ADDR_CTRL_REG1, 0x00); // CNTRL1: acceleration sensor Power-down mode | |
883 LSM303D_write_checked_reg(ADDR_CTRL_REG7, 0x02); // CNTRL7: magnetic sensor Power-down mode | |
884 } | |
885 | |
886 | |
887 // =============================================================================== | |
888 // acceleration_read_LSM303D | |
889 /// @brief The new LSM303D, code by pixhawk | |
890 /// | |
891 /// output is accel_DX_f, accel_DY_f, accel_DZ_f | |
892 // =============================================================================== | |
893 void acceleration_read_LSM303D(void) | |
894 { | |
895 uint8_t data; | |
896 float xraw_f, yraw_f, zraw_f; | |
897 float accel_report_x, accel_report_y, accel_report_z; | |
898 | |
899 memset(accDataBuffer,0,6); | |
900 | |
901 accel_DX_f = 0; | |
902 accel_DY_f = 0; | |
903 accel_DZ_f = 0; | |
904 | |
905 for(int i=0;i<6;i++) | |
906 { | |
907 data = ADDR_OUT_X_L_A + i; | |
908 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1); | |
909 I2C_Master_Receive( DEVICE_COMPASS_303D, &accDataBuffer[i], 1); | |
910 } | |
911 | |
912 xraw_f = ((float)( (int16_t)((accDataBuffer[1] << 8) | (accDataBuffer[0])))); | |
913 yraw_f = ((float)( (int16_t)((accDataBuffer[3] << 8) | (accDataBuffer[2])))); | |
914 zraw_f = ((float)( (int16_t)((accDataBuffer[5] << 8) | (accDataBuffer[4])))); | |
915 | |
916 rotate_accel_3f(&xraw_f, &yraw_f, &zraw_f); | |
917 | |
918 // mh | |
919 accel_report_x = xraw_f; | |
920 accel_report_y = yraw_f; | |
921 accel_report_z = zraw_f; | |
922 | |
923 // my stuff | |
924 /* | |
925 accel_report_x = ((xraw_f * _accel_range_scale) - _accel_scale_x_offset) * _accel_scale_x_scale; | |
926 accel_report_y = ((yraw_f * _accel_range_scale) - _accel_scale_y_offset) * _accel_scale_y_scale; | |
927 accel_report_z = ((zraw_f * _accel_range_scale) - _accel_scale_z_offset) * _accel_scale_z_scale; | |
928 */ | |
929 accel_DX_f = ((int16_t)(accel_report_x)); | |
930 accel_DY_f = ((int16_t)(accel_report_y)); | |
931 accel_DZ_f = ((int16_t)(accel_report_z)); | |
932 } | |
933 /* special code after accel_report_z = ... | |
934 * prior to output | |
935 // we have logs where the accelerometers get stuck at a fixed | |
936 // large value. We want to detect this and mark the sensor as | |
937 // being faulty | |
938 | |
939 if (fabsf(_last_accel[0] - x_in_new) < 0.001f && | |
940 fabsf(_last_accel[1] - y_in_new) < 0.001f && | |
941 fabsf(_last_accel[2] - z_in_new) < 0.001f && | |
942 fabsf(x_in_new) > 20 && | |
943 fabsf(y_in_new) > 20 && | |
944 fabsf(z_in_new) > 20) { | |
945 _constant_accel_count += 1; | |
946 | |
947 } else { | |
948 _constant_accel_count = 0; | |
949 } | |
950 | |
951 if (_constant_accel_count > 100) { | |
952 // we've had 100 constant accel readings with large | |
953 // values. The sensor is almost certainly dead. We | |
954 // will raise the error_count so that the top level | |
955 // flight code will know to avoid this sensor, but | |
956 // we'll still give the data so that it can be logged | |
957 // and viewed | |
958 perf_count(_bad_values); | |
959 _constant_accel_count = 0; | |
960 } | |
961 | |
962 _last_accel[0] = x_in_new; | |
963 _last_accel[1] = y_in_new; | |
964 _last_accel[2] = z_in_new; | |
965 | |
966 accel_report.x = _accel_filter_x.apply(x_in_new); | |
967 accel_report.y = _accel_filter_y.apply(y_in_new); | |
968 accel_report.z = _accel_filter_z.apply(z_in_new); | |
969 | |
970 math::Vector<3> aval(x_in_new, y_in_new, z_in_new); | |
971 math::Vector<3> aval_integrated; | |
972 | |
973 bool accel_notify = _accel_int.put(accel_report.timestamp, aval, aval_integrated, accel_report.integral_dt); | |
974 accel_report.x_integral = aval_integrated(0); | |
975 accel_report.y_integral = aval_integrated(1); | |
976 accel_report.z_integral = aval_integrated(2); | |
977 */ | |
978 | |
979 | |
980 // =============================================================================== | |
981 // compass_read_LSM303D | |
982 /// @brief The new LSM303D, code by pixhawk | |
983 /// | |
984 /// output is compass_DX_f, compass_DY_f, compass_DZ_f | |
985 // =============================================================================== | |
986 void compass_read_LSM303D(void) | |
987 { | |
988 uint8_t data; | |
989 // float xraw_f, yraw_f, zraw_f; | |
990 // float mag_report_x, mag_report_y, mag_report_z; | |
991 | |
992 memset(magDataBuffer,0,6); | |
993 | |
994 compass_DX_f = 0; | |
995 compass_DY_f = 0; | |
996 compass_DZ_f = 0; | |
997 | |
998 for(int i=0;i<6;i++) | |
999 { | |
1000 data = ADDR_OUT_X_L_M + i; | |
1001 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1); | |
1002 I2C_Master_Receive( DEVICE_COMPASS_303D, &magDataBuffer[i], 1); | |
1003 } | |
1004 | |
1005 // mh 160620 flip x and y if flip display | |
1006 compass_DX_f = (((int16_t)((magDataBuffer[1] << 8) | (magDataBuffer[0])))); | |
1007 compass_DY_f = (((int16_t)((magDataBuffer[3] << 8) | (magDataBuffer[2])))); | |
1008 compass_DZ_f = (((int16_t)((magDataBuffer[5] << 8) | (magDataBuffer[4])))); | |
1009 // no rotation | |
1010 return; | |
1011 /* | |
1012 // my stuff | |
1013 compass_DX_f = (((int16_t)((magDataBuffer[1] << 8) | (magDataBuffer[0]))) / 10) - 200; | |
1014 compass_DY_f = (((int16_t)((magDataBuffer[3] << 8) | (magDataBuffer[2]))) / 10) - 200; | |
1015 compass_DZ_f = (((int16_t)((magDataBuffer[5] << 8) | (magDataBuffer[4]))) / 10) - 200; | |
1016 */ | |
1017 // old | |
1018 /* | |
1019 xraw_f = ((float)( (int16_t)((magDataBuffer[1] << 8) | (magDataBuffer[0])))); | |
1020 yraw_f = ((float)( (int16_t)((magDataBuffer[3] << 8) | (magDataBuffer[2])))); | |
1021 zraw_f = ((float)( (int16_t)((magDataBuffer[5] << 8) | (magDataBuffer[4])))); | |
1022 | |
1023 rotate_mag_3f(&xraw_f, &yraw_f, &zraw_f); | |
1024 | |
1025 compass_DX_f = (int16_t)((xraw_f * 0.1f) - 200.0f); | |
1026 compass_DY_f = (int16_t)((yraw_f * 0.1f) - 200.0f); | |
1027 compass_DZ_f = (int16_t)((zraw_f * 0.1f) - 200.0f); | |
1028 */ | |
1029 /* | |
1030 mag_report_x = ((xraw_f * _mag_range_scale) - _mag_scale_x_offset) * _mag_scale_x_scale; | |
1031 mag_report_y = ((yraw_f * _mag_range_scale) - _mag_scale_y_offset) * _mag_scale_y_scale; | |
1032 mag_report_z = ((zraw_f * _mag_range_scale) - _mag_scale_z_offset) * _mag_scale_z_scale; | |
1033 | |
1034 compass_DX_f = (int16_t)(mag_report_x * 1000.0f); // 1000.0 is just a wild guess by hw | |
1035 compass_DY_f = (int16_t)(mag_report_y * 1000.0f); | |
1036 compass_DZ_f = (int16_t)(mag_report_z * 1000.0f); | |
1037 */ | |
1038 } | |
1039 | |
1040 | |
1041 // -------------------------------------------------------------------------------- | |
1042 // ----------EARLIER COMPONENTS --------------------------------------------------- | |
1043 // -------------------------------------------------------------------------------- | |
1044 | |
1045 // =============================================================================== | |
1046 // compass_init_HMC5883L | |
1047 /// @brief The horrible Honeywell compass chip | |
1048 /// This might be called several times during calibration | |
1049 /// | |
1050 /// @param fast: 1 is fast mode, 0 is normal mode | |
1051 /// @param gain: 7 is max gain and set with here, compass_calib() might reduce it | |
1052 // =============================================================================== | |
1053 void compass_init_HMC5883L(uint8_t fast, uint8_t gain) | |
1054 { | |
1055 uint8_t write_buffer[4]; | |
1056 | |
1057 compass_gain = gain; | |
1058 uint16_t length = 0; | |
1059 write_buffer[0] = 0x00; // 00 = config Register A | |
1060 | |
1061 if( fast ) | |
1062 write_buffer[1] = 0x38; // 0b 0011 1000; // ConfigA: 75Hz, 2 Samples averaged | |
1063 else | |
1064 write_buffer[1] = 0x68; // 0b 0110 1000; // ConfigA: 3Hz, 8 Samples averaged | |
1065 | |
1066 switch(gain) | |
1067 { | |
1068 case 7: | |
1069 write_buffer[2] = 0xE0; //0b 1110 0000; // ConfigB: gain | |
1070 break; | |
1071 case 6: | |
1072 write_buffer[2] = 0xC0; //0b 1100 0000; // ConfigB: gain | |
1073 break; | |
1074 case 5: | |
1075 write_buffer[2] = 0xA0; //0b 1010 0000; // ConfigB: gain | |
1076 break; | |
1077 case 4: | |
1078 write_buffer[2] = 0x80; //0b 1000 0000; // ConfigB: gain | |
1079 break; | |
1080 case 3: | |
1081 write_buffer[2] = 0x60; //0b 0110 0000; // ConfigB: gain | |
1082 break; | |
1083 case 2: | |
1084 write_buffer[2] = 0x40; //0b 01000 0000; // ConfigB: gain | |
1085 break; | |
1086 case 1: | |
1087 write_buffer[2] = 0x20; //0b 00100 0000; // ConfigB: gain | |
1088 break; | |
1089 case 0: | |
1090 write_buffer[2] = 0x00; //0b 00000 0000; // ConfigB: gain | |
1091 break; | |
1092 } | |
1093 write_buffer[3] = 0x00; // Mode: continuous mode | |
1094 length = 4; | |
1095 //hmc_twi_write(0); | |
1096 I2C_Master_Transmit( DEVICE_COMPASS_HMC5883L, write_buffer, length); | |
1097 } | |
1098 | |
1099 | |
1100 | |
1101 // =============================================================================== | |
1102 // compass_sleep_HMC5883L | |
1103 /// @brief Power-down mode for Honeywell compass chip | |
1104 // =============================================================================== | |
1105 void compass_sleep_HMC5883L(void) | |
1106 { | |
1107 uint8_t write_buffer[4]; | |
1108 uint16_t length = 0; | |
1109 | |
1110 write_buffer[0] = 0x00; // 00 = config Register A | |
1111 write_buffer[1] = 0x68; // 0b 0110 1000; // ConfigA | |
1112 write_buffer[2] = 0x20; // 0b 0010 0000; // ConfigB | |
1113 write_buffer[3] = 0x02; // 0b 0000 0010; // Idle Mode | |
1114 length = 4; | |
1115 I2C_Master_Transmit( DEVICE_COMPASS_HMC5883L, write_buffer, length); | |
1116 } | |
1117 | |
1118 | |
1119 // =============================================================================== | |
1120 // accelerator_init_MMA8452Q | |
1121 /// @brief Power-down mode for acceleration chip used in combination with Honeywell compass | |
1122 // =============================================================================== | |
1123 void accelerator_init_MMA8452Q(void) | |
1124 { | |
1125 uint8_t write_buffer[4]; | |
1126 uint16_t length = 0; | |
1127 //HAL_Delay(1); | |
1128 //return; | |
1129 write_buffer[0] = 0x0E; // XYZ_DATA_CFG | |
1130 write_buffer[1] = 0x00;//0b00000000; // High pass Filter=0 , +/- 2g range | |
1131 length = 2; | |
1132 I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, write_buffer, length); | |
1133 //HAL_Delay(1); | |
1134 write_buffer[0] = 0x2A; // CTRL_REG1 | |
1135 write_buffer[1] = 0x34; //0b00110100; // CTRL_REG1: 160ms data rate, St.By Mode, reduced noise mode | |
1136 write_buffer[2] = 0x02; //0b00000010; // CTRL_REG2: High Res in Active mode | |
1137 length = 3; | |
1138 I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, write_buffer, length); | |
1139 | |
1140 //HAL_Delay(1); | |
1141 //hw_delay_us(100); | |
1142 write_buffer[0] = 0x2A; // CTRL_REG1 | |
1143 write_buffer[1] = 0x35; //0b00110101; // CTRL_REG1: ... Active Mode | |
1144 length = 2; | |
1145 I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, write_buffer, length); | |
1146 /* | |
1147 HAL_Delay(6); | |
1148 compass_read(); | |
1149 HAL_Delay(1); | |
1150 acceleration_read(); | |
1151 | |
1152 compass_calc(); | |
1153 */ | |
1154 } | |
1155 | |
1156 | |
1157 // =============================================================================== | |
1158 // accelerator_sleep_MMA8452Q | |
1159 /// @brief compass_sleep_HMC5883L | |
1160 // =============================================================================== | |
1161 void accelerator_sleep_MMA8452Q(void) | |
1162 { | |
1163 uint16_t length = 0; | |
1164 uint8_t write_buffer[4]; | |
1165 | |
1166 write_buffer[0] = 0x2A; // CTRL_REG1 | |
1167 write_buffer[1] = 0x00; //0b00000000; // CTRL_REG1: Standby Mode | |
1168 length = 2; | |
1169 I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, write_buffer, length); | |
1170 } | |
1171 | |
1172 | |
1173 // =============================================================================== | |
1174 // compass_read_HMC5883L | |
1175 /// @brief The new ST 303D - get ALL data and store in static variables | |
1176 /// | |
1177 /// output is compass_DX_f, compass_DY_f, compass_DZ_f | |
1178 // =============================================================================== | |
1179 void compass_read_HMC5883L(void) | |
1180 { | |
1181 uint8_t buffer[20]; | |
1182 compass_DX_f = 0; | |
1183 compass_DY_f = 0; | |
1184 compass_DZ_f = 0; | |
1185 uint8_t length = 0; | |
1186 uint8_t read_buffer[6]; | |
1187 signed_tword data; | |
1188 for(int i = 0; i<6;i++) | |
1189 read_buffer[i] = 0; | |
1190 buffer[0] = 0x03; // 03 = Data Output X MSB Register | |
1191 length = 1; | |
1192 I2C_Master_Transmit( DEVICE_COMPASS_HMC5883L, buffer, length); | |
1193 length = 6; | |
1194 I2C_Master_Receive( DEVICE_COMPASS_HMC5883L, read_buffer, length); | |
1195 | |
1196 | |
1197 data.Byte.hi = read_buffer[0]; | |
1198 data.Byte.low = read_buffer[1]; | |
1199 //Y = Z | |
1200 compass_DY_f = - data.Word; | |
1201 | |
1202 data.Byte.hi = read_buffer[2]; | |
1203 data.Byte.low = read_buffer[3]; | |
1204 compass_DZ_f = data.Word; | |
1205 | |
1206 data.Byte.hi = read_buffer[4]; | |
1207 data.Byte.low = read_buffer[5]; | |
1208 //X = -Y | |
1209 compass_DX_f = data.Word; | |
1210 } | |
1211 | |
1212 | |
1213 // =============================================================================== | |
1214 // acceleration_read_MMA8452Q | |
1215 /// @brief The old MMA8452Q used with the Honeywell compass | |
1216 /// get the acceleration data and store in static variables | |
1217 /// | |
1218 /// output is accel_DX_f, accel_DY_f, accel_DZ_f | |
1219 // =============================================================================== | |
1220 void acceleration_read_MMA8452Q(void) | |
1221 { | |
1222 uint8_t buffer[20]; | |
1223 accel_DX_f = 0; | |
1224 accel_DY_f = 0; | |
1225 accel_DZ_f = 0; | |
1226 uint8_t length = 0; | |
1227 // bit8_Type status ; | |
1228 uint8_t read_buffer[7]; | |
1229 signed_tword data; | |
1230 for(int i = 0; i<6;i++) | |
1231 read_buffer[i] = 0; | |
1232 buffer[0] = 0x00; // 03 = Data Output X MSB Register | |
1233 length = 1; | |
1234 I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, buffer, length); | |
1235 length = 7; | |
1236 I2C_Master_Receive( DEVICE_ACCELARATOR_MMA8452Q, read_buffer, length); | |
1237 | |
1238 // status.uw = read_buffer[0]; | |
1239 data.Byte.hi = read_buffer[1]; | |
1240 data.Byte.low = read_buffer[2]; | |
1241 accel_DX_f =data.Word/16; | |
1242 data.Byte.hi = read_buffer[3]; | |
1243 data.Byte.low = read_buffer[4]; | |
1244 accel_DY_f =data.Word/16; | |
1245 data.Byte.hi = read_buffer[5]; | |
1246 data.Byte.low = read_buffer[6]; | |
1247 accel_DZ_f =data.Word/16; | |
1248 | |
1249 accel_DX_f *= -1; | |
1250 accel_DY_f *= -1; | |
1251 accel_DZ_f *= -1; | |
1252 } | |
1253 | |
1254 | |
1255 // =============================================================================== | |
1256 // compass_calc_roll_pitch_only | |
1257 /// @brief only the roll and pitch parts of compass_calc() | |
1258 /// | |
1259 /// input is accel_DX_f, accel_DY_f, accel_DZ_f | |
1260 /// output is compass_pitch and compass_roll | |
1261 // =============================================================================== | |
1262 void compass_calc_roll_pitch_only(void) | |
1263 { | |
1264 float sinPhi, cosPhi; | |
1265 float Phi, Teta; | |
1266 | |
1267 //---- Calculate sine and cosine of roll angle Phi ----------------------- | |
1268 Phi= atan2f(accel_DY_f, accel_DZ_f) ; | |
1269 compass_roll = Phi * 180.0f /PI; | |
1270 sinPhi = sinf(Phi); | |
1271 cosPhi = cosf(Phi); | |
1272 | |
1273 //---- calculate sin and cosine of pitch angle Theta --------------------- | |
1274 Teta = atanf(-(float)accel_DX_f/(accel_DY_f * sinPhi + accel_DZ_f * cosPhi)); | |
1275 compass_pitch = Teta * 180.0f /PI; | |
1276 } | |
1277 | |
1278 | |
1279 // =============================================================================== | |
1280 // compass_calc | |
1281 /// @brief all the fancy stuff first implemented in OSTC3 | |
1282 /// | |
1283 /// input is compass_DX_f, compass_DY_f, compass_DZ_f, accel_DX_f, accel_DY_f, accel_DZ_f | |
1284 /// and compass_CX_f, compass_CY_f, compass_CZ_f | |
1285 /// output is compass_heading, compass_pitch and compass_roll | |
1286 // =============================================================================== | |
1287 void compass_calc(void) | |
1288 { | |
1289 float sinPhi, cosPhi, sinTeta, cosTeta; | |
1290 float Phi, Teta, Psi; | |
1291 int16_t iBfx, iBfy; | |
1292 int16_t iBpx, iBpy, iBpz; | |
1293 | |
1294 //---- Make hard iron correction ----------------------------------------- | |
1295 // Measured magnetometer orientation, measured ok. | |
1296 // From matthias drawing: (X,Y,Z) --> (X,Y,Z) : no rotation. | |
1297 iBpx = compass_DX_f - compass_CX_f; // X | |
1298 iBpy = compass_DY_f - compass_CY_f; // Y | |
1299 iBpz = compass_DZ_f - compass_CZ_f; // Z | |
1300 | |
1301 //---- Calculate sine and cosine of roll angle Phi ----------------------- | |
1302 //sincos(accel_DZ_f, accel_DY_f, &sin, &cos); | |
1303 Phi= atan2f(accel_DY_f, accel_DZ_f) ; | |
1304 compass_roll = Phi * 180.0f /PI; | |
1305 sinPhi = sinf(Phi); | |
1306 cosPhi = cosf(Phi); | |
1307 | |
1308 //---- rotate by roll angle (-Phi) --------------------------------------- | |
1309 iBfy = iBpy * cosPhi - iBpz * sinPhi; | |
1310 iBpz = iBpy * sinPhi + iBpz * cosPhi; | |
1311 //Gz = imul(accel_DY_f, sin) + imul(accel_DZ_f, cos); | |
1312 | |
1313 //---- calculate sin and cosine of pitch angle Theta --------------------- | |
1314 //sincos(Gz, -accel_DX_f, &sin, &cos); // NOTE: changed sin sign. | |
1315 // Teta takes into account roll of computer and sends combination of Y and Z :-) understand now hw 160421 | |
1316 Teta = atanf(-(float)accel_DX_f/(accel_DY_f * sinPhi + accel_DZ_f * cosPhi)); | |
1317 compass_pitch = Teta * 180.0f /PI; | |
1318 sinTeta = sinf(Teta); | |
1319 cosTeta = cosf(Teta); | |
1320 /* correct cosine if pitch not in range -90 to 90 degrees */ | |
1321 if( cosTeta < 0 ) cosTeta = -cosTeta; | |
1322 | |
1323 ///---- de-rotate by pitch angle Theta ----------------------------------- | |
1324 iBfx = iBpx * cosTeta + iBpz * sinTeta; | |
1325 | |
1326 //---- Detect uncalibrated compass --------------------------------------- | |
1327 if( !compass_CX_f && !compass_CY_f && !compass_CZ_f ) | |
1328 { | |
1329 compass_heading = -1; | |
1330 return; | |
1331 } | |
1332 | |
1333 //---- calculate current yaw = e-compass angle Psi ----------------------- | |
1334 // Result in degree (no need of 0.01 deg precision... | |
1335 Psi = atan2f(-iBfy,iBfx); | |
1336 compass_heading = Psi * 180.0f /PI; | |
1337 // Result in 0..360 range: | |
1338 if( compass_heading < 0 ) | |
1339 compass_heading += 360; | |
1340 } | |
1341 | |
1342 | |
1343 /* | |
1344 // =============================================================================== | |
1345 // compass_calc_mini_during_calibration | |
1346 /// @brief all the fancy stuff first implemented in OSTC3 | |
1347 /// | |
1348 /// input is accel_DX_f, accel_DY_f, accel_DZ_f | |
1349 /// output is compass_pitch and compass_roll | |
1350 // =============================================================================== | |
1351 void compass_calc_mini_during_calibration(void) | |
1352 { | |
1353 float sinPhi, cosPhi; | |
1354 float Phi, Teta; | |
1355 | |
1356 //---- Calculate sine and cosine of roll angle Phi ----------------------- | |
1357 //sincos(accel_DZ_f, accel_DY_f, &sin, &cos); | |
1358 Phi= atan2f(accel_DY_f, accel_DZ_f) ; | |
1359 compass_roll = Phi * 180.0f /PI; | |
1360 sinPhi = sinf(Phi); | |
1361 cosPhi = cosf(Phi); | |
1362 | |
1363 //---- calculate sin and cosine of pitch angle Theta --------------------- | |
1364 //sincos(Gz, -accel_DX_f, &sin, &cos); // NOTE: changed sin sign. | |
1365 Teta = atanf(-(float)accel_DX_f/(accel_DY_f * sinPhi + accel_DZ_f * cosPhi)); | |
1366 compass_pitch = Teta * 180.0f /PI; | |
1367 } | |
1368 */ | |
1369 | |
1370 | |
1371 // ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
1372 // // - Calibration - /////////////////////////////////////////////////////////////////////////////////////////////////////// | |
1373 // ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
1374 | |
1375 /* can be lost during sleep as those are reset with compass_reset_calibration() */ | |
1376 | |
1377 // =============================================================================== | |
1378 // compass_reset_calibration | |
1379 /// @brief all the fancy stuff first implemented in OSTC3 | |
1380 /// | |
1381 /// output is struct g and compass_CX_f, compass_CY_f, compass_CZ_f | |
1382 /// | |
1383 /// @param g: is a struct with crazy stuff like Suuu, Svvv, Svvu, etc. | |
1384 /// all is set to zero here | |
1385 // =============================================================================== | |
1386 void compass_reset_calibration(SCompassCalib *g) | |
1387 { | |
1388 g->compass_N = 0; | |
1389 g->Su = g->Sv = g->Sw = 0.0; | |
1390 g->Suu = g->Svv = g->Sww = g->Suv = g->Suw = g->Svw = 0.0; | |
1391 g->Suuu = g->Svvv = g->Swww = 0.0; | |
1392 g->Suuv = g->Suuw = g->Svvu = g->Svvw = g->Swwu = g->Swwv = 0.0; | |
1393 compass_CX_f = compass_CY_f = compass_CZ_f = 0.0; | |
1394 } | |
1395 | |
1396 | |
1397 // =============================================================================== | |
1398 // compass_add_calibration | |
1399 /// @brief all the fancy stuff first implemented in OSTC3 | |
1400 /// | |
1401 /// input is compass_DX_f, compass_DY_f, compass_DZ_f | |
1402 /// and compass_CX_f, compass_CY_f, compass_CZ_f | |
1403 /// output is struct g | |
1404 /// | |
1405 /// @param g: is a struct with crazy stuff like Suuu, Svvv, Svvu, etc. | |
1406 // =============================================================================== | |
1407 void compass_add_calibration(SCompassCalib *g) | |
1408 { | |
1409 float u, v, w; | |
1410 | |
1411 u = (compass_DX_f - compass_CX_f) / 32768.0f; | |
1412 v = (compass_DY_f - compass_CY_f) / 32768.0f; | |
1413 w = (compass_DZ_f - compass_CZ_f) / 32768.0f; | |
1414 | |
1415 g->compass_N++; | |
1416 g->Su += u; | |
1417 g->Sv += v; | |
1418 g->Sw += w; | |
1419 g->Suv += u*v; | |
1420 g->Suw += u*w; | |
1421 g->Svw += v*w; | |
1422 g->Suu += u*u; | |
1423 g->Suuu += u*u*u; | |
1424 g->Suuv += v*u*u; | |
1425 g->Suuw += w*u*u; | |
1426 g->Svv += v*v; | |
1427 g->Svvv += v*v*v; | |
1428 g->Svvu += u*v*v; | |
1429 g->Svvw += w*v*v; | |
1430 g->Sww += w*w; | |
1431 g->Swww += w*w*w; | |
1432 g->Swwu += u*w*w; | |
1433 g->Swwv += v*w*w; | |
1434 } | |
1435 | |
1436 ////////////////////////////////////////////////////////////////////////////// | |
1437 | |
1438 // =============================================================================== | |
1439 // compass_solve_calibration | |
1440 /// @brief all the fancy stuff first implemented in OSTC3 | |
1441 /// | |
1442 /// input is compass_CX_f, compass_CY_f, compass_CZ_f and g | |
1443 /// output is struct g | |
1444 /// | |
1445 /// @param g: is a struct with crazy stuff like Suuu, Svvv, Svvu, etc. | |
1446 // =============================================================================== | |
1447 void compass_solve_calibration(SCompassCalib *g) | |
1448 { | |
1449 float yu, yv, yw; | |
1450 float delta; | |
1451 float uc, vc, wc; | |
1452 | |
1453 | |
1454 //---- Normalize partial sums -------------------------------------------- | |
1455 // | |
1456 // u, v, w should be centered on the mean value um, vm, wm: | |
1457 // x = u + um, with um = Sx/N | |
1458 // | |
1459 // So: | |
1460 // (u + um)**2 = u**2 + 2u*um + um**2 | |
1461 // Su = 0, um = Sx/N | |
1462 // Sxx = Suu + 2 um Su + N*(Sx/N)**2 = Suu + Sx**2/N | |
1463 // Suu = Sxx - Sx**2/N | |
1464 yu = g->Su/g->compass_N; | |
1465 yv = g->Sv/g->compass_N; | |
1466 yw = g->Sw/g->compass_N; | |
1467 | |
1468 g->Suu -= g->Su*yu; | |
1469 g->Svv -= g->Sv*yv; | |
1470 g->Sww -= g->Sw*yw; | |
1471 | |
1472 // (u + um)(v + vm) = uv + u vm + v um + um vm | |
1473 // Sxy = Suv + N * um vm | |
1474 // Suv = Sxy - N * (Sx/N)(Sy/N); | |
1475 g->Suv -= g->Su*yv; | |
1476 g->Suw -= g->Su*yw; | |
1477 g->Svw -= g->Sv*yw; | |
1478 | |
1479 // (u + um)**3 = u**3 + 3 u**2 um + 3 u um**2 + um**3 | |
1480 // Sxxx = Suuu + 3 um Suu + 3 um**2 Su + N.um**3 | |
1481 // Su = 0, um = Sx/N: | |
1482 // Suuu = Sxxx - 3 Sx*Suu/N - N.(Sx/N)**3 | |
1483 // = Sxxx - 3 Sx*Suu/N - Sx**3/N**2 | |
1484 | |
1485 // (u + um)**2 (v + vm) = (u**2 + 2 u um + um**2)(v + vm) | |
1486 // Sxxy = Suuv + vm Suu + 2 um (Suv + vm Su) + um**2 (Sv + N.vm) | |
1487 // | |
1488 // Su = 0, Sv = 0, vm = Sy/N: | |
1489 // Sxxy = Suuv + vm Suu + 2 um Suv + N um**2 vm | |
1490 // | |
1491 // Suuv = Sxxy - (Sy/N) Suu - 2 (Sx/N) Suv - (Sx/N)**2 Sy | |
1492 // = Sxxy - Suu*Sy/N - 2 Suv*Sx/N - Sx*Sx*Sy/N/N | |
1493 // = Sxxy - (Suu + Sx*Sx/N)*Sy/N - 2 Suv*Sx/N | |
1494 g->Suuu -= (3*g->Suu + g->Su*yu)*yu; | |
1495 g->Suuv -= (g->Suu + g->Su*yu)*yv + 2*g->Suv*yu; | |
1496 g->Suuw -= (g->Suu + g->Su*yu)*yw + 2*g->Suw*yu; | |
1497 | |
1498 g->Svvu -= (g->Svv + g->Sv*yv)*yu + 2*g->Suv*yv; | |
1499 g->Svvv -= (3*g->Svv + g->Sv*yv)*yv; | |
1500 g->Svvw -= (g->Svv + g->Sv*yv)*yw + 2*g->Svw*yv; | |
1501 | |
1502 g->Swwu -= (g->Sww + g->Sw*yw)*yu + 2*g->Suw*yw; | |
1503 g->Swwv -= (g->Sww + g->Sw*yw)*yv + 2*g->Svw*yw; | |
1504 g->Swww -= (3*g->Sww + g->Sw*yw)*yw; | |
1505 | |
1506 //---- Solve the system -------------------------------------------------- | |
1507 // uc Suu + vc Suv + wc Suw = (Suuu + Svvu + Swwu) / 2 | |
1508 // uc Suv + vc Svv + wc Svw = (Suuv + Svvv + Swwv) / 2 | |
1509 // uc Suw + vc Svw + wc Sww = (Suuw + Svvw + Swww) / 2 | |
1510 // Note this is symetric, with a positiv diagonal, hence | |
1511 // it always have a uniq solution. | |
1512 yu = 0.5f * (g->Suuu + g->Svvu + g->Swwu); | |
1513 yv = 0.5f * (g->Suuv + g->Svvv + g->Swwv); | |
1514 yw = 0.5f * (g->Suuw + g->Svvw + g->Swww); | |
1515 delta = g->Suu * (g->Svv * g->Sww - g->Svw * g->Svw) | |
1516 - g->Suv * (g->Suv * g->Sww - g->Svw * g->Suw) | |
1517 + g->Suw * (g->Suv * g->Svw - g->Svv * g->Suw); | |
1518 | |
1519 uc = (yu * (g->Svv * g->Sww - g->Svw * g->Svw) | |
1520 - yv * (g->Suv * g->Sww - g->Svw * g->Suw) | |
1521 + yw * (g->Suv * g->Svw - g->Svv * g->Suw) )/delta; | |
1522 vc = (g->Suu * ( yv * g->Sww - yw * g->Svw) | |
1523 - g->Suv * ( yu * g->Sww - yw * g->Suw) | |
1524 + g->Suw * ( yu * g->Svw - yv * g->Suw) )/delta; | |
1525 wc = (g->Suu * (g->Svv * yw - g->Svw * yv ) | |
1526 - g->Suv * (g->Suv * yw - g->Svw * yu ) | |
1527 + g->Suw * (g->Suv * yv - g->Svv * yu ) )/delta; | |
1528 | |
1529 // Back to uncentered coordinates: | |
1530 // xc = um + uc | |
1531 uc = g->Su/g->compass_N + compass_CX_f/32768.0f + uc; | |
1532 vc = g->Sv/g->compass_N + compass_CY_f/32768.0f + vc; | |
1533 wc = g->Sw/g->compass_N + compass_CZ_f/32768.0f + wc; | |
1534 | |
1535 // Then save the new calibrated center: | |
1536 compass_CX_f = (short)(32768 * uc); | |
1537 compass_CY_f = (short)(32768 * vc); | |
1538 compass_CZ_f = (short)(32768 * wc); | |
1539 } | |
1540 | |
1541 | |
1542 // =============================================================================== | |
1543 // compass_calib | |
1544 /// @brief the main loop for calibration | |
1545 /// output is compass_CX_f, compass_CY_f, compass_CZ_f and g | |
1546 /// 160704 removed -4096 limit for LSM303D | |
1547 /// | |
1548 /// @return always 0 | |
1549 // =============================================================================== | |
1550 int compass_calib_common(void) | |
1551 { | |
1552 SCompassCalib g; | |
1553 | |
1554 // Starts with no calibration at all: | |
1555 compass_reset_calibration(&g); | |
1556 | |
1557 int64_t tickstart = 0; | |
1558 uint32_t ticks = 0; | |
1559 uint32_t lasttick = 0; | |
1560 tickstart = HAL_GetTick(); | |
1561 // Eine Minute kalibrieren | |
1562 while((ticks) < 60 * 1000) | |
1563 { | |
1564 compass_read(); | |
1565 acceleration_read(); | |
1566 compass_calc_roll_pitch_only(); | |
1567 | |
1568 if((hardwareCompass == HMC5883L) | |
1569 &&((compass_DX_f == -4096) || | |
1570 (compass_DY_f == -4096) || | |
1571 (compass_DZ_f == -4096) )) | |
1572 { | |
1573 if(compass_gain == 0) | |
1574 return -1; | |
1575 compass_gain--; | |
1576 | |
1577 compass_init(1, compass_gain); | |
1578 compass_reset_calibration(&g); | |
1579 //tickstart = HAL_GetTick(); | |
1580 continue; | |
1581 } | |
1582 | |
1583 copyCompassDataDuringCalibration(compass_DX_f,compass_DY_f,compass_DZ_f); | |
104 | 1584 compass_add_calibration(&g); |
38 | 1585 HAL_Delay(1); |
1586 lasttick = HAL_GetTick(); | |
1587 if(lasttick == 0) | |
1588 { | |
1589 tickstart = -ticks; | |
1590 } | |
104 | 1591 HAL_Delay(1); |
38 | 1592 ticks = lasttick - tickstart; |
147
14e4c83a7559
Forward compass data during calibration mode
Ideenmodellierer
parents:
104
diff
changeset
|
1593 SPI_Evaluate_RX_Data(); |
104 | 1594 } |
38 | 1595 |
1596 compass_solve_calibration(&g); | |
1597 | |
1598 tfull32 dataBlock[4]; | |
1599 dataBlock[0].Word16.low16 = compass_CX_f; | |
1600 dataBlock[0].Word16.hi16 = compass_CY_f; | |
1601 dataBlock[1].Word16.low16 = compass_CZ_f; | |
1602 dataBlock[1].Word16.hi16 = 0xFFFF; | |
1603 dataBlock[2].Full32 = 0x7FFFFFFF; | |
1604 dataBlock[3].Full32 = 0x7FFFFFFF; | |
1605 BFA_writeDataBlock((uint32_t *)dataBlock); | |
1606 | |
1607 return 0; | |
1608 } | |
1609 | |
1610 // //////////////////////////// TEST CODE ///////////////////////////////////// | |
1611 | |
1612 | |
1613 | |
1614 //#include <QtDebug> | |
1615 //#include <stdio.h> | |
1616 //#include <math.h> | |
1617 /*#include <stdlib.h> | |
1618 | |
1619 short compass_DX_f, compass_DY_f, compass_DZ_f; | |
1620 short compass_CX_f, compass_CY_f, compass_CZ_f; | |
1621 | |
1622 inline float uniform(void) { | |
1623 return (rand() & 0xFFFF) / 65536.0f; | |
1624 } | |
1625 inline float sqr(float x) { | |
1626 return x*x; | |
1627 } | |
1628 | |
1629 static const float radius = 0.21f; | |
1630 static const float cx = 0.79f, cy = -0.46f, cz = 0.24f; | |
1631 // const float cx = 0, cy = 0, cz = 0; | |
1632 | |
1633 float check_compass_calib(void) | |
1634 { | |
1635 | |
1636 // Starts with no calibration at all: | |
1637 compass_CX_f = compass_CY_f = compass_CZ_f = 0; | |
1638 | |
1639 // Try 10 recalibration passes: | |
1640 for(int p=0; p<10; ++p) | |
1641 { | |
1642 compass_reset_calibration(); | |
1643 | |
1644 //---- Generates random points on a sphere ------------------------------- | |
1645 // of radius,center (cx, cy, cz): | |
1646 for(int i=0; i<100; ++i) | |
1647 { | |
1648 float theta = uniform()*360.0f; | |
1649 float phi = uniform()*180.0f - 90.0f; | |
1650 | |
1651 float x = cx + radius * cosf(phi)*cosf(theta); | |
1652 float y = cy + radius * cosf(phi)*sinf(theta); | |
1653 float z = cz + radius * sinf(phi); | |
1654 | |
1655 compass_DX_f = (short)(32768 * x); | |
1656 compass_DY_f = (short)(32768 * y); | |
1657 compass_DZ_f = (short)(32768 * z); | |
1658 compass_add_calibration(); | |
1659 } | |
1660 | |
1661 compass_solve_calibration(); | |
1662 //qDebug() << "Center =" | |
1663 // << compass_CX_f/32768.0f | |
1664 // << compass_CY_f/32768.0f | |
1665 // << compass_CZ_f/32768.0f; | |
1666 | |
1667 float r2 = sqr(compass_CX_f/32768.0f - cx) | |
1668 + sqr(compass_CY_f/32768.0f - cy) | |
1669 + sqr(compass_CZ_f/32768.0f - cz); | |
1670 if( r2 > 0.01f*0.01f ) | |
1671 return sqrtf(r2); | |
1672 } | |
1673 return 0; | |
1674 }*/ | |
1675 | |
1676 | |
1677 | |
1678 /* | |
1679 void compass_read_LSM303D_v3(void) | |
1680 { | |
1681 uint8_t data; | |
1682 | |
1683 memset(magDataBuffer,0,6); | |
1684 | |
1685 compass_DX_f = 0; | |
1686 compass_DY_f = 0; | |
1687 compass_DZ_f = 0; | |
1688 | |
1689 //magnetometer multi read, order xl,xh, yl,yh, zl, zh | |
1690 data = REG_MAG_DATA_ADDR; | |
1691 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1); | |
1692 I2C_Master_Receive( DEVICE_COMPASS_303D, magDataBuffer, 6); | |
1693 | |
1694 compass_DX_f = ((int16_t)( (int16_t)((magDataBuffer[1] << 8) | (magDataBuffer[0])))); | |
1695 compass_DY_f = ((int16_t)( (int16_t)((magDataBuffer[3] << 8) | (magDataBuffer[2])))); | |
1696 compass_DZ_f = ((int16_t)( (int16_t)((magDataBuffer[5] << 8) | (magDataBuffer[4])))); | |
1697 | |
1698 // compass_DX_f = compass_DX_f * stat->sensitivity_mag; | |
1699 // compass_DY_f = compass_DY_f * stat->sensitivity_mag; | |
1700 // compass_DZ_f = compass_DZ_f * stat->sensitivity_mag; | |
1701 } | |
1702 | |
1703 | |
1704 // =============================================================================== | |
1705 // compass_init_LSM303D by STMicroelectronics 2013 V1.0.5 2013/Oct/23 | |
1706 /// @brief The new ST 303D | |
1707 /// This might be called several times with different gain values during calibration | |
1708 /// | |
1709 /// @param gain: 7 is max gain and set with here, compass_calib() might reduce it | |
1710 // =============================================================================== | |
1711 | |
1712 void compass_init_LSM303D_v3(uint8_t gain) | |
1713 { | |
1714 uint8_t data[10]; | |
1715 | |
1716 // CNTRL1 | |
1717 // 0011 acceleration data rate 0011 = 12.5 Hz (3.125 Hz - 1600 Hz) | |
1718 // 0xxx block data update off | |
1719 // x111 enable all three axes | |
1720 | |
1721 // CNTRL5 | |
1722 // 0xxx xxxx temp sensor off | |
1723 // x00x xxxx magnetic resolution | |
1724 // xxx0 1xxx magentic data rate 01 = 6,25 Hz (3.125 Hz - 50 Hz (100 Hz)) | |
1725 // xxxx xx00 latch irq requests off | |
1726 | |
1727 // CNTRL7 | |
1728 // 00xx high pass filter mode, 00 normal mode | |
1729 // xx0x filter for acceleration data bypassed | |
1730 // xxx0 temperature sensor mode only off | |
1731 // x0xx magnetic data low-power mode off | |
1732 // xx00 magnetic sensor mode 00 = continous-conversion mode (default 10 power-down) | |
1733 | |
1734 data[0] = CNTRL0; | |
1735 data[1] = 0x00; | |
1736 I2C_Master_Transmit( DEVICE_COMPASS_303D, data, 2); | |
1737 | |
1738 // acc | |
1739 data[0] = CNTRL1; | |
1740 data[1] = 0x00; | |
1741 data[2] = 0x0F; | |
1742 data[3] = 0x00; | |
1743 data[4] = 0x00; | |
1744 I2C_Master_Transmit( DEVICE_COMPASS_303D, data, 5); | |
1745 | |
1746 // mag | |
1747 data[0] = CNTRL3; | |
1748 data[1] = 0x00; | |
1749 data[2] = 0x00; | |
1750 data[3] = 0x18; | |
1751 data[4] = 0x20; | |
1752 I2C_Master_Transmit( DEVICE_COMPASS_303D, data, 5); | |
1753 | |
1754 data[0] = CNTRL7; | |
1755 data[1] = ((MSMS_MASK & CONTINUOS_CONVERSION) | | |
1756 ((~MSMS_MASK) & CNTRL7_RESUME_VALUE)); | |
1757 I2C_Master_Transmit( DEVICE_COMPASS_303D, data, 2); | |
1758 | |
1759 HAL_Delay(100); | |
1760 } | |
1761 | |
1762 | |
1763 // =============================================================================== | |
1764 // compass_init_LSM303D by nordevx for arduion | |
1765 /// @brief The new ST 303D | |
1766 /// This might be called several times with different gain values during calibration | |
1767 /// | |
1768 /// @param gain: 7 is max gain and set with here, compass_calib() might reduce it | |
1769 // =============================================================================== | |
1770 void compass_init_LSM303D_v2(uint8_t gain) | |
1771 { | |
1772 uint8_t data[2]; | |
1773 | |
1774 // CNTRL1 | |
1775 // 0011 acceleration data rate 0011 = 12.5 Hz (3.125 Hz - 1600 Hz) | |
1776 // 0xxx block data update off | |
1777 // x111 enable all three axes | |
1778 | |
1779 // CNTRL5 | |
1780 // 0xxx xxxx temp sensor off | |
1781 // x00x xxxx magnetic resolution | |
1782 // xxx0 1xxx magentic data rate 01 = 6,25 Hz (3.125 Hz - 50 Hz (100 Hz)) | |
1783 // xxxx xx00 latch irq requests off | |
1784 | |
1785 // CNTRL7 | |
1786 // 00xx high pass filter mode, 00 normal mode | |
1787 // xx0x filter for acceleration data bypassed | |
1788 // xxx0 temperature sensor mode only off | |
1789 // x0xx magnetic data low-power mode off | |
1790 // xx00 magnetic sensor mode 00 = continous-conversion mode (default 10 power-down) | |
1791 | |
1792 data[0] = CNTRL1; | |
1793 data[1] = 0x37; //0b 0011 0111 | |
1794 I2C_Master_Transmit( DEVICE_COMPASS_303D, data, 2); | |
1795 | |
1796 data[0] = CNTRL5; | |
1797 data[1] = 0x08; // 0b 0000 1000 | |
1798 I2C_Master_Transmit( DEVICE_COMPASS_303D, data, 2); | |
1799 | |
1800 data[0] = CNTRL7; | |
1801 data[1] = 0x00; // 0b 0000 0000 | |
1802 I2C_Master_Transmit( DEVICE_COMPASS_303D, data, 2); | |
1803 | |
1804 HAL_Delay(100); | |
1805 } | |
1806 | |
1807 | |
1808 // =============================================================================== | |
1809 // compass_init_LSM303D_v1 by ST lsm303d.c | |
1810 /// @brief The new ST 303D | |
1811 /// This might be called several times with different gain values during calibration | |
1812 /// | |
1813 /// @param gain: 7 is max gain and set with here, compass_calib() might reduce it | |
1814 // =============================================================================== | |
1815 void compass_init_LSM303D_v1(uint8_t gain) | |
1816 { | |
1817 uint8_t data; | |
1818 | |
1819 compass_gain = gain; | |
1820 | |
1821 memset(magDataBuffer,0,6); | |
1822 memset(accDataBuffer,0,6); | |
1823 | |
1824 data = CNTRL5; | |
1825 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1); | |
1826 I2C_Master_Receive( DEVICE_COMPASS_303D, &data, 1); | |
1827 data = (data & 0x1c) >> 2; | |
1828 velMag = magODR[data]; | |
1829 | |
1830 data = CNTRL1; | |
1831 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1); | |
1832 I2C_Master_Receive( DEVICE_COMPASS_303D, &data, 1); | |
1833 data = (data & 0xf0) >> 4; | |
1834 velAcc = accODR[data]; | |
1835 | |
1836 data = CNTRL7; | |
1837 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1); | |
1838 I2C_Master_Receive( DEVICE_COMPASS_303D, &datas1, 1); | |
1839 datas1 = (datas1 & 0x02); | |
1840 | |
1841 //if mag is not pd | |
1842 //mag is bigger than gyro | |
1843 if( (velMag < velAcc) || datas1 != 0 ) { | |
1844 //acc is the biggest | |
1845 fastest = ACC_IS_FASTEST; | |
1846 } | |
1847 else { | |
1848 //acc is the biggest | |
1849 fastest = MAG_IS_FASTEST; | |
1850 } | |
1851 | |
1852 zoffFlag = 1; | |
1853 | |
1854 if( fastest == MAG_IS_FASTEST) | |
1855 { | |
1856 data = STATUS_REG_M; | |
1857 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1); | |
1858 I2C_Master_Receive( DEVICE_COMPASS_303D, &data, 1); | |
1859 | |
1860 // if(ValBit(data, ZYXMDA)) { | |
1861 sendFlag = 1; | |
1862 // } | |
1863 | |
1864 } | |
1865 else if(fastest == ACC_IS_FASTEST) | |
1866 { | |
1867 data = STATUS_REG_A; | |
1868 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1); | |
1869 I2C_Master_Receive( DEVICE_COMPASS_303D, &data, 1); | |
1870 // if(ValBit(data, DATAREADY_BIT)) { | |
1871 sendFlag = 1; | |
1872 // } | |
1873 } | |
1874 } | |
1875 | |
1876 // =============================================================================== | |
1877 // compass_read_LSM303D | |
1878 /// @brief The new LSM303D :-) | |
1879 /// | |
1880 /// output is compass_DX_f, compass_DY_f, compass_DZ_f, accel_DX_f, accel_DY_f, accel_DZ_f | |
1881 // =============================================================================== | |
1882 void compass_read_LSM303D_v2(void) | |
1883 { | |
1884 uint8_t data; | |
1885 | |
1886 memset(magDataBuffer,0,6); | |
1887 memset(accDataBuffer,0,6); | |
1888 | |
1889 compass_DX_f = 0; | |
1890 compass_DY_f = 0; | |
1891 compass_DZ_f = 0; | |
1892 | |
1893 accel_DX_f = 0; | |
1894 accel_DY_f = 0; | |
1895 accel_DZ_f = 0; | |
1896 | |
1897 //Accelerometer multi read, order xl,xh, yl,yh, zl, zh | |
1898 data = REG_ACC_DATA_ADDR; | |
1899 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1); | |
1900 I2C_Master_Receive( DEVICE_COMPASS_303D, accDataBuffer, 6); | |
1901 | |
1902 //magnetometer multi read, order xl,xh, yl,yh, zl, zh | |
1903 data = OUT_X_L_M; | |
1904 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1); | |
1905 I2C_Master_Receive( DEVICE_COMPASS_303D, magDataBuffer, 6); | |
1906 | |
1907 accel_DX_f = ((int16_t)( (int16_t)((accDataBuffer[1] << 8) | (accDataBuffer[0])))); | |
1908 accel_DY_f = ((int16_t)( (int16_t)((accDataBuffer[3] << 8) | (accDataBuffer[2])))); | |
1909 accel_DZ_f = ((int16_t)( (int16_t)((accDataBuffer[5] << 8) | (accDataBuffer[4])))); | |
1910 | |
1911 // accel_DX_f = accel_DX_f * stat->sensitivity_acc; | |
1912 // accel_DY_f = accel_DY_f * stat->sensitivity_acc; | |
1913 // accel_DZ_f = accel_DZ_f * stat->sensitivity_acc; | |
1914 | |
1915 | |
1916 compass_DX_f = magDataBuffer[1]; | |
1917 compass_DX_f *= 256; | |
1918 compass_DX_f += magDataBuffer[0]; | |
1919 | |
1920 compass_DY_f = magDataBuffer[3]; | |
1921 compass_DY_f *= 256; | |
1922 compass_DY_f += magDataBuffer[2]; | |
1923 | |
1924 compass_DY_f = magDataBuffer[5]; | |
1925 compass_DY_f *= 256; | |
1926 compass_DY_f += magDataBuffer[4]; | |
1927 | |
1928 } | |
1929 | |
1930 | |
1931 */ | |
1932 |