Mercurial > public > ostc4
view Small_CPU/Src/externalInterface.c @ 790:3b5f9557c053
Fix bug introduced in 04b98a2, causing the deco planner to not show deco stops.
author | heinrichsweikamp |
---|---|
date | Tue, 25 Jul 2023 14:48:58 +0200 |
parents | 19ab6f3ed52a |
children | bb37d4f3e50e |
line wrap: on
line source
/** ****************************************************************************** * @file externalInterface.c * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 07-Nov-2020 * @brief Interface functionality to proceed external analog signal via i2c connection * @verbatim ============================================================================== ##### stm32f4xx_hal_i2c.c modification ##### ============================================================================== The LTC2942 requires an repeated start condition without stop condition for data reception. @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2014 heinrichs weikamp</center></h2> * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include <math.h> #include <string.h> #include "i2c.h" #include "externalInterface.h" #include "scheduler.h" #include "uart.h" #include "data_exchange.h" #include "pressure.h" extern SGlobal global; extern UART_HandleTypeDef huart1; #define ADC_ANSWER_LENGTH (5u) /* 3424 will provide addr + 4 data bytes */ #define ADC_TIMEOUT (10u) /* conversion stuck for unknown reason => restart */ #define ADC_REF_VOLTAGE_MV (2048.0f) /* reference voltage of MPC3424*/ #define ADC_START_CONVERSION (0x80) #define ADC_GAIN_4 (0x02) #define ADC_GAIN_4_VALUE (4.0f) #define ADC_GAIN_8 (0x03) #define ADC_GAIN_8_VALUE (8.0f) #define ADC_RESOLUTION_16BIT (0x08) #define ADC_RESOLUTION_16BIT_VALUE (16u) #define ADC_RESOLUTION_18BIT (0x0C) #define ADC_RESOLUTION_18BIT_VALUE (18u) #define ANSWER_CONFBYTE_INDEX (4u) #define LOOKUP_CO2_CORR_TABLE_SCALE (1000u) #define LOOKUP_CO2_CORR_TABLE_MAX (30000u) static uint8_t activeChannel = 0; /* channel which is in request */ static uint8_t recBuf[ADC_ANSWER_LENGTH]; static uint8_t timeoutCnt = 0; static uint8_t externalInterfacePresent = 0; float externalChannel_mV[MAX_ADC_CHANNEL]; static uint8_t externalV33_On = 0; static uint8_t externalADC_On = 0; static uint8_t externalUART_Protocol = 0; static uint16_t externalCO2Value; static uint16_t externalCO2SignalStrength; static uint16_t externalCO2Status = 0; static uint8_t lastSensorDataId = 0; static SSensorDataDiveO2 sensorDataDiveO2[MAX_ADC_CHANNEL]; static externalInterfaceAutoDetect_t externalAutoDetect = DETECTION_OFF; static externalInterfaceSensorType SensorMap[EXT_INTERFACE_SENSOR_CNT] ={ SENSOR_OPTIC, SENSOR_OPTIC, SENSOR_OPTIC, SENSOR_NONE, SENSOR_NONE}; static externalInterfaceSensorType tmpSensorMap[EXT_INTERFACE_SENSOR_CNT]; static externalInterfaceSensorType MasterSensorMap[EXT_INTERFACE_SENSOR_CNT]; static float LookupCO2PressureCorrection[LOOKUP_CO2_CORR_TABLE_MAX / LOOKUP_CO2_CORR_TABLE_SCALE]; /* lookup table for pressure compensation values */ void externalInterface_Init(void) { uint16_t index; uint16_t coeff; activeChannel = 0; timeoutCnt = 0; externalInterfacePresent = 0; if(externalInterface_StartConversion(activeChannel) == HAL_OK) { externalInterfacePresent = 1; global.deviceDataSendToMaster.hw_Info.extADC = 1; } global.deviceDataSendToMaster.hw_Info.checkADC = 1; /* Create a lookup table based on GSS application note AN001: PRESSURE COMPENSATION OF A CO2 SENSOR */ /* The main purpose of the sensor in the dive application is to be a warning indicator */ /* => no exact values necessary => a lookup table with 1000ppm scaling should be sufficient */ LookupCO2PressureCorrection [0] = -0.0014; for(index = 1; index < (LOOKUP_CO2_CORR_TABLE_MAX / LOOKUP_CO2_CORR_TABLE_SCALE); index++) { coeff = index * LOOKUP_CO2_CORR_TABLE_SCALE; LookupCO2PressureCorrection[index] = 2.811*pow(10,-38)*pow(coeff,6)- 9.817*pow(10,-32)*pow(coeff,5)+1.304*pow(10,-25)*pow(coeff,4)-8.216*pow(10,-20)*pow(coeff,3)+2.311*pow(10,-14)*pow(coeff,2) - 2.195*pow(10,-9)*coeff - 1.471*pow(10,-3); } externalInterface_InitDatastruct(); } void externalInterface_InitDatastruct(void) { uint8_t index = 0; /* init data values */ externalV33_On = 0; externalCO2Value = 0; externalCO2SignalStrength = 0; externalCO2Status = 0; externalAutoDetect = DETECTION_OFF; for(index = 0; index < MAX_ADC_CHANNEL; index++) { externalChannel_mV[index] = 0.0; } } uint8_t externalInterface_StartConversion(uint8_t channel) { uint8_t retval = 0; uint8_t confByte = 0; if(channel < MAX_ADC_CHANNEL) { confByte = ADC_START_CONVERSION | ADC_RESOLUTION_16BIT | ADC_GAIN_8; confByte |= channel << 5; retval = I2C_Master_Transmit(DEVICE_EXTERNAL_ADC, &confByte, 1); } return retval; } /* Check if conversion is done and trigger measurement of next channel */ uint8_t externalInterface_ReadAndSwitch() { uint8_t retval = EXTERNAL_ADC_NO_DATA; uint8_t nextChannel; uint8_t* psensorMap = externalInterface_GetSensorMapPointer(0); if(externalADC_On) { if(I2C_Master_Receive(DEVICE_EXTERNAL_ADC, recBuf, ADC_ANSWER_LENGTH) == HAL_OK) { if((recBuf[ANSWER_CONFBYTE_INDEX] & ADC_START_CONVERSION) == 0) /* !ready set => received data contains new value */ { retval = activeChannel; /* return channel number providing new data */ nextChannel = activeChannel + 1; if(nextChannel == MAX_ADC_CHANNEL) { nextChannel = 0; } while((psensorMap[nextChannel] != SENSOR_ANALOG) && (nextChannel != activeChannel)) { if(nextChannel == MAX_ADC_CHANNEL) { nextChannel = 0; } else { nextChannel++; } } activeChannel = nextChannel; externalInterface_StartConversion(activeChannel); timeoutCnt = 0; } else { if(timeoutCnt++ >= ADC_TIMEOUT) { externalInterface_StartConversion(activeChannel); timeoutCnt = 0; } } } else /* take also i2c bus disturb into account */ { if(timeoutCnt++ >= ADC_TIMEOUT) { externalInterface_StartConversion(activeChannel); timeoutCnt = 0; } } } return retval; } float externalInterface_CalculateADCValue(uint8_t channel) { int32_t rawvalue = 0; float retValue = 0.0; if(channel < MAX_ADC_CHANNEL) { rawvalue = ((recBuf[0] << 16) | (recBuf[1] << 8) | (recBuf[2])); switch(recBuf[3] & 0x0C) /* confbyte => Resolution bits*/ { case ADC_RESOLUTION_16BIT: rawvalue = rawvalue >> 8; /* only 2 databytes received shift out confbyte*/ if(rawvalue & (0x1 << (ADC_RESOLUTION_16BIT_VALUE-1))) /* MSB set => negative number */ { rawvalue |= 0xFFFF0000; /* set MSB for int32 */ } else { rawvalue &= 0x0000FFFF; } externalChannel_mV[channel] = ADC_REF_VOLTAGE_MV * 2.0 / (float) pow(2,ADC_RESOLUTION_16BIT_VALUE); /* calculate bit resolution */ break; case ADC_RESOLUTION_18BIT: if(rawvalue & (0x1 << (ADC_RESOLUTION_18BIT_VALUE-1))) /* MSB set => negative number */ { rawvalue |= 0xFFFE0000; /* set MSB for int32 */ } externalChannel_mV[channel] = ADC_REF_VOLTAGE_MV * 2.0 / (float) pow(2,ADC_RESOLUTION_18BIT_VALUE); /* calculate bit resolution */ break; default: rawvalue = 0; break; } externalChannel_mV[channel] = externalChannel_mV[channel] * rawvalue / ADC_GAIN_8_VALUE; retValue = externalChannel_mV[channel]; } return retValue; } float getExternalInterfaceChannel(uint8_t channel) { float retval = 0; if(channel < MAX_ADC_CHANNEL) { retval = externalChannel_mV[channel]; } return retval; } uint8_t setExternalInterfaceChannel(uint8_t channel, float value) { uint8_t retval = 0; if(channel < MAX_ADC_CHANNEL) { externalChannel_mV[channel] = value; retval = 1; } return retval; } void externalInterface_InitPower33(void) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Pin = GPIO_PIN_7; GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStructure.Pull = GPIO_PULLUP; GPIO_InitStructure.Speed = GPIO_SPEED_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStructure); HAL_GPIO_WritePin(GPIOC,GPIO_PIN_7,GPIO_PIN_SET); } uint8_t externalInterface_isEnabledPower33() { return externalV33_On; } uint8_t externalInterface_isEnabledADC() { return externalADC_On; } uint8_t externalInterface_GetUARTProtocol() { return externalUART_Protocol; } void externalInterface_SwitchPower33(uint8_t state) { if(state != externalV33_On) { if(state) { HAL_GPIO_WritePin(GPIOC,GPIO_PIN_7,GPIO_PIN_RESET); externalV33_On = 1; } else { if(externalAutoDetect == DETECTION_OFF) { HAL_GPIO_WritePin(GPIOC,GPIO_PIN_7,GPIO_PIN_SET); externalV33_On = 0; externalInterface_SetCO2Value(0); externalInterface_SetCO2SignalStrength(0); } } } } void externalInterface_SwitchADC(uint8_t state) { uint8_t loop = 0; if((state) && (externalInterfacePresent)) { if(externalADC_On == 0) { activeChannel = 0; externalInterface_StartConversion(activeChannel); externalADC_On = 1; } } else { if(externalAutoDetect == DETECTION_OFF) /* block deactivation requests if auto detection is active */ { externalADC_On = 0; for(loop = 0; loop < MAX_ADC_CHANNEL; loop++) { externalChannel_mV[loop] = 0; } } } } void externalInterface_SwitchUART(uint8_t protocol) { switch(protocol) { case 0: case (EXT_INTERFACE_UART_CO2 >> 8): case (EXT_INTERFACE_UART_O2 >> 8): case (EXT_INTERFACE_UART_SENTINEL >> 8): if((externalAutoDetect <= DETECTION_START) || ((protocol == EXT_INTERFACE_UART_O2 >> 8) && (externalAutoDetect == DETECTION_DIGO2_0)) || ((protocol == EXT_INTERFACE_UART_O2 >> 8) && (externalAutoDetect == DETECTION_DIGO2_1)) || ((protocol == EXT_INTERFACE_UART_O2 >> 8) && (externalAutoDetect == DETECTION_DIGO2_2)) || ((protocol == EXT_INTERFACE_UART_O2 >> 8) && (externalAutoDetect == DETECTION_DIGO2_3)) || ((protocol == EXT_INTERFACE_UART_O2 >> 8) && (externalAutoDetect == DETECTION_UARTMUX)) #ifdef ENABLE_CO2_SUPPORT || ((protocol == EXT_INTERFACE_UART_CO2 >> 8) && (externalAutoDetect == DETECTION_CO2)) #endif #ifdef ENABLE_SENTINEL_MODE || ((protocol == EXT_INTERFACE_UART_SENTINEL >> 8) && (externalAutoDetect == DETECTION_SENTINEL)) #endif ) { lastSensorDataId = 0; externalUART_Protocol = protocol; MX_USART1_UART_DeInit(); if( protocol != 0) { MX_USART1_UART_Init(); } } break; default: break; } } void externalInterface_SetCO2Value(uint16_t CO2_ppm) { float local_ppm = CO2_ppm * 10.0; /* scalfactor */ #ifndef ENABLE_EXTERNAL_PRESSURE float local_corr = 0.0; if (local_ppm >= LOOKUP_CO2_CORR_TABLE_MAX) { local_corr = -0.0014; } else { local_corr = LookupCO2PressureCorrection[((uint16_t) (local_ppm / LOOKUP_CO2_CORR_TABLE_SCALE))]; } local_ppm = local_ppm / (1.0 + (local_corr * (get_surface_mbar() - get_pressure_mbar()))); #else /* The external pressure value is passed via ADC channel2 and calibration is done at firmware => just forward sensor data */ /* compensation is done at firmware side. This is for testing only. Take care the the same algorithm is taken as used for the lookup table */ #endif externalCO2Value = local_ppm / 10.0; } void externalInterface_SetCO2SignalStrength(uint16_t LED_qa) { externalCO2SignalStrength = LED_qa; } uint16_t externalInterface_GetCO2Value(void) { return externalCO2Value; } uint16_t externalInterface_GetCO2SignalStrength(void) { return externalCO2SignalStrength; } void externalInterface_SetCO2State(uint16_t state) { externalCO2Status = state; } uint16_t externalInterface_GetCO2State(void) { return externalCO2Status; } uint8_t externalInterface_GetSensorData(uint8_t sensorId, uint8_t* pDataStruct) { uint8_t localId = sensorId; if(localId == 0xFF) { localId = lastSensorDataId; } if((pDataStruct != NULL) && (localId <= MAX_ADC_CHANNEL)) { memcpy(pDataStruct, &sensorDataDiveO2[localId], sizeof(SSensorDataDiveO2)); } else { localId = 0xFF; } return localId; } void externalInterface_SetSensorData(uint8_t sensorId, uint8_t* pDataStruct) { if(pDataStruct != NULL) { if((sensorId != 0xFF) && (sensorId < MAX_ADC_CHANNEL)) { memcpy(&sensorDataDiveO2[sensorId], pDataStruct, sizeof(SSensorDataDiveO2)); lastSensorDataId = sensorId; } else { memset(&sensorDataDiveO2,0,sizeof(sensorDataDiveO2)); lastSensorDataId = 0xFF; } } } void externalInface_SetSensorMap(uint8_t* pMap) { if(pMap != NULL) { memcpy(MasterSensorMap, pMap, 5); /* the map is not directly copied. Copy is done via cmd request */ } } uint8_t* externalInterface_GetSensorMapPointer(uint8_t finalMap) { uint8_t* pret; if((externalAutoDetect != DETECTION_OFF) && (!finalMap)) { pret = tmpSensorMap; } else { pret = SensorMap; } return pret; } void externalInterface_AutodetectSensor() { static uint8_t tmpMuxMapping[MAX_MUX_CHANNEL]; static uint8_t sensorIndex = 0; static uint8_t uartMuxChannel = 0; uint8_t index = 0; if(externalAutoDetect != DETECTION_OFF) { switch(externalAutoDetect) { case DETECTION_INIT: sensorIndex = 0; uartMuxChannel = 0; tmpSensorMap[0] = SENSOR_OPTIC; tmpSensorMap[1] = SENSOR_OPTIC; tmpSensorMap[2] = SENSOR_OPTIC; tmpSensorMap[3] = SENSOR_NONE; tmpSensorMap[4] = SENSOR_NONE; for(index = 0; index < MAX_ADC_CHANNEL; index++) { UART_MapDigO2_Channel(index,index); /* request all addresses */ tmpMuxMapping[index] = 0xff; } UART_MapDigO2_Channel(2,3); if(externalInterfacePresent) { externalInterface_SwitchPower33(0); externalInterface_SwitchUART(0); for(index = 0; index < MAX_ADC_CHANNEL; index++) { externalChannel_mV[index] = 0; } externalAutoDetect = DETECTION_START; } else { externalAutoDetect = DETECTION_DONE; /* without external interface O2 values may only be received via optical port => return default sensor map */ } break; case DETECTION_START: tmpSensorMap[0] = SENSOR_ANALOG; tmpSensorMap[1] = SENSOR_ANALOG; tmpSensorMap[2] = SENSOR_ANALOG; externalInterface_SwitchPower33(1); externalInterface_SwitchADC(1); externalAutoDetect = DETECTION_ANALOG1; break; case DETECTION_ANALOG1: externalAutoDetect = DETECTION_ANALOG2; /* do a second loop to make sure all adc channels could be processed */ break; case DETECTION_ANALOG2: for(index = 0; index < MAX_ADC_CHANNEL; index++) { if(externalChannel_mV[index] > MIN_ADC_VOLTAGE_MV) { tmpSensorMap[sensorIndex++] = SENSOR_ANALOG; } else { tmpSensorMap[sensorIndex++] = SENSOR_NONE; } } externalAutoDetect = DETECTION_UARTMUX; externalInterface_SwitchUART(EXT_INTERFACE_UART_O2 >> 8); UART_SetDigO2_Channel(MAX_MUX_CHANNEL); break; case DETECTION_UARTMUX: if(UART_isDigO2Connected()) { uartMuxChannel = 1; } externalAutoDetect = DETECTION_DIGO2_0; externalInterface_SwitchUART(EXT_INTERFACE_UART_O2 >> 8); UART_SetDigO2_Channel(0); break; case DETECTION_DIGO2_0: case DETECTION_DIGO2_1: case DETECTION_DIGO2_2: case DETECTION_DIGO2_3: if(UART_isDigO2Connected()) { for(index = 0; index < 3; index++) /* lookup a channel which may be used by digO2 */ { if(tmpSensorMap[index] == SENSOR_NONE) { break; } } if(index == 3) { tmpSensorMap[2] = SENSOR_DIGO2; /* digital sensor overwrites ADC */ } else { tmpSensorMap[index] = SENSOR_DIGO2; tmpMuxMapping[externalAutoDetect - DETECTION_DIGO2_0] = index; if(externalAutoDetect == DETECTION_DIGO2_2 ) /* special handling needed because channel is used twice during mux detection */ { UART_MapDigO2_Channel(0xff, externalAutoDetect - DETECTION_DIGO2_0); } } } else { UART_MapDigO2_Channel(0xff, externalAutoDetect - DETECTION_DIGO2_0); } if(uartMuxChannel) { externalInterface_SwitchUART(EXT_INTERFACE_UART_O2 >> 8); UART_SetDigO2_Channel(uartMuxChannel); if(uartMuxChannel < MAX_ADC_CHANNEL - 1) { uartMuxChannel++; } } else { externalAutoDetect = DETECTION_DIGO2_3; /* skip detection of other serial sensors */ } externalAutoDetect++; #ifdef ENABLE_CO2_SUPPORT if(externalAutoDetect == DETECTION_CO2) { externalInterface_SwitchUART(EXT_INTERFACE_UART_CO2 >> 8); } break; case DETECTION_CO2: if(UART_isCO2Connected()) { for(index = 0; index < 3; index++) /* lookup a channel which may be used by CO2*/ { if(tmpSensorMap[index] == SENSOR_NONE) { break; } } if(index == 3) { tmpSensorMap[sensorIndex++] = SENSOR_CO2; /* place Co2 sensor behind O2 sensors (not visible) */ } else { tmpSensorMap[index] = SENSOR_CO2; } } externalAutoDetect++; #endif #ifdef ENABLE_SENTINEL_MODE if(externalAutoDetect == DETECTION_SENTINEL) { externalInterface_SwitchUART(EXT_INTERFACE_UART_SENTINEL >> 8); UART_StartDMA_Receiption(); } break; case DETECTION_SENTINEL: case DETECTION_SENTINEL2: if(UART_isSentinelConnected()) { for(index = 0; index < 3; index++) /* Sentinel is occupiing all sensor slots */ { tmpSensorMap[index] = SENSOR_SENTINEL; } sensorIndex = 3; } externalAutoDetect++; #endif break; case DETECTION_DONE: if(uartMuxChannel) { tmpSensorMap[EXT_INTERFACE_SENSOR_CNT-1] = SENSOR_MUX; } for(index = 0; index < MAX_MUX_CHANNEL; index++) { UART_MapDigO2_Channel(tmpMuxMapping[index], index); } externalAutoDetect = DETECTION_OFF; externalInterface_SwitchUART(0); for(index = 0; index < MAX_ADC_CHANNEL; index++) { if(tmpSensorMap[index] == SENSOR_DIGO2) /* set Channel to first valid entry */ { UART_SetDigO2_Channel(index); break; } } for(index = 0; index < MAX_ADC_CHANNEL; index++) { if(tmpSensorMap[index] != SENSOR_NONE) { break; } } if(index == MAX_ADC_CHANNEL) /* return default sensor map if no sensor at all has been detected */ { tmpSensorMap[0] = SENSOR_OPTIC; tmpSensorMap[1] = SENSOR_OPTIC; tmpSensorMap[2] = SENSOR_OPTIC; } memcpy(SensorMap, tmpSensorMap, sizeof(tmpSensorMap)); break; default: break; } } } void externalInterface_ExecuteCmd(uint16_t Cmd) { char cmdString[10]; uint8_t cmdLength = 0; uint8_t index; switch(Cmd & 0x00FF) /* lower byte is reserved for commands */ { case EXT_INTERFACE_AUTODETECT: externalAutoDetect = DETECTION_INIT; for(index = 0; index < 3; index++) { SensorMap[index] = SENSOR_SEARCH; } break; case EXT_INTERFACE_CO2_CALIB: cmdLength = snprintf(cmdString, 10, "G\r\n"); break; case EXT_INTERFACE_COPY_SENSORMAP: if(externalAutoDetect == DETECTION_OFF) { memcpy(SensorMap, MasterSensorMap, 5); for(index = 0; index < 3; index++) { if(SensorMap[index] == SENSOR_DIGO2) { break; } } } break; default: break; } if(cmdLength != 0) { HAL_UART_Transmit(&huart1,(uint8_t*)cmdString,cmdLength,10); } return; }