diff Common/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_adc.c @ 160:e3ca52b8e7fa

Merge with FlipDisplay
author heinrichsweikamp
date Thu, 07 Mar 2019 15:06:43 +0100
parents c78bcbd5deda
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Common/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_adc.c	Thu Mar 07 15:06:43 2019 +0100
@@ -0,0 +1,1701 @@
+/**
+  ******************************************************************************
+  * @file    stm32f4xx_hal_adc.c
+  * @author  MCD Application Team
+  * @brief   This file provides firmware functions to manage the following 
+  *          functionalities of the Analog to Digital Convertor (ADC) peripheral:
+  *           + Initialization and de-initialization functions
+  *           + IO operation functions
+  *           + State and errors functions
+  *         
+  @verbatim
+  ==============================================================================
+                    ##### ADC Peripheral features #####
+  ==============================================================================
+  [..] 
+  (#) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution.
+  (#) Interrupt generation at the end of conversion, end of injected conversion,  
+      and in case of analog watchdog or overrun events
+  (#) Single and continuous conversion modes.
+  (#) Scan mode for automatic conversion of channel 0 to channel x.
+  (#) Data alignment with in-built data coherency.
+  (#) Channel-wise programmable sampling time.
+  (#) External trigger option with configurable polarity for both regular and 
+      injected conversion.
+  (#) Dual/Triple mode (on devices with 2 ADCs or more).
+  (#) Configurable DMA data storage in Dual/Triple ADC mode. 
+  (#) Configurable delay between conversions in Dual/Triple interleaved mode.
+  (#) ADC conversion type (refer to the datasheets).
+  (#) ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at 
+      slower speed.
+  (#) ADC input range: VREF(minus) = VIN = VREF(plus).
+  (#) DMA request generation during regular channel conversion.
+
+
+                     ##### How to use this driver #####
+  ==============================================================================
+  [..]
+  (#)Initialize the ADC low level resources by implementing the HAL_ADC_MspInit():
+       (##) Enable the ADC interface clock using __HAL_RCC_ADC_CLK_ENABLE()
+       (##) ADC pins configuration
+             (+++) Enable the clock for the ADC GPIOs using the following function:
+                   __HAL_RCC_GPIOx_CLK_ENABLE()  
+             (+++) Configure these ADC pins in analog mode using HAL_GPIO_Init() 
+       (##) In case of using interrupts (e.g. HAL_ADC_Start_IT())
+             (+++) Configure the ADC interrupt priority using HAL_NVIC_SetPriority()
+             (+++) Enable the ADC IRQ handler using HAL_NVIC_EnableIRQ()
+             (+++) In ADC IRQ handler, call HAL_ADC_IRQHandler()
+       (##) In case of using DMA to control data transfer (e.g. HAL_ADC_Start_DMA())
+             (+++) Enable the DMAx interface clock using __HAL_RCC_DMAx_CLK_ENABLE()
+             (+++) Configure and enable two DMA streams stream for managing data
+                 transfer from peripheral to memory (output stream)
+             (+++) Associate the initialized DMA handle to the CRYP DMA handle
+                 using  __HAL_LINKDMA()
+             (+++) Configure the priority and enable the NVIC for the transfer complete
+                 interrupt on the two DMA Streams. The output stream should have higher
+                 priority than the input stream.
+                       
+    *** Configuration of ADC, groups regular/injected, channels parameters ***
+  ==============================================================================
+  [..]
+  (#) Configure the ADC parameters (resolution, data alignment, ...)
+      and regular group parameters (conversion trigger, sequencer, ...)
+      using function HAL_ADC_Init().
+
+  (#) Configure the channels for regular group parameters (channel number, 
+      channel rank into sequencer, ..., into regular group)
+      using function HAL_ADC_ConfigChannel().
+
+  (#) Optionally, configure the injected group parameters (conversion trigger, 
+      sequencer, ..., of injected group)
+      and the channels for injected group parameters (channel number, 
+      channel rank into sequencer, ..., into injected group)
+      using function HAL_ADCEx_InjectedConfigChannel().
+
+  (#) Optionally, configure the analog watchdog parameters (channels
+      monitored, thresholds, ...) using function HAL_ADC_AnalogWDGConfig().
+
+  (#) Optionally, for devices with several ADC instances: configure the 
+      multimode parameters using function HAL_ADCEx_MultiModeConfigChannel().
+
+                       *** Execution of ADC conversions ***
+  ==============================================================================
+  [..]  
+  (#) ADC driver can be used among three modes: polling, interruption,
+      transfer by DMA.    
+
+     *** Polling mode IO operation ***
+     =================================
+     [..]    
+       (+) Start the ADC peripheral using HAL_ADC_Start() 
+       (+) Wait for end of conversion using HAL_ADC_PollForConversion(), at this stage
+           user can specify the value of timeout according to his end application      
+       (+) To read the ADC converted values, use the HAL_ADC_GetValue() function.
+       (+) Stop the ADC peripheral using HAL_ADC_Stop()
+       
+     *** Interrupt mode IO operation ***    
+     ===================================
+     [..]    
+       (+) Start the ADC peripheral using HAL_ADC_Start_IT() 
+       (+) Use HAL_ADC_IRQHandler() called under ADC_IRQHandler() Interrupt subroutine
+       (+) At ADC end of conversion HAL_ADC_ConvCpltCallback() function is executed and user can 
+           add his own code by customization of function pointer HAL_ADC_ConvCpltCallback 
+       (+) In case of ADC Error, HAL_ADC_ErrorCallback() function is executed and user can 
+           add his own code by customization of function pointer HAL_ADC_ErrorCallback
+       (+) Stop the ADC peripheral using HAL_ADC_Stop_IT()     
+
+     *** DMA mode IO operation ***    
+     ==============================
+     [..]    
+       (+) Start the ADC peripheral using HAL_ADC_Start_DMA(), at this stage the user specify the length 
+           of data to be transferred at each end of conversion 
+       (+) At The end of data transfer by HAL_ADC_ConvCpltCallback() function is executed and user can 
+           add his own code by customization of function pointer HAL_ADC_ConvCpltCallback 
+       (+) In case of transfer Error, HAL_ADC_ErrorCallback() function is executed and user can 
+           add his own code by customization of function pointer HAL_ADC_ErrorCallback
+       (+) Stop the ADC peripheral using HAL_ADC_Stop_DMA()
+                    
+     *** ADC HAL driver macros list ***
+     ============================================= 
+     [..]
+       Below the list of most used macros in ADC HAL driver.
+       
+      (+) __HAL_ADC_ENABLE : Enable the ADC peripheral
+      (+) __HAL_ADC_DISABLE : Disable the ADC peripheral
+      (+) __HAL_ADC_ENABLE_IT: Enable the ADC end of conversion interrupt
+      (+) __HAL_ADC_DISABLE_IT: Disable the ADC end of conversion interrupt
+      (+) __HAL_ADC_GET_IT_SOURCE: Check if the specified ADC interrupt source is enabled or disabled
+      (+) __HAL_ADC_CLEAR_FLAG: Clear the ADC's pending flags
+      (+) __HAL_ADC_GET_FLAG: Get the selected ADC's flag status
+      (+) ADC_GET_RESOLUTION: Return resolution bits in CR1 register 
+      
+     [..] 
+       (@) You can refer to the ADC HAL driver header file for more useful macros 
+
+                      *** Deinitialization of ADC ***
+  ==============================================================================
+  [..]
+  (#) Disable the ADC interface
+     (++) ADC clock can be hard reset and disabled at RCC top level.
+     (++) Hard reset of ADC peripherals
+          using macro __HAL_RCC_ADC_FORCE_RESET(), __HAL_RCC_ADC_RELEASE_RESET().
+     (++) ADC clock disable using the equivalent macro/functions as configuration step.
+               (+++) Example:
+                   Into HAL_ADC_MspDeInit() (recommended code location) or with
+                   other device clock parameters configuration:
+               (+++) HAL_RCC_GetOscConfig(&RCC_OscInitStructure);
+               (+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI;
+               (+++) RCC_OscInitStructure.HSIState = RCC_HSI_OFF; (if not used for system clock)
+               (+++) HAL_RCC_OscConfig(&RCC_OscInitStructure);
+
+  (#) ADC pins configuration
+     (++) Disable the clock for the ADC GPIOs using macro __HAL_RCC_GPIOx_CLK_DISABLE()
+
+  (#) Optionally, in case of usage of ADC with interruptions:
+     (++) Disable the NVIC for ADC using function HAL_NVIC_DisableIRQ(ADCx_IRQn)
+
+  (#) Optionally, in case of usage of DMA:
+        (++) Deinitialize the DMA using function HAL_DMA_DeInit().
+        (++) Disable the NVIC for DMA using function HAL_NVIC_DisableIRQ(DMAx_Channelx_IRQn)   
+
+    @endverbatim
+  ******************************************************************************
+  * @attention
+  *
+  * <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
+  *
+  * Redistribution and use in source and binary forms, with or without modification,
+  * are permitted provided that the following conditions are met:
+  *   1. Redistributions of source code must retain the above copyright notice,
+  *      this list of conditions and the following disclaimer.
+  *   2. Redistributions in binary form must reproduce the above copyright notice,
+  *      this list of conditions and the following disclaimer in the documentation
+  *      and/or other materials provided with the distribution.
+  *   3. Neither the name of STMicroelectronics nor the names of its contributors
+  *      may be used to endorse or promote products derived from this software
+  *      without specific prior written permission.
+  *
+  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+  *
+  ******************************************************************************
+  */ 
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_hal.h"
+
+/** @addtogroup STM32F4xx_HAL_Driver
+  * @{
+  */
+
+/** @defgroup ADC ADC
+  * @brief ADC driver modules
+  * @{
+  */ 
+
+#ifdef HAL_ADC_MODULE_ENABLED
+    
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/** @addtogroup ADC_Private_Functions
+  * @{
+  */
+/* Private function prototypes -----------------------------------------------*/
+static void ADC_Init(ADC_HandleTypeDef* hadc);
+static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma);
+static void ADC_DMAError(DMA_HandleTypeDef *hdma);
+static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma);
+/**
+  * @}
+  */
+/* Exported functions --------------------------------------------------------*/
+/** @defgroup ADC_Exported_Functions ADC Exported Functions
+  * @{
+  */
+
+/** @defgroup ADC_Exported_Functions_Group1 Initialization and de-initialization functions 
+ *  @brief    Initialization and Configuration functions 
+ *
+@verbatim    
+ ===============================================================================
+              ##### Initialization and de-initialization functions #####
+ ===============================================================================
+    [..]  This section provides functions allowing to:
+      (+) Initialize and configure the ADC. 
+      (+) De-initialize the ADC. 
+         
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief  Initializes the ADCx peripheral according to the specified parameters 
+  *         in the ADC_InitStruct and initializes the ADC MSP.
+  *           
+  * @note   This function is used to configure the global features of the ADC ( 
+  *         ClockPrescaler, Resolution, Data Alignment and number of conversion), however,
+  *         the rest of the configuration parameters are specific to the regular
+  *         channels group (scan mode activation, continuous mode activation,
+  *         External trigger source and edge, DMA continuous request after the  
+  *         last transfer and End of conversion selection).
+  *             
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.  
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc)
+{
+  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+  
+  /* Check ADC handle */
+  if(hadc == NULL)
+  {
+    return HAL_ERROR;
+  }
+  
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+  assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler));
+  assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution));
+  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ScanConvMode));
+  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
+  assert_param(IS_ADC_EXT_TRIG(hadc->Init.ExternalTrigConv));
+  assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign));
+  assert_param(IS_ADC_REGULAR_LENGTH(hadc->Init.NbrOfConversion));
+  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests));
+  assert_param(IS_ADC_EOCSelection(hadc->Init.EOCSelection));
+  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode));
+  
+  if(hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START)
+  {
+    assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
+  }
+  
+  if(hadc->State == HAL_ADC_STATE_RESET)
+  {
+    /* Initialize ADC error code */
+    ADC_CLEAR_ERRORCODE(hadc);
+    
+    /* Allocate lock resource and initialize it */
+    hadc->Lock = HAL_UNLOCKED;
+    
+    /* Init the low level hardware */
+    HAL_ADC_MspInit(hadc);
+  }
+  
+  /* Configuration of ADC parameters if previous preliminary actions are      */ 
+  /* correctly completed.                                                     */
+  if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
+  {
+    /* Set ADC state */
+    ADC_STATE_CLR_SET(hadc->State,
+                      HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
+                      HAL_ADC_STATE_BUSY_INTERNAL);
+    
+    /* Set ADC parameters */
+    ADC_Init(hadc);
+    
+    /* Set ADC error code to none */
+    ADC_CLEAR_ERRORCODE(hadc);
+    
+    /* Set the ADC state */
+    ADC_STATE_CLR_SET(hadc->State,
+                      HAL_ADC_STATE_BUSY_INTERNAL,
+                      HAL_ADC_STATE_READY);
+  }
+  else
+  {
+    tmp_hal_status = HAL_ERROR;
+  }
+  
+  /* Release Lock */
+  __HAL_UNLOCK(hadc);
+
+  /* Return function status */
+  return tmp_hal_status;
+}
+
+/**
+  * @brief  Deinitializes the ADCx peripheral registers to their default reset values. 
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.  
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef* hadc)
+{
+  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+  
+  /* Check ADC handle */
+  if(hadc == NULL)
+  {
+    return HAL_ERROR;
+  }
+  
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+  
+  /* Set ADC state */
+  SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL);
+  
+  /* Stop potential conversion on going, on regular and injected groups */
+  /* Disable ADC peripheral */
+  __HAL_ADC_DISABLE(hadc);
+  
+  /* Configuration of ADC parameters if previous preliminary actions are      */ 
+  /* correctly completed.                                                     */
+  if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON))
+  {
+    /* DeInit the low level hardware */
+    HAL_ADC_MspDeInit(hadc);
+    
+    /* Set ADC error code to none */
+    ADC_CLEAR_ERRORCODE(hadc);
+    
+    /* Set ADC state */
+    hadc->State = HAL_ADC_STATE_RESET;
+  }
+  
+  /* Process unlocked */
+  __HAL_UNLOCK(hadc);
+  
+  /* Return function status */
+  return tmp_hal_status;
+}
+
+/**
+  * @brief  Initializes the ADC MSP.
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.  
+  * @retval None
+  */
+__weak void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hadc);
+  /* NOTE : This function Should not be modified, when the callback is needed,
+            the HAL_ADC_MspInit could be implemented in the user file
+   */ 
+}
+
+/**
+  * @brief  DeInitializes the ADC MSP.
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.  
+  * @retval None
+  */
+__weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hadc);
+  /* NOTE : This function Should not be modified, when the callback is needed,
+            the HAL_ADC_MspDeInit could be implemented in the user file
+   */ 
+}
+
+/**
+  * @}
+  */
+
+/** @defgroup ADC_Exported_Functions_Group2 IO operation functions
+ *  @brief    IO operation functions 
+ *
+@verbatim   
+ ===============================================================================
+             ##### IO operation functions #####
+ ===============================================================================  
+    [..]  This section provides functions allowing to:
+      (+) Start conversion of regular channel.
+      (+) Stop conversion of regular channel.
+      (+) Start conversion of regular channel and enable interrupt.
+      (+) Stop conversion of regular channel and disable interrupt.
+      (+) Start conversion of regular channel and enable DMA transfer.
+      (+) Stop conversion of regular channel and disable DMA transfer.
+      (+) Handle ADC interrupt request. 
+               
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief  Enables ADC and starts conversion of the regular channels.
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc)
+{
+  __IO uint32_t counter = 0U;
+  ADC_Common_TypeDef *tmpADC_Common;
+  
+  /* Check the parameters */
+  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
+  assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); 
+  
+  /* Process locked */
+  __HAL_LOCK(hadc);
+  
+  /* Enable the ADC peripheral */
+  /* Check if ADC peripheral is disabled in order to enable it and wait during 
+  Tstab time the ADC's stabilization */
+  if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON)
+  {  
+    /* Enable the Peripheral */
+    __HAL_ADC_ENABLE(hadc);
+    
+    /* Delay for ADC stabilization time */
+    /* Compute number of CPU cycles to wait for */
+    counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U));
+    while(counter != 0U)
+    {
+      counter--;
+    }
+  }
+  
+  /* Start conversion if ADC is effectively enabled */
+  if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON))
+  {
+    /* Set ADC state                                                          */
+    /* - Clear state bitfield related to regular group conversion results     */
+    /* - Set state bitfield related to regular group operation                */
+    ADC_STATE_CLR_SET(hadc->State,
+                      HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR,
+                      HAL_ADC_STATE_REG_BUSY);
+    
+    /* If conversions on group regular are also triggering group injected,    */
+    /* update ADC state.                                                      */
+    if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET)
+    {
+      ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);  
+    }
+    
+    /* State machine update: Check if an injected conversion is ongoing */
+    if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
+    {
+      /* Reset ADC error code fields related to conversions on group regular */
+      CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));         
+    }
+    else
+    {
+      /* Reset ADC all error code fields */
+      ADC_CLEAR_ERRORCODE(hadc);
+    } 
+
+    /* Process unlocked */
+    /* Unlock before starting ADC conversions: in case of potential           */
+    /* interruption, to let the process to ADC IRQ Handler.                   */
+    __HAL_UNLOCK(hadc);
+
+    /* Pointer to the common control register to which is belonging hadc    */
+    /* (Depending on STM32F4 product, there may be up to 3 ADCs and 1 common */
+    /* control register)                                                    */
+    tmpADC_Common = ADC_COMMON_REGISTER(hadc);
+
+    /* Clear regular group conversion flag and overrun flag */
+    /* (To ensure of no unknown state from potential previous ADC operations) */
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC | ADC_FLAG_OVR);
+    
+    /* Check if Multimode enabled */
+    if(HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_MULTI))
+    {
+      /* if no external trigger present enable software conversion of regular channels */
+      if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET) 
+      {
+        /* Enable the selected ADC software conversion for regular group */
+        hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
+      }
+    }
+    else
+    {
+      /* if instance of handle correspond to ADC1 and  no external trigger present enable software conversion of regular channels */
+      if((hadc->Instance == ADC1) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET))
+      {
+        /* Enable the selected ADC software conversion for regular group */
+          hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
+      }
+    }
+  }
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Disables ADC and stop conversion of regular channels.
+  * 
+  * @note   Caution: This function will stop also injected channels.  
+  *
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.
+  *
+  * @retval HAL status.
+  */
+HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc)
+{
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+  
+  /* Process locked */
+  __HAL_LOCK(hadc);
+  
+  /* Stop potential conversion on going, on regular and injected groups */
+  /* Disable ADC peripheral */
+  __HAL_ADC_DISABLE(hadc);
+  
+  /* Check if ADC is effectively disabled */
+  if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON))
+  {
+    /* Set ADC state */
+    ADC_STATE_CLR_SET(hadc->State,
+                      HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
+                      HAL_ADC_STATE_READY);
+  }
+  
+  /* Process unlocked */
+  __HAL_UNLOCK(hadc);
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Poll for regular conversion complete
+  * @note   ADC conversion flags EOS (end of sequence) and EOC (end of
+  *         conversion) are cleared by this function.
+  * @note   This function cannot be used in a particular setup: ADC configured 
+  *         in DMA mode and polling for end of each conversion (ADC init
+  *         parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV).
+  *         In this case, DMA resets the flag EOC and polling cannot be
+  *         performed on each conversion. Nevertheless, polling can still 
+  *         be performed on the complete sequence.
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.
+  * @param  Timeout Timeout value in millisecond.  
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout)
+{
+  uint32_t tickstart = 0U;
+ 
+  /* Verification that ADC configuration is compliant with polling for      */
+  /* each conversion:                                                       */
+  /* Particular case is ADC configured in DMA mode and ADC sequencer with   */
+  /* several ranks and polling for end of each conversion.                  */
+  /* For code simplicity sake, this particular case is generalized to       */
+  /* ADC configured in DMA mode and polling for end of each conversion.     */
+  if (HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_EOCS) &&
+      HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_DMA)    )
+  {
+    /* Update ADC state machine to error */
+    SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+    
+    /* Process unlocked */
+    __HAL_UNLOCK(hadc);
+    
+    return HAL_ERROR;
+  }
+
+  /* Get tick */ 
+  tickstart = HAL_GetTick();
+
+  /* Check End of conversion flag */
+  while(!(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC)))
+  {
+    /* Check if timeout is disabled (set to infinite wait) */
+    if(Timeout != HAL_MAX_DELAY)
+    {
+      if((Timeout == 0U) || ((HAL_GetTick() - tickstart ) > Timeout))
+      {
+        /* Update ADC state machine to timeout */
+        SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
+        
+        /* Process unlocked */
+        __HAL_UNLOCK(hadc);
+        
+        return HAL_TIMEOUT;
+      }
+    }
+  }
+  
+  /* Clear regular group conversion flag */
+  __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC);
+  
+  /* Update ADC state machine */
+  SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
+  
+  /* Determine whether any further conversion upcoming on group regular       */
+  /* by external trigger, continuous mode or scan sequence on going.          */
+  /* Note: On STM32F4, there is no independent flag of end of sequence.       */
+  /*       The test of scan sequence on going is done either with scan        */
+  /*       sequence disabled or with end of conversion flag set to            */
+  /*       of end of sequence.                                                */
+  if(ADC_IS_SOFTWARE_START_REGULAR(hadc)                   &&
+     (hadc->Init.ContinuousConvMode == DISABLE)            &&
+     (HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) ||
+      HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS)  )   )
+  {
+    /* Set ADC state */
+    CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);   
+    
+    if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
+    { 
+      SET_BIT(hadc->State, HAL_ADC_STATE_READY);
+    }
+  }
+  
+  /* Return ADC state */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Poll for conversion event
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.
+  * @param  EventType the ADC event type.
+  *          This parameter can be one of the following values:
+  *            @arg ADC_AWD_EVENT: ADC Analog watch Dog event.
+  *            @arg ADC_OVR_EVENT: ADC Overrun event.
+  * @param  Timeout Timeout value in millisecond.   
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout)
+{
+  uint32_t tickstart = 0U;
+  
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+  assert_param(IS_ADC_EVENT_TYPE(EventType));
+
+  /* Get tick */
+  tickstart = HAL_GetTick();
+
+  /* Check selected event flag */
+  while(!(__HAL_ADC_GET_FLAG(hadc,EventType)))
+  {
+    /* Check for the Timeout */
+    if(Timeout != HAL_MAX_DELAY)
+    {
+      if((Timeout == 0U) || ((HAL_GetTick() - tickstart ) > Timeout))
+      {
+        /* Update ADC state machine to timeout */
+        SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
+        
+        /* Process unlocked */
+        __HAL_UNLOCK(hadc);
+        
+        return HAL_TIMEOUT;
+      }
+    }
+  }
+  
+  /* Analog watchdog (level out of window) event */
+  if(EventType == ADC_AWD_EVENT)
+  {
+    /* Set ADC state */
+    SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
+      
+    /* Clear ADC analog watchdog flag */
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
+  }
+  /* Overrun event */
+  else
+  {
+    /* Set ADC state */
+    SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR);
+    /* Set ADC error code to overrun */
+    SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
+    
+    /* Clear ADC overrun flag */
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
+  }
+  
+  /* Return ADC state */
+  return HAL_OK;
+}
+
+
+/**
+  * @brief  Enables the interrupt and starts ADC conversion of regular channels.
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.
+  * @retval HAL status.
+  */
+HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc)
+{
+  __IO uint32_t counter = 0U;
+  ADC_Common_TypeDef *tmpADC_Common;
+  
+  /* Check the parameters */
+  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
+  assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); 
+  
+  /* Process locked */
+  __HAL_LOCK(hadc);
+  
+  /* Enable the ADC peripheral */
+  /* Check if ADC peripheral is disabled in order to enable it and wait during 
+  Tstab time the ADC's stabilization */
+  if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON)
+  {  
+    /* Enable the Peripheral */
+    __HAL_ADC_ENABLE(hadc);
+    
+    /* Delay for ADC stabilization time */
+    /* Compute number of CPU cycles to wait for */
+    counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U));
+    while(counter != 0U)
+    {
+      counter--;
+    }
+  }
+  
+  /* Start conversion if ADC is effectively enabled */
+  if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON))
+  {
+    /* Set ADC state                                                          */
+    /* - Clear state bitfield related to regular group conversion results     */
+    /* - Set state bitfield related to regular group operation                */
+    ADC_STATE_CLR_SET(hadc->State,
+                      HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR,
+                      HAL_ADC_STATE_REG_BUSY);
+    
+    /* If conversions on group regular are also triggering group injected,    */
+    /* update ADC state.                                                      */
+    if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET)
+    {
+      ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);  
+    }
+    
+    /* State machine update: Check if an injected conversion is ongoing */
+    if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
+    {
+      /* Reset ADC error code fields related to conversions on group regular */
+      CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));         
+    }
+    else
+    {
+      /* Reset ADC all error code fields */
+      ADC_CLEAR_ERRORCODE(hadc);
+    }
+
+    /* Process unlocked */
+    /* Unlock before starting ADC conversions: in case of potential           */
+    /* interruption, to let the process to ADC IRQ Handler.                   */
+    __HAL_UNLOCK(hadc);
+
+    /* Pointer to the common control register to which is belonging hadc    */
+    /* (Depending on STM32F4 product, there may be up to 3 ADCs and 1 common */
+    /* control register)                                                    */
+    tmpADC_Common = ADC_COMMON_REGISTER(hadc);
+
+    /* Clear regular group conversion flag and overrun flag */
+    /* (To ensure of no unknown state from potential previous ADC operations) */
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC | ADC_FLAG_OVR);
+    
+    /* Enable end of conversion interrupt for regular group */
+    __HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_OVR));
+    
+    /* Check if Multimode enabled */
+    if(HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_MULTI))
+    {
+      /* if no external trigger present enable software conversion of regular channels */
+      if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET) 
+      {
+        /* Enable the selected ADC software conversion for regular group */
+        hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
+      }
+    }
+    else
+    {
+      /* if instance of handle correspond to ADC1 and  no external trigger present enable software conversion of regular channels */
+      if((hadc->Instance == ADC1) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET))
+      {
+        /* Enable the selected ADC software conversion for regular group */
+          hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
+      }
+    }
+  }
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Disables the interrupt and stop ADC conversion of regular channels.
+  * 
+  * @note   Caution: This function will stop also injected channels.  
+  *
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.
+  * @retval HAL status.
+  */
+HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc)
+{
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+  
+  /* Process locked */
+  __HAL_LOCK(hadc);
+  
+  /* Stop potential conversion on going, on regular and injected groups */
+  /* Disable ADC peripheral */
+  __HAL_ADC_DISABLE(hadc);
+  
+  /* Check if ADC is effectively disabled */
+  if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON))
+  {
+  	/* Disable ADC end of conversion interrupt for regular group */
+    __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_OVR));
+
+    /* Set ADC state */
+    ADC_STATE_CLR_SET(hadc->State,
+                      HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
+                      HAL_ADC_STATE_READY);
+  }
+  
+  /* Process unlocked */
+  __HAL_UNLOCK(hadc);
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Handles ADC interrupt request  
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.
+  * @retval None
+  */
+void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc)
+{
+  uint32_t tmp1 = 0U, tmp2 = 0U;
+  
+  /* Check the parameters */
+  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
+  assert_param(IS_ADC_REGULAR_LENGTH(hadc->Init.NbrOfConversion));
+  assert_param(IS_ADC_EOCSelection(hadc->Init.EOCSelection));
+  
+  tmp1 = __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC);
+  tmp2 = __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOC);
+  /* Check End of conversion flag for regular channels */
+  if(tmp1 && tmp2)
+  {
+    /* Update state machine on conversion status if not in error state */
+    if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
+    {
+      /* Set ADC state */
+      SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); 
+    }
+    
+    /* Determine whether any further conversion upcoming on group regular   */
+    /* by external trigger, continuous mode or scan sequence on going.      */
+    /* Note: On STM32F4, there is no independent flag of end of sequence.   */
+    /*       The test of scan sequence on going is done either with scan    */
+    /*       sequence disabled or with end of conversion flag set to        */
+    /*       of end of sequence.                                            */
+    if(ADC_IS_SOFTWARE_START_REGULAR(hadc)                   &&
+       (hadc->Init.ContinuousConvMode == DISABLE)            &&
+       (HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) || 
+        HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS)  )   )
+    {
+      /* Disable ADC end of single conversion interrupt on group regular */
+      /* Note: Overrun interrupt was enabled with EOC interrupt in          */
+      /* HAL_ADC_Start_IT(), but is not disabled here because can be used   */
+      /* by overrun IRQ process below.                                      */
+      __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
+      
+      /* Set ADC state */
+      CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
+      
+      if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
+      {
+        SET_BIT(hadc->State, HAL_ADC_STATE_READY);
+      }
+    }
+    
+    /* Conversion complete callback */ 
+    HAL_ADC_ConvCpltCallback(hadc);
+    
+    /* Clear regular group conversion flag */
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC);
+  }
+  
+  tmp1 = __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOC);
+  tmp2 = __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_JEOC);                               
+  /* Check End of conversion flag for injected channels */
+  if(tmp1 && tmp2)
+  {
+    /* Update state machine on conversion status if not in error state */
+    if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
+    {
+      /* Set ADC state */
+      SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC);
+    }
+
+    /* Determine whether any further conversion upcoming on group injected  */
+    /* by external trigger, scan sequence on going or by automatic injected */
+    /* conversion from group regular (same conditions as group regular      */
+    /* interruption disabling above).                                       */
+    if(ADC_IS_SOFTWARE_START_INJECTED(hadc)                    &&
+       (HAL_IS_BIT_CLR(hadc->Instance->JSQR, ADC_JSQR_JL)  ||
+        HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS)    ) &&
+       (HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) &&
+        (ADC_IS_SOFTWARE_START_REGULAR(hadc)       &&
+        (hadc->Init.ContinuousConvMode == DISABLE)   )       )   )
+    {
+      /* Disable ADC end of single conversion interrupt on group injected */
+      __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
+      
+      /* Set ADC state */
+      CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);   
+
+      if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY))
+      { 
+        SET_BIT(hadc->State, HAL_ADC_STATE_READY);
+      }
+    }
+
+    /* Conversion complete callback */ 
+    HAL_ADCEx_InjectedConvCpltCallback(hadc);
+    
+    /* Clear injected group conversion flag */
+    __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_JSTRT | ADC_FLAG_JEOC));
+  }
+  
+  tmp1 = __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD);
+  tmp2 = __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_AWD);                          
+  /* Check Analog watchdog flag */
+  if(tmp1 && tmp2)
+  {
+    if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD))
+    {
+      /* Set ADC state */
+      SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
+      
+      /* Level out of window callback */ 
+      HAL_ADC_LevelOutOfWindowCallback(hadc);
+      
+      /* Clear the ADC analog watchdog flag */
+      __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
+    }
+  }
+  
+  tmp1 = __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_OVR);
+  tmp2 = __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_OVR);
+  /* Check Overrun flag */
+  if(tmp1 && tmp2)
+  {
+    /* Note: On STM32F4, ADC overrun can be set through other parameters    */
+    /*       refer to description of parameter "EOCSelection" for more      */
+    /*       details.                                                       */
+    
+    /* Set ADC error code to overrun */
+    SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
+    
+    /* Clear ADC overrun flag */
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
+    
+    /* Error callback */ 
+    HAL_ADC_ErrorCallback(hadc);
+    
+    /* Clear the Overrun flag */
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
+  }
+}
+
+/**
+  * @brief  Enables ADC DMA request after last transfer (Single-ADC mode) and enables ADC peripheral  
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.
+  * @param  pData The destination Buffer address.
+  * @param  Length The length of data to be transferred from ADC peripheral to memory.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length)
+{
+  __IO uint32_t counter = 0U;
+  ADC_Common_TypeDef *tmpADC_Common;
+  
+  /* Check the parameters */
+  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
+  assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); 
+  
+  /* Process locked */
+  __HAL_LOCK(hadc);
+  
+  /* Enable the ADC peripheral */
+  /* Check if ADC peripheral is disabled in order to enable it and wait during 
+  Tstab time the ADC's stabilization */
+  if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON)
+  {  
+    /* Enable the Peripheral */
+    __HAL_ADC_ENABLE(hadc);
+    
+    /* Delay for ADC stabilization time */
+    /* Compute number of CPU cycles to wait for */
+    counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U));
+    while(counter != 0U)
+    {
+      counter--;
+    }
+  }
+  
+  /* Start conversion if ADC is effectively enabled */
+  if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON))
+  {
+    /* Set ADC state                                                          */
+    /* - Clear state bitfield related to regular group conversion results     */
+    /* - Set state bitfield related to regular group operation                */
+    ADC_STATE_CLR_SET(hadc->State,
+                      HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR,
+                      HAL_ADC_STATE_REG_BUSY);
+    
+    /* If conversions on group regular are also triggering group injected,    */
+    /* update ADC state.                                                      */
+    if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET)
+    {
+      ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);  
+    }
+    
+    /* State machine update: Check if an injected conversion is ongoing */
+    if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
+    {
+      /* Reset ADC error code fields related to conversions on group regular */
+      CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));         
+    }
+    else
+    {
+      /* Reset ADC all error code fields */
+      ADC_CLEAR_ERRORCODE(hadc);
+    }
+
+    /* Process unlocked */
+    /* Unlock before starting ADC conversions: in case of potential           */
+    /* interruption, to let the process to ADC IRQ Handler.                   */
+    __HAL_UNLOCK(hadc);   
+
+    /* Pointer to the common control register to which is belonging hadc    */
+    /* (Depending on STM32F4 product, there may be up to 3 ADCs and 1 common */
+    /* control register)                                                    */
+    tmpADC_Common = ADC_COMMON_REGISTER(hadc);
+
+    /* Set the DMA transfer complete callback */
+    hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;
+
+    /* Set the DMA half transfer complete callback */
+    hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;
+    
+    /* Set the DMA error callback */
+    hadc->DMA_Handle->XferErrorCallback = ADC_DMAError;
+
+    
+    /* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC     */
+    /* start (in case of SW start):                                           */
+    
+    /* Clear regular group conversion flag and overrun flag */
+    /* (To ensure of no unknown state from potential previous ADC operations) */
+    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC | ADC_FLAG_OVR);
+
+    /* Enable ADC overrun interrupt */
+    __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);
+    
+    /* Enable ADC DMA mode */
+    hadc->Instance->CR2 |= ADC_CR2_DMA;
+    
+    /* Start the DMA channel */
+    HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length);
+    
+    /* Check if Multimode enabled */
+    if(HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_MULTI))
+    {
+      /* if no external trigger present enable software conversion of regular channels */
+      if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET) 
+      {
+        /* Enable the selected ADC software conversion for regular group */
+        hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
+      }
+    }
+    else
+    {
+      /* if instance of handle correspond to ADC1 and  no external trigger present enable software conversion of regular channels */
+      if((hadc->Instance == ADC1) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET))
+      {
+        /* Enable the selected ADC software conversion for regular group */
+          hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
+      }
+    }
+  }
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Disables ADC DMA (Single-ADC mode) and disables ADC peripheral    
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc)
+{
+  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+  
+  /* Check the parameters */
+  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+  
+  /* Process locked */
+  __HAL_LOCK(hadc);
+  
+  /* Stop potential conversion on going, on regular and injected groups */
+  /* Disable ADC peripheral */
+  __HAL_ADC_DISABLE(hadc);
+  
+  /* Check if ADC is effectively disabled */
+  if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON))
+  {
+    /* Disable the selected ADC DMA mode */
+    hadc->Instance->CR2 &= ~ADC_CR2_DMA;
+    
+    /* Disable the DMA channel (in case of DMA in circular mode or stop while */
+    /* DMA transfer is on going)                                              */
+    tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
+    
+    /* Disable ADC overrun interrupt */
+    __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);
+    
+    /* Set ADC state */
+    ADC_STATE_CLR_SET(hadc->State,
+                      HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
+                      HAL_ADC_STATE_READY);
+  }
+  
+  /* Process unlocked */
+  __HAL_UNLOCK(hadc);
+  
+  /* Return function status */
+  return tmp_hal_status;
+}
+
+/**
+  * @brief  Gets the converted value from data register of regular channel.
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.
+  * @retval Converted value
+  */
+uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef* hadc)
+{       
+  /* Return the selected ADC converted value */ 
+  return hadc->Instance->DR;
+}
+
+/**
+  * @brief  Regular conversion complete callback in non blocking mode 
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.
+  * @retval None
+  */
+__weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hadc);
+  /* NOTE : This function Should not be modified, when the callback is needed,
+            the HAL_ADC_ConvCpltCallback could be implemented in the user file
+   */
+}
+
+/**
+  * @brief  Regular conversion half DMA transfer callback in non blocking mode 
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.
+  * @retval None
+  */
+__weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hadc);
+  /* NOTE : This function Should not be modified, when the callback is needed,
+            the HAL_ADC_ConvHalfCpltCallback could be implemented in the user file
+   */
+}
+
+/**
+  * @brief  Analog watchdog callback in non blocking mode 
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.
+  * @retval None
+  */
+__weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hadc);
+  /* NOTE : This function Should not be modified, when the callback is needed,
+            the HAL_ADC_LevelOoutOfWindowCallback could be implemented in the user file
+   */
+}
+
+/**
+  * @brief  Error ADC callback.
+  * @note   In case of error due to overrun when using ADC with DMA transfer 
+  *         (HAL ADC handle paramater "ErrorCode" to state "HAL_ADC_ERROR_OVR"):
+  *         - Reinitialize the DMA using function "HAL_ADC_Stop_DMA()".
+  *         - If needed, restart a new ADC conversion using function
+  *           "HAL_ADC_Start_DMA()"
+  *           (this function is also clearing overrun flag)
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.
+  * @retval None
+  */
+__weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hadc);
+  /* NOTE : This function Should not be modified, when the callback is needed,
+            the HAL_ADC_ErrorCallback could be implemented in the user file
+   */
+}
+
+/**
+  * @}
+  */
+  
+/** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions
+ *  @brief   	Peripheral Control functions 
+ *
+@verbatim   
+ ===============================================================================
+             ##### Peripheral Control functions #####
+ ===============================================================================  
+    [..]  This section provides functions allowing to:
+      (+) Configure regular channels. 
+      (+) Configure injected channels.
+      (+) Configure multimode.
+      (+) Configure the analog watch dog.
+      
+@endverbatim
+  * @{
+  */
+
+  /**
+  * @brief  Configures for the selected ADC regular channel its corresponding
+  *         rank in the sequencer and its sample time.
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.
+  * @param  sConfig ADC configuration structure. 
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig)
+{
+  __IO uint32_t counter = 0U;
+  ADC_Common_TypeDef *tmpADC_Common;
+  
+  /* Check the parameters */
+  assert_param(IS_ADC_CHANNEL(sConfig->Channel));
+  assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank));
+  assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime));
+  
+  /* Process locked */
+  __HAL_LOCK(hadc);
+    
+  /* if ADC_Channel_10 ... ADC_Channel_18 is selected */
+  if (sConfig->Channel > ADC_CHANNEL_9)
+  {
+    /* Clear the old sample time */
+    hadc->Instance->SMPR1 &= ~ADC_SMPR1(ADC_SMPR1_SMP10, sConfig->Channel);
+    
+    /* Set the new sample time */
+    hadc->Instance->SMPR1 |= ADC_SMPR1(sConfig->SamplingTime, sConfig->Channel);
+  }
+  else /* ADC_Channel include in ADC_Channel_[0..9] */
+  {
+    /* Clear the old sample time */
+    hadc->Instance->SMPR2 &= ~ADC_SMPR2(ADC_SMPR2_SMP0, sConfig->Channel);
+    
+    /* Set the new sample time */
+    hadc->Instance->SMPR2 |= ADC_SMPR2(sConfig->SamplingTime, sConfig->Channel);
+  }
+  
+  /* For Rank 1 to 6 */
+  if (sConfig->Rank < 7U)
+  {
+    /* Clear the old SQx bits for the selected rank */
+    hadc->Instance->SQR3 &= ~ADC_SQR3_RK(ADC_SQR3_SQ1, sConfig->Rank);
+    
+    /* Set the SQx bits for the selected rank */
+    hadc->Instance->SQR3 |= ADC_SQR3_RK(sConfig->Channel, sConfig->Rank);
+  }
+  /* For Rank 7 to 12 */
+  else if (sConfig->Rank < 13U)
+  {
+    /* Clear the old SQx bits for the selected rank */
+    hadc->Instance->SQR2 &= ~ADC_SQR2_RK(ADC_SQR2_SQ7, sConfig->Rank);
+    
+    /* Set the SQx bits for the selected rank */
+    hadc->Instance->SQR2 |= ADC_SQR2_RK(sConfig->Channel, sConfig->Rank);
+  }
+  /* For Rank 13 to 16 */
+  else
+  {
+    /* Clear the old SQx bits for the selected rank */
+    hadc->Instance->SQR1 &= ~ADC_SQR1_RK(ADC_SQR1_SQ13, sConfig->Rank);
+    
+    /* Set the SQx bits for the selected rank */
+    hadc->Instance->SQR1 |= ADC_SQR1_RK(sConfig->Channel, sConfig->Rank);
+  }
+
+    /* Pointer to the common control register to which is belonging hadc    */
+    /* (Depending on STM32F4 product, there may be up to 3 ADCs and 1 common */
+    /* control register)                                                    */
+    tmpADC_Common = ADC_COMMON_REGISTER(hadc);
+
+  /* if ADC1 Channel_18 is selected enable VBAT Channel */
+  if ((hadc->Instance == ADC1) && (sConfig->Channel == ADC_CHANNEL_VBAT))
+  {
+    /* Enable the VBAT channel*/
+    tmpADC_Common->CCR |= ADC_CCR_VBATE;
+  }
+  
+  /* if ADC1 Channel_16 or Channel_17 is selected enable TSVREFE Channel(Temperature sensor and VREFINT) */
+  if ((hadc->Instance == ADC1) && ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) || (sConfig->Channel == ADC_CHANNEL_VREFINT)))
+  {
+    /* Enable the TSVREFE channel*/
+    tmpADC_Common->CCR |= ADC_CCR_TSVREFE;
+    
+    if((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR))
+    {
+      /* Delay for temperature sensor stabilization time */
+      /* Compute number of CPU cycles to wait for */
+      counter = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / 1000000U));
+      while(counter != 0U)
+      {
+        counter--;
+      }
+    }
+  }
+  
+  /* Process unlocked */
+  __HAL_UNLOCK(hadc);
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Configures the analog watchdog.
+  * @note Analog watchdog thresholds can be modified while ADC conversion
+  * is on going.
+  * In this case, some constraints must be taken into account:
+  * The programmed threshold values are effective from the next
+  * ADC EOC (end of unitary conversion).
+  * Considering that registers write delay may happen due to
+  * bus activity, this might cause an uncertainty on the
+  * effective timing of the new programmed threshold values.
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.
+  * @param  AnalogWDGConfig  pointer to an ADC_AnalogWDGConfTypeDef structure 
+  *         that contains the configuration information of ADC analog watchdog.
+  * @retval HAL status	  
+  */
+HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig)
+{
+#ifdef USE_FULL_ASSERT  
+  uint32_t tmp = 0U;
+#endif /* USE_FULL_ASSERT  */  
+  
+  /* Check the parameters */
+  assert_param(IS_ADC_ANALOG_WATCHDOG(AnalogWDGConfig->WatchdogMode));
+  assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel));
+  assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode));
+
+#ifdef USE_FULL_ASSERT  
+  tmp = ADC_GET_RESOLUTION(hadc);
+  assert_param(IS_ADC_RANGE(tmp, AnalogWDGConfig->HighThreshold));
+  assert_param(IS_ADC_RANGE(tmp, AnalogWDGConfig->LowThreshold));
+#endif /* USE_FULL_ASSERT  */
+  
+  /* Process locked */
+  __HAL_LOCK(hadc);
+  
+  if(AnalogWDGConfig->ITMode == ENABLE)
+  {
+    /* Enable the ADC Analog watchdog interrupt */
+    __HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD);
+  }
+  else
+  {
+    /* Disable the ADC Analog watchdog interrupt */
+    __HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD);
+  }
+  
+  /* Clear AWDEN, JAWDEN and AWDSGL bits */
+  hadc->Instance->CR1 &=  ~(ADC_CR1_AWDSGL | ADC_CR1_JAWDEN | ADC_CR1_AWDEN);
+  
+  /* Set the analog watchdog enable mode */
+  hadc->Instance->CR1 |= AnalogWDGConfig->WatchdogMode;
+  
+  /* Set the high threshold */
+  hadc->Instance->HTR = AnalogWDGConfig->HighThreshold;
+  
+  /* Set the low threshold */
+  hadc->Instance->LTR = AnalogWDGConfig->LowThreshold;
+  
+  /* Clear the Analog watchdog channel select bits */
+  hadc->Instance->CR1 &= ~ADC_CR1_AWDCH;
+  
+  /* Set the Analog watchdog channel */
+  hadc->Instance->CR1 |= (uint32_t)((uint16_t)(AnalogWDGConfig->Channel));
+  
+  /* Process unlocked */
+  __HAL_UNLOCK(hadc);
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @}
+  */
+
+/** @defgroup ADC_Exported_Functions_Group4 ADC Peripheral State functions
+ *  @brief   ADC Peripheral State functions 
+ *
+@verbatim   
+ ===============================================================================
+            ##### Peripheral State and errors functions #####
+ ===============================================================================  
+    [..]
+    This subsection provides functions allowing to
+      (+) Check the ADC state
+      (+) Check the ADC Error
+         
+@endverbatim
+  * @{
+  */
+  
+/**
+  * @brief  return the ADC state
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.
+  * @retval HAL state
+  */
+uint32_t HAL_ADC_GetState(ADC_HandleTypeDef* hadc)
+{
+  /* Return ADC state */
+  return hadc->State;
+}
+
+/**
+  * @brief  Return the ADC error code
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.
+  * @retval ADC Error Code
+  */
+uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc)
+{
+  return hadc->ErrorCode;
+}
+
+/**
+  * @}
+  */
+
+/** @addtogroup ADC_Private_Functions
+  * @{
+  */
+
+/**
+  * @brief  Initializes the ADCx peripheral according to the specified parameters 
+  *         in the ADC_InitStruct without initializing the ADC MSP.       
+  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
+  *         the configuration information for the specified ADC.  
+  * @retval None
+  */
+static void ADC_Init(ADC_HandleTypeDef* hadc)
+{
+  ADC_Common_TypeDef *tmpADC_Common;
+  
+  /* Set ADC parameters */
+  /* Pointer to the common control register to which is belonging hadc    */
+  /* (Depending on STM32F4 product, there may be up to 3 ADCs and 1 common */
+  /* control register)                                                    */
+  tmpADC_Common = ADC_COMMON_REGISTER(hadc);
+  
+  /* Set the ADC clock prescaler */
+  tmpADC_Common->CCR &= ~(ADC_CCR_ADCPRE);
+  tmpADC_Common->CCR |=  hadc->Init.ClockPrescaler;
+  
+  /* Set ADC scan mode */
+  hadc->Instance->CR1 &= ~(ADC_CR1_SCAN);
+  hadc->Instance->CR1 |=  ADC_CR1_SCANCONV(hadc->Init.ScanConvMode);
+  
+  /* Set ADC resolution */
+  hadc->Instance->CR1 &= ~(ADC_CR1_RES);
+  hadc->Instance->CR1 |=  hadc->Init.Resolution;
+  
+  /* Set ADC data alignment */
+  hadc->Instance->CR2 &= ~(ADC_CR2_ALIGN);
+  hadc->Instance->CR2 |= hadc->Init.DataAlign;
+  
+  /* Enable external trigger if trigger selection is different of software  */
+  /* start.                                                                 */
+  /* Note: This configuration keeps the hardware feature of parameter       */
+  /*       ExternalTrigConvEdge "trigger edge none" equivalent to           */
+  /*       software start.                                                  */
+  if(hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START)
+  {
+    /* Select external trigger to start conversion */
+    hadc->Instance->CR2 &= ~(ADC_CR2_EXTSEL);
+    hadc->Instance->CR2 |= hadc->Init.ExternalTrigConv;
+    
+    /* Select external trigger polarity */
+    hadc->Instance->CR2 &= ~(ADC_CR2_EXTEN);
+    hadc->Instance->CR2 |= hadc->Init.ExternalTrigConvEdge;
+  }
+  else
+  {
+    /* Reset the external trigger */
+    hadc->Instance->CR2 &= ~(ADC_CR2_EXTSEL);
+    hadc->Instance->CR2 &= ~(ADC_CR2_EXTEN);
+  }
+  
+  /* Enable or disable ADC continuous conversion mode */
+  hadc->Instance->CR2 &= ~(ADC_CR2_CONT);
+  hadc->Instance->CR2 |= ADC_CR2_CONTINUOUS(hadc->Init.ContinuousConvMode);
+  
+  if(hadc->Init.DiscontinuousConvMode != DISABLE)
+  {
+    assert_param(IS_ADC_REGULAR_DISC_NUMBER(hadc->Init.NbrOfDiscConversion));
+  
+    /* Enable the selected ADC regular discontinuous mode */
+    hadc->Instance->CR1 |= (uint32_t)ADC_CR1_DISCEN;
+    
+    /* Set the number of channels to be converted in discontinuous mode */
+    hadc->Instance->CR1 &= ~(ADC_CR1_DISCNUM);
+    hadc->Instance->CR1 |=  ADC_CR1_DISCONTINUOUS(hadc->Init.NbrOfDiscConversion);
+  }
+  else
+  {
+    /* Disable the selected ADC regular discontinuous mode */
+    hadc->Instance->CR1 &= ~(ADC_CR1_DISCEN);
+  }
+  
+  /* Set ADC number of conversion */
+  hadc->Instance->SQR1 &= ~(ADC_SQR1_L);
+  hadc->Instance->SQR1 |=  ADC_SQR1(hadc->Init.NbrOfConversion);
+  
+  /* Enable or disable ADC DMA continuous request */
+  hadc->Instance->CR2 &= ~(ADC_CR2_DDS);
+  hadc->Instance->CR2 |= ADC_CR2_DMAContReq(hadc->Init.DMAContinuousRequests);
+  
+  /* Enable or disable ADC end of conversion selection */
+  hadc->Instance->CR2 &= ~(ADC_CR2_EOCS);
+  hadc->Instance->CR2 |= ADC_CR2_EOCSelection(hadc->Init.EOCSelection);
+}
+
+/**
+  * @brief  DMA transfer complete callback. 
+  * @param  hdma pointer to a DMA_HandleTypeDef structure that contains
+  *                the configuration information for the specified DMA module.
+  * @retval None
+  */
+static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma)   
+{
+  /* Retrieve ADC handle corresponding to current DMA handle */
+  ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+  
+  /* Update state machine on conversion status if not in error state */
+  if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA))
+  {
+    /* Update ADC state machine */
+    SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
+    
+    /* Determine whether any further conversion upcoming on group regular   */
+    /* by external trigger, continuous mode or scan sequence on going.      */
+    /* Note: On STM32F4, there is no independent flag of end of sequence.   */
+    /*       The test of scan sequence on going is done either with scan    */
+    /*       sequence disabled or with end of conversion flag set to        */
+    /*       of end of sequence.                                            */
+    if(ADC_IS_SOFTWARE_START_REGULAR(hadc)                   &&
+       (hadc->Init.ContinuousConvMode == DISABLE)            &&
+       (HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) || 
+        HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS)  )   )
+    {
+      /* Disable ADC end of single conversion interrupt on group regular */
+      /* Note: Overrun interrupt was enabled with EOC interrupt in          */
+      /* HAL_ADC_Start_IT(), but is not disabled here because can be used   */
+      /* by overrun IRQ process below.                                      */
+      __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
+      
+      /* Set ADC state */
+      CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);   
+      
+      if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
+      {
+        SET_BIT(hadc->State, HAL_ADC_STATE_READY);
+      }
+    }
+    
+    /* Conversion complete callback */
+    HAL_ADC_ConvCpltCallback(hadc);
+  }
+  else
+  {
+    /* Call DMA error callback */
+    hadc->DMA_Handle->XferErrorCallback(hdma);
+  }
+}
+
+/**
+  * @brief  DMA half transfer complete callback. 
+  * @param  hdma pointer to a DMA_HandleTypeDef structure that contains
+  *                the configuration information for the specified DMA module.
+  * @retval None
+  */
+static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma)   
+{
+  ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+  /* Conversion complete callback */
+  HAL_ADC_ConvHalfCpltCallback(hadc); 
+}
+
+/**
+  * @brief  DMA error callback 
+  * @param  hdma pointer to a DMA_HandleTypeDef structure that contains
+  *                the configuration information for the specified DMA module.
+  * @retval None
+  */
+static void ADC_DMAError(DMA_HandleTypeDef *hdma)   
+{
+  ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+  hadc->State= HAL_ADC_STATE_ERROR_DMA;
+  /* Set ADC error code to DMA error */
+  hadc->ErrorCode |= HAL_ADC_ERROR_DMA;
+  HAL_ADC_ErrorCallback(hadc); 
+}
+
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+#endif /* HAL_ADC_MODULE_ENABLED */
+/**
+  * @}
+  */ 
+
+/**
+  * @}
+  */ 
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/