Mercurial > public > ostc4
view Small_CPU/Src/uart.c @ 919:c0553dd70608 Evo_2_23
GNSS support for external UART interface:
An ubox gps module may now be connected to the external UART. Per default the functionality is disabled using the compile switch ENABLE_GNSS_SUPPORT
author | Ideenmodellierer |
---|---|
date | Sun, 03 Nov 2024 15:43:04 +0100 |
parents | f72613a152dd |
children | eb4109d7d1e9 |
line wrap: on
line source
/** ****************************************************************************** * @file uart.c * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 27-March-2014 * @brief button control * @verbatim ============================================================================== ##### How to use ##### ============================================================================== @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2015 heinrichs weikamp</center></h2> * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "uart.h" #include "uartProtocol_O2.h" #include "uartProtocol_Co2.h" #include "uartProtocol_Sentinel.h" #include "uartProtocol_GNSS.h" #include "externalInterface.h" #include "data_exchange.h" #include <string.h> /* memset */ /* Private variables ---------------------------------------------------------*/ #define TX_BUF_SIZE (40u) /* max length for commands */ #define CHUNK_SIZE (25u) /* the DMA will handle chunk size transfers */ #define CHUNKS_PER_BUFFER (6u) DMA_HandleTypeDef hdma_usart1_rx, hdma_usart1_tx, hdma_usart6_rx, hdma_usart6_tx; uint8_t rxBuffer[CHUNK_SIZE * CHUNKS_PER_BUFFER]; /* The complete buffer has a X * chunk size to allow variations in buffer read time */ uint8_t txBuffer[CHUNK_SIZE]; /* tx uses less bytes */ uint8_t txBufferQue[TX_BUF_SIZE]; /* In MUX mode command may be send shortly after each other => allow q 1 entry que */ uint8_t txBufferQueLen; uint8_t rxBufferUart6[CHUNK_SIZE * CHUNKS_PER_BUFFER]; /* The complete buffer has a X * chunk size to allow variations in buffer read time */ uint8_t txBufferUart6[CHUNK_SIZE * CHUNKS_PER_BUFFER]; /* The complete buffer has a X * chunk size to allow variations in buffer read time */ static uint8_t rxWriteIndex; /* Index of the data item which is analysed */ static uint8_t rxReadIndex; /* Index at which new data is stared */ static uint8_t lastCmdIndex; /* Index of last command which has not been completely received */ static uint8_t dmaRxActive; /* Indicator if DMA reception needs to be started */ static uint8_t dmaTxActive; /* Indicator if DMA reception needs to be started */ static uint8_t isEndIndication(uint8_t index); /* Exported functions --------------------------------------------------------*/ void UART_clearRxBuffer(void) { uint16_t index = 0; do { rxBuffer[index++] = BUFFER_NODATA_LOW; rxBuffer[index++] = BUFFER_NODATA_HIGH; } while (index < sizeof(rxBuffer)); rxReadIndex = 0; rxWriteIndex = 0; } void MX_USART1_UART_Init(void) { /* regular init */ huart1.Instance = USART1; huart1.Init.BaudRate = 19200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; HAL_UART_Init(&huart1); MX_USART1_DMA_Init(); UART_clearRxBuffer(); rxReadIndex = 0; lastCmdIndex = 0; rxWriteIndex = 0; dmaRxActive = 0; dmaTxActive = 0; txBufferQueLen = 0; } void MX_USART1_UART_DeInit(void) { HAL_DMA_Abort(&hdma_usart1_rx); HAL_DMA_DeInit(&hdma_usart1_rx); HAL_DMA_Abort(&hdma_usart1_tx); HAL_DMA_DeInit(&hdma_usart1_tx); HAL_UART_DeInit(&huart1); dmaRxActive = 0; dmaTxActive = 0; txBufferQueLen = 0; } void MX_USART1_DMA_Init() { /* DMA controller clock enable */ __DMA2_CLK_ENABLE(); /* Peripheral DMA init*/ hdma_usart1_rx.Instance = DMA2_Stream5; hdma_usart1_rx.Init.Channel = DMA_CHANNEL_4; hdma_usart1_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; //DMA_MEMORY_TO_PERIPH; hdma_usart1_rx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart1_rx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart1_rx.Init.PeriphDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart1_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart1_rx.Init.Mode = DMA_NORMAL; hdma_usart1_rx.Init.Priority = DMA_PRIORITY_LOW; hdma_usart1_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE; HAL_DMA_Init(&hdma_usart1_rx); __HAL_LINKDMA(&huart1,hdmarx,hdma_usart1_rx); hdma_usart1_tx.Instance = DMA2_Stream7; hdma_usart1_tx.Init.Channel = DMA_CHANNEL_4; hdma_usart1_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_usart1_tx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart1_tx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart1_tx.Init.PeriphDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart1_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart1_tx.Init.Mode = DMA_NORMAL; hdma_usart1_tx.Init.Priority = DMA_PRIORITY_LOW; hdma_usart1_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE; HAL_DMA_Init(&hdma_usart1_tx); __HAL_LINKDMA(&huart1,hdmatx,hdma_usart1_tx); /* DMA interrupt init */ HAL_NVIC_SetPriority(DMA2_Stream5_IRQn, 2, 2); HAL_NVIC_EnableIRQ(DMA2_Stream5_IRQn); HAL_NVIC_SetPriority(DMA2_Stream7_IRQn, 2, 1); HAL_NVIC_EnableIRQ(DMA2_Stream7_IRQn); } void GNSS_IO_init() { GPIO_InitTypeDef GPIO_InitStruct = { 0 }; /* Peripheral clock enable */ __HAL_RCC_USART6_CLK_ENABLE() ; __HAL_RCC_GPIOA_CLK_ENABLE() ; /**USART6 GPIO Configuration PA11 ------> USART6_TX PA12 ------> USART6_RX */ GPIO_InitStruct.Pin = GPIO_PIN_11 | GPIO_PIN_12; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FAST; GPIO_InitStruct.Alternate = GPIO_AF8_USART6; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /* USART6 DMA Init */ /* USART6_RX Init */ hdma_usart6_rx.Instance = DMA2_Stream1; hdma_usart6_rx.Init.Channel = DMA_CHANNEL_5; hdma_usart6_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_usart6_rx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart6_rx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart6_rx.Init.PeriphDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart6_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart6_rx.Init.Mode = DMA_NORMAL; hdma_usart6_rx.Init.Priority = DMA_PRIORITY_LOW; hdma_usart6_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE; HAL_DMA_Init(&hdma_usart6_rx); __HAL_LINKDMA(&huart6, hdmarx, hdma_usart6_rx); /* USART6_TX Init */ hdma_usart6_tx.Instance = DMA2_Stream6; hdma_usart6_tx.Init.Channel = DMA_CHANNEL_6; hdma_usart6_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_usart6_tx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart6_tx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart6_tx.Init.PeriphDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart6_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart6_tx.Init.Mode = DMA_NORMAL; hdma_usart6_tx.Init.Priority = DMA_PRIORITY_LOW; hdma_usart6_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE; HAL_DMA_Init(&hdma_usart6_tx); __HAL_LINKDMA(&huart6, hdmatx, hdma_usart6_tx); /* USART6 interrupt Init */ HAL_NVIC_SetPriority(USART6_IRQn, 0, 0); HAL_NVIC_EnableIRQ(USART6_IRQn); MX_USART6_DMA_Init(); } void MX_USART6_DMA_Init() { /* DMA controller clock enable */ __HAL_RCC_DMA2_CLK_ENABLE(); /* DMA interrupt init */ /* DMA2_Stream2_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA2_Stream2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA2_Stream2_IRQn); /* DMA2_Stream6_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA2_Stream6_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA2_Stream6_IRQn); } void MX_USART6_UART_DeInit(void) { HAL_DMA_Abort(&hdma_usart6_rx); HAL_DMA_DeInit(&hdma_usart6_rx); HAL_DMA_Abort(&hdma_usart6_tx); HAL_DMA_DeInit(&hdma_usart6_tx); HAL_UART_DeInit(&huart6); HAL_UART_DeInit(&huart6); } void MX_USART6_UART_Init(void) { huart6.Instance = USART6; huart6.Init.BaudRate = 9600; huart6.Init.WordLength = UART_WORDLENGTH_8B; huart6.Init.StopBits = UART_STOPBITS_1; huart6.Init.Parity = UART_PARITY_NONE; huart6.Init.Mode = UART_MODE_TX_RX; huart6.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart6.Init.OverSampling = UART_OVERSAMPLING_16; HAL_UART_Init(&huart6); } void UART_MUX_SelectAddress(uint8_t muxAddress) { uint8_t indexstr[4]; if(muxAddress <= MAX_MUX_CHANNEL) { indexstr[0] = '~'; indexstr[1] = muxAddress; indexstr[2] = 0x0D; indexstr[3] = 0x0A; if(!dmaTxActive) { memcpy(txBuffer, indexstr, 4); dmaTxActive = 0; if(HAL_OK == HAL_UART_Transmit_DMA(&huart1,txBuffer,4)) { dmaTxActive = 1; while(dmaTxActive) { HAL_Delay(1); } } } else { memcpy(txBufferQue, indexstr, 4); txBufferQueLen = 4; } } } void UART_SendCmdString(uint8_t *cmdString) { uint8_t cmdLength = strlen((char*)cmdString); if(dmaTxActive == 0) { if(cmdLength < TX_BUF_SIZE) /* A longer string is an indication for a missing 0 termination */ { if(dmaRxActive == 0) { UART_StartDMA_Receiption(); } memcpy(txBuffer, cmdString, cmdLength); if(HAL_OK == HAL_UART_Transmit_DMA(&huart1,txBuffer,cmdLength)) { dmaTxActive = 1; } } } else { memcpy(txBufferQue, cmdString, cmdLength); txBufferQueLen = cmdLength; } } void UART_SendCmdUbx(uint8_t *cmd, uint8_t len) { if(len < TX_BUF_SIZE) /* A longer string is an indication for a missing 0 termination */ { if(dmaRxActive == 0) { UART_StartDMA_Receiption(); } memcpy(txBuffer, cmd, len); if(HAL_OK == HAL_UART_Transmit_DMA(&huart1,txBuffer,len)) { dmaTxActive = 1; } } } void StringToInt(char *pstr, uint32_t *puInt32) { uint8_t index = 0; uint32_t result = 0; while((pstr[index] >= '0') && (pstr[index] <= '9')) { result *=10; result += pstr[index] - '0'; index++; } *puInt32 = result; } void StringToUInt64(char *pstr, uint64_t *puint64) { uint8_t index = 0; uint64_t result = 0; while((pstr[index] >= '0') && (pstr[index] <= '9')) { result *=10; result += pstr[index] - '0'; index++; } *puint64 = result; } void UART_StartDMA_Receiption() { if(dmaRxActive == 0) { if(((rxWriteIndex / CHUNK_SIZE) != (rxReadIndex / CHUNK_SIZE)) || ((isEndIndication(rxWriteIndex)) && (isEndIndication(rxWriteIndex + 1)))) /* start next transfer if we did not catch up with read index */ { if(HAL_OK == HAL_UART_Receive_DMA (&huart1, &rxBuffer[rxWriteIndex], CHUNK_SIZE)) { dmaRxActive = 1; } } } } void UART_ChangeBaudrate(uint32_t newBaudrate) { MX_USART1_UART_DeInit(); huart1.Init.BaudRate = newBaudrate; HAL_UART_Init(&huart1); MX_USART1_DMA_Init(); HAL_NVIC_SetPriority(USART1_IRQn, 1, 3); HAL_NVIC_EnableIRQ(USART1_IRQn); UART_clearRxBuffer(); rxReadIndex = 0; rxWriteIndex = 0; dmaRxActive = 0; txBufferQueLen = 0; } void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { if(huart == &huart1) { dmaRxActive = 0; rxWriteIndex+=CHUNK_SIZE; if(rxWriteIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) { rxWriteIndex = 0; } UART_StartDMA_Receiption(); } } void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) { if(huart == &huart1) { dmaTxActive = 0; UART_WriteData(); if(txBufferQueLen) { memcpy(txBuffer, txBufferQue, txBufferQueLen); HAL_UART_Transmit_DMA(&huart1,txBuffer,txBufferQueLen); dmaTxActive = 1; txBufferQueLen = 0; } } } uint8_t isEndIndication(uint8_t index) { uint8_t ret = 0; if(index % 2) { if(rxBuffer[index] == BUFFER_NODATA_HIGH) { ret = 1; } } else { if(rxBuffer[index] == BUFFER_NODATA_LOW) { ret = 1; } } return ret; } void UART_ReadData(uint8_t sensorType) { uint8_t localRX = rxReadIndex; uint8_t futureIndex = rxReadIndex + 1; uint8_t moreData = 0; if(futureIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) { futureIndex = 0; } if((!isEndIndication(localRX)) || (!isEndIndication(futureIndex))) do { while((!isEndIndication(localRX)) || (moreData)) { moreData = 0; switch (sensorType) { case SENSOR_MUX: case SENSOR_DIGO2: uartO2_ProcessData(rxBuffer[localRX]); break; #ifdef ENABLE_CO2_SUPPORT case SENSOR_CO2: uartCo2_ProcessData(rxBuffer[localRX]); break; #endif #ifdef ENABLE_GNSS_SUPPORT case SENSOR_GNSS: uartGnss_ProcessData(rxBuffer[localRX]); break; #endif #ifdef ENABLE_SENTINEL_MODE case SENSOR_SENTINEL: uartSentinel_ProcessData(rxBuffer[localRX]); break; #endif default: break; } if(localRX % 2) { rxBuffer[localRX] = BUFFER_NODATA_HIGH; } else { rxBuffer[localRX] = BUFFER_NODATA_LOW; } localRX++; rxReadIndex++; if(rxReadIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) { localRX = 0; rxReadIndex = 0; } futureIndex++; if(futureIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) { futureIndex = 0; } } if(!isEndIndication(futureIndex)) { moreData = 1; } } while(moreData); } void UART_WriteData(void) { if(huart1.hdmatx->State == HAL_DMA_STATE_READY) { huart1.gState = HAL_UART_STATE_READY; dmaTxActive = 0; } if(huart1.hdmarx->State == HAL_DMA_STATE_READY) { huart1.RxState = HAL_UART_STATE_READY; dmaRxActive = 0; } } void UART_FlushRxBuffer(void) { uint8_t futureIndex = rxReadIndex + 1; if(futureIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) { futureIndex = 0; } while((rxBuffer[rxReadIndex] != BUFFER_NODATA_LOW) && (rxBuffer[futureIndex] != BUFFER_NODATA_HIGH)) { if(rxReadIndex % 2) { rxBuffer[rxReadIndex++] = BUFFER_NODATA_HIGH; } else { rxBuffer[rxReadIndex++] = BUFFER_NODATA_LOW; } if(rxReadIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) { rxReadIndex = 0; } futureIndex++; if(futureIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) { futureIndex = 0; } } } uint8_t UART_isComActive(uint8_t sensorId) { uint8_t active = 1; uint8_t ComState = externalInterface_GetSensorState(sensorId + EXT_INTERFACE_MUX_OFFSET); if((ComState == UART_COMMON_INIT) || (ComState == UART_COMMON_IDLE) || (ComState == UART_COMMON_ERROR) || (ComState == COMMON_SENSOR_STATE_INVALID)) { active = 0; } return active; } /************************ (C) COPYRIGHT heinrichs weikamp *****END OF FILE****/