38
+ − 1 /**
+ − 2 ******************************************************************************
+ − 3 * @file compass.c
+ − 4 * @author heinrichs weikamp gmbh
+ − 5 * @date 27-March-2014
+ − 6 * @version V0.2.0
+ − 7 * @since 21-April-2016
+ − 8 * @brief for Honeywell Compass and ST LSM303D
+ − 9 *
+ − 10 @verbatim
+ − 11 ==============================================================================
+ − 12 ##### How to use #####
+ − 13 ==============================================================================
+ − 14 V0.1.0 09-March-2016
+ − 15 V0.2.0 21-April-2016 Orientation fixed for LSM303D,
+ − 16 roll and pitch added to calibration output,
+ − 17 orientation double checked with datasheets and layout
+ − 18 as well as with value output during calibration
+ − 19 V0.2.1 19-May-2016 New date rate config and full-scale selection
+ − 20
+ − 21 @endverbatim
+ − 22 ******************************************************************************
+ − 23 * @attention
+ − 24 *
+ − 25 * <h2><center>© COPYRIGHT(c) 2016 heinrichs weikamp</center></h2>
+ − 26 *
+ − 27 ******************************************************************************
+ − 28 */
+ − 29
+ − 30 #include <math.h>
+ − 31 #include <string.h>
+ − 32
+ − 33 #include "compass.h"
+ − 34 #include "compass_LSM303D.h"
+ − 35
+ − 36 #include "i2c.h"
219
+ − 37 #include "spi.h"
38
+ − 38 #include "RTE_FlashAccess.h" // to store compass_calib_data
+ − 39
+ − 40 #include "stm32f4xx_hal.h"
+ − 41
+ − 42 #define TEST_IF_HMC5883L
+ − 43 //#define COMPASS_DEACTIVATE
+ − 44
+ − 45 /// split byte to bits
+ − 46 typedef struct{
+ − 47 uint8_t bit0:1; ///< split byte to bits
+ − 48 uint8_t bit1:1; ///< split byte to bits
+ − 49 uint8_t bit2:1; ///< split byte to bits
+ − 50 uint8_t bit3:1; ///< split byte to bits
+ − 51 uint8_t bit4:1; ///< split byte to bits
+ − 52 uint8_t bit5:1; ///< split byte to bits
+ − 53 uint8_t bit6:1; ///< split byte to bits
+ − 54 uint8_t bit7:1; ///< split byte to bits
+ − 55 } ubit8_t;
+ − 56
+ − 57
+ − 58 /// split byte to bits
+ − 59 typedef union{
+ − 60 ubit8_t ub; ///< split byte to bits
+ − 61 uint8_t uw; ///< split byte to bits
+ − 62 } bit8_Type;
+ − 63
+ − 64
+ − 65 /// split word to 2 bytes
+ − 66 typedef struct{
+ − 67 uint8_t low; ///< split word to 2 bytes
+ − 68 uint8_t hi; ///< split word to 2 bytes
+ − 69 } two_byte;
+ − 70
+ − 71
+ − 72 /// split word to 2 bytes
+ − 73 typedef union{
+ − 74 two_byte Byte; ///< split word to 2 bytes
+ − 75 uint16_t Word; ///< split word to 2 bytes
+ − 76 } tword;
+ − 77
+ − 78
+ − 79 /// split signed word to 2 bytes
+ − 80 typedef union{
+ − 81 two_byte Byte; ///< split signed word to 2 bytes
+ − 82 int16_t Word; ///< split signed word to 2 bytes
+ − 83 } signed_tword;
+ − 84
+ − 85
+ − 86 /// split full32 to 2 words
+ − 87 typedef struct{
+ − 88 uint16_t low16; ///< split word to 2 bytes
+ − 89 uint16_t hi16; ///< split word to 2 bytes
+ − 90 } two_word;
+ − 91
+ − 92 typedef union{
+ − 93 two_word Word16; ///< split word to 2 bytes
+ − 94 uint32_t Full32; ///< split word to 2 bytes
+ − 95 } tfull32;
+ − 96
+ − 97
+ − 98 /// crazy compass calibration stuff
+ − 99 typedef struct
+ − 100 {
+ − 101 unsigned short int compass_N;
+ − 102 float Su, Sv, Sw;
+ − 103 float Suu, Svv, Sww, Suv, Suw, Svw;
+ − 104 float Suuu, Svvv, Swww;
+ − 105 float Suuv, Suuw, Svvu, Svvw, Swwu, Swwv;
+ − 106 } SCompassCalib;
+ − 107
+ − 108
+ − 109 #define Q_PI (18000)
+ − 110 #define Q_PIO2 (9000)
+ − 111
+ − 112 #define HMC5883L (1) ///< id used with hardwareCompass
+ − 113 #define LSM303D (2) ///< id used with hardwareCompass
+ − 114 #define COMPASS_NOT_RECOGNIZED (4) ///< id used with hardwareCompass
+ − 115
+ − 116
+ − 117 //////////////////////////////////////////////////////////////////////////////
+ − 118 // fifth order of polynomial approximation of atan(), giving 0.05 deg max error
+ − 119 //
+ − 120 #define K1 (5701) // Needs K1/2**16
+ − 121 #define K2 (1645) // Needs K2/2**48 WAS NEGATIV
+ − 122 #define K3 ( 446) // Needs K3/2**80
+ − 123
+ − 124 const float PI = 3.14159265; ///< pi, used in compass_calc()
+ − 125
+ − 126 typedef short int Int16;
+ − 127 typedef signed char Int8;
+ − 128 typedef Int16 Angle;
+ − 129
+ − 130
+ − 131 /// The (filtered) components of the magnetometer sensor
+ − 132 int16_t compass_DX_f; ///< output from sensor
+ − 133 int16_t compass_DY_f; ///< output from sensor
+ − 134 int16_t compass_DZ_f; ///< output from sensor
+ − 135
+ − 136
+ − 137 /// Found soft-iron calibration values, deduced from already filtered values
+ − 138 int16_t compass_CX_f; ///< calibration value
+ − 139 int16_t compass_CY_f; ///< calibration value
+ − 140 int16_t compass_CZ_f; ///< calibration value
+ − 141
+ − 142
+ − 143 /// The (filtered) components of the accelerometer sensor
+ − 144 int16_t accel_DX_f; ///< output from sensor
+ − 145 int16_t accel_DY_f; ///< output from sensor
+ − 146 int16_t accel_DZ_f; ///< output from sensor
+ − 147
+ − 148
+ − 149 /// The compass result values
+ − 150 float compass_heading; ///< the final result calculated in compass_calc()
+ − 151 float compass_roll; ///< the final result calculated in compass_calc()
+ − 152 float compass_pitch; ///< the final result calculated in compass_calc()
+ − 153
+ − 154
+ − 155 uint8_t compass_gain; ///< 7 on start, can be reduced during calibration
+ − 156
+ − 157 uint8_t hardwareCompass = 0; ///< either HMC5883L or LSM303D or not defined yet ( = 0 )
+ − 158
+ − 159 /// LSM303D variables
+ − 160 uint8_t magDataBuffer[6]; ///< here raw data from LSM303D is stored, can be local
+ − 161 uint8_t accDataBuffer[6]; ///< here raw data from LSM303D is stored, can be local
+ − 162
+ − 163 //uint16_t velMag = 0;
+ − 164 //uint16_t velAcc = 0;
+ − 165
+ − 166 //uint16_t magODR[] = {31,62,125,250,500,1000,2000};
+ − 167 //uint16_t accODR[] = {0,31,62,125,250,500,1000,2000,4000,8000,16000};
+ − 168 //uint8_t fastest = 10; //no sensor is the fastest
+ − 169 //uint8_t datas1 = 0;
+ − 170 //uint8_t zoffFlag = 0;
+ − 171 //uint8_t sendFlag = 0;
+ − 172
+ − 173
+ − 174 // all by pixhawk code:
+ − 175
+ − 176 // struct accel_scale _accel_scale;
+ − 177 unsigned _accel_range_m_s2;
+ − 178 float _accel_range_scale;
+ − 179 unsigned _accel_samplerate;
+ − 180 unsigned _accel_onchip_filter_bandwith;
+ − 181
+ − 182 // struct mag_scale _mag_scale;
+ − 183 unsigned _mag_range_ga;
+ − 184 float _mag_range_scale;
+ − 185 unsigned _mag_samplerate;
+ − 186
+ − 187 // default scale factors
+ − 188 float _accel_scale_x_offset = 0.0f;
+ − 189 float _accel_scale_x_scale = 1.0f;
+ − 190 float _accel_scale_y_offset = 0.0f;
+ − 191 float _accel_scale_y_scale = 1.0f;
+ − 192 float _accel_scale_z_offset = 0.0f;
+ − 193 float _accel_scale_z_scale = 1.0f;
+ − 194
+ − 195 float _mag_scale_x_offset = 0.0f;
+ − 196 float _mag_scale_x_scale = 1.0f;
+ − 197 float _mag_scale_y_offset = 0.0f;
+ − 198 float _mag_scale_y_scale = 1.0f;
+ − 199 float _mag_scale_z_offset = 0.0f;
+ − 200 float _mag_scale_z_scale = 1.0f;
+ − 201
+ − 202
+ − 203 /* External function prototypes ----------------------------------------------*/
+ − 204
+ − 205 extern void copyCompassDataDuringCalibration(int16_t dx, int16_t dy, int16_t dz);
+ − 206
+ − 207 /* Private function prototypes -----------------------------------------------*/
+ − 208
+ − 209 void compass_reset_calibration(SCompassCalib *g);
+ − 210 void compass_add_calibration(SCompassCalib *g);
+ − 211 void compass_solve_calibration(SCompassCalib *g);
+ − 212
+ − 213 void compass_init_HMC5883L(uint8_t fast, uint8_t gain);
+ − 214 void compass_sleep_HMC5883L(void);
+ − 215 void compass_read_HMC5883L(void);
+ − 216
+ − 217 void accelerator_init_MMA8452Q(void);
+ − 218 void accelerator_sleep_MMA8452Q(void);
+ − 219 void acceleration_read_MMA8452Q(void);
+ − 220
+ − 221 void compass_init_LSM303D(uint8_t fast, uint8_t gain);
+ − 222 void compass_sleep_LSM303D(void);
+ − 223 void compass_read_LSM303D(void);
+ − 224 void acceleration_read_LSM303D(void);
+ − 225
+ − 226 int LSM303D_accel_set_onchip_lowpass_filter_bandwidth(unsigned bandwidth);
+ − 227 int compass_calib_common(void);
+ − 228
+ − 229 void compass_calc_roll_pitch_only(void);
+ − 230
+ − 231 void rotate_mag_3f(float *x, float *y, float *z);
+ − 232 void rotate_accel_3f(float *x, float *y, float *z);
+ − 233
+ − 234
+ − 235 /* Exported functions --------------------------------------------------------*/
+ − 236
+ − 237
+ − 238 // ===============================================================================
+ − 239 // compass_init
+ − 240 /// @brief This might be called several times with different gain values during calibration
+ − 241 /// On first call it figures out which hardware is integrated
+ − 242 ///
+ − 243 /// @param gain: 7 is max gain, compass_calib() might reduce it
+ − 244 // ===============================================================================
+ − 245
+ − 246 uint8_t testCompassTypeDebug = 0xFF;
+ − 247
+ − 248 void compass_init(uint8_t fast, uint8_t gain)
+ − 249 {
+ − 250 // quick off
+ − 251 #ifdef COMPASS_DEACTIVATE
+ − 252 hardwareCompass = COMPASS_NOT_RECOGNIZED;
+ − 253 #endif
+ − 254
+ − 255 // don't call again with fast, gain in calib mode etc.
+ − 256 // if unknown
+ − 257 if(hardwareCompass == COMPASS_NOT_RECOGNIZED)
+ − 258 {
+ − 259 return;
+ − 260 }
+ − 261
+ − 262 // old code but without else
+ − 263 if(hardwareCompass == 0)
+ − 264 {
+ − 265 uint8_t data = WHO_AM_I;
+ − 266 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
+ − 267 I2C_Master_Receive( DEVICE_COMPASS_303D, &data, 1);
+ − 268 if(data == WHOIAM_VALUE)
+ − 269 hardwareCompass = LSM303D;
70
+ − 270 else
+ − 271 hardwareCompass = HMC5883L;
38
+ − 272 }
+ − 273
180
+ − 274 /* No compass identified => Retry */
38
+ − 275 if(hardwareCompass == 0)
+ − 276 {
+ − 277 uint8_t data = WHO_AM_I;
+ − 278 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
+ − 279 I2C_Master_Receive( DEVICE_COMPASS_303D, &data, 1);
+ − 280 if(data == WHOIAM_VALUE)
+ − 281 hardwareCompass = LSM303D;
+ − 282 else
+ − 283 hardwareCompass = HMC5883L;
+ − 284 }
70
+ − 285
180
+ − 286 /* Assume that a HMC5883L is equipped by default if detection still failed */
38
+ − 287 if(hardwareCompass == 0)
+ − 288 hardwareCompass = HMC5883L;
+ − 289
+ − 290 #ifdef TEST_IF_HMC5883L
+ − 291 HAL_StatusTypeDef resultOfOperationHMC_MMA = HAL_TIMEOUT;
+ − 292
+ − 293 if(hardwareCompass == HMC5883L)
+ − 294 {
+ − 295 uint8_t data = 0x2A; // CTRL_REG1 of DEVICE_ACCELARATOR_MMA8452Q
+ − 296 resultOfOperationHMC_MMA = I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, &data, 1);
+ − 297 if(resultOfOperationHMC_MMA == HAL_OK)
+ − 298 {
+ − 299 hardwareCompass = HMC5883L; // all fine, keep it
+ − 300 }
+ − 301 else
+ − 302 {
+ − 303 hardwareCompass = COMPASS_NOT_RECOGNIZED;
+ − 304 testCompassTypeDebug = 0xEC;
+ − 305 }
+ − 306 }
+ − 307 #endif
+ − 308
+ − 309 if(hardwareCompass == LSM303D)
+ − 310 {
+ − 311 compass_init_LSM303D(fast, gain);
+ − 312 }
+ − 313 else
+ − 314 if(hardwareCompass == HMC5883L)
+ − 315 {
+ − 316 compass_init_HMC5883L(fast, gain);
+ − 317 }
+ − 318
+ − 319 tfull32 dataBlock[4];
+ − 320 if(BFA_readLastDataBlock((uint32_t *)dataBlock) == BFA_OK)
+ − 321 {
+ − 322 compass_CX_f = dataBlock[0].Word16.low16;
+ − 323 compass_CY_f = dataBlock[0].Word16.hi16;
+ − 324 compass_CZ_f = dataBlock[1].Word16.low16;
+ − 325 }
+ − 326
+ − 327 }
+ − 328
+ − 329
+ − 330 // ===============================================================================
+ − 331 // compass_calib
+ − 332 /// @brief with onchip_lowpass_filter configuration for accelerometer of LSM303D
+ − 333 // ===============================================================================
+ − 334 int compass_calib(void)
+ − 335 {
+ − 336 if(hardwareCompass == LSM303D)
+ − 337 {
+ − 338 LSM303D_accel_set_onchip_lowpass_filter_bandwidth(773);
+ − 339 int out = compass_calib_common();
+ − 340 LSM303D_accel_set_onchip_lowpass_filter_bandwidth(LSM303D_ACCEL_DEFAULT_ONCHIP_FILTER_FREQ);
+ − 341 return out;
+ − 342 }
+ − 343 else
+ − 344 if(hardwareCompass == HMC5883L)
+ − 345 {
+ − 346 return compass_calib_common();
+ − 347 }
+ − 348 else
+ − 349 {
+ − 350 return 0; // standard answer of compass_calib_common();
+ − 351 }
+ − 352
+ − 353
+ − 354 }
+ − 355
+ − 356
+ − 357 // ===============================================================================
+ − 358 // compass_sleep
+ − 359 /// @brief low power mode
+ − 360 // ===============================================================================
+ − 361 void compass_sleep(void)
+ − 362 {
+ − 363 if(hardwareCompass == LSM303D)
+ − 364 {
+ − 365 compass_sleep_LSM303D();
+ − 366 }
+ − 367 else
+ − 368 if(hardwareCompass == HMC5883L)
+ − 369 {
+ − 370 compass_sleep_HMC5883L();
+ − 371 }
+ − 372 }
+ − 373
+ − 374
+ − 375 // ===============================================================================
+ − 376 // compass_read
+ − 377 /// @brief reads magnetometer and accelerometer for LSM303D,
+ − 378 /// otherwise magnetometer only
+ − 379 // ===============================================================================
+ − 380 void compass_read(void)
+ − 381 {
+ − 382 if(hardwareCompass == LSM303D)
+ − 383 {
+ − 384 compass_read_LSM303D();
+ − 385 }
+ − 386 else
+ − 387 if(hardwareCompass == HMC5883L)
+ − 388 {
+ − 389 compass_read_HMC5883L();
+ − 390 }
+ − 391 }
+ − 392
+ − 393
+ − 394 // ===============================================================================
+ − 395 // accelerator_init
+ − 396 /// @brief empty for for LSM303D
+ − 397 // ===============================================================================
+ − 398 void accelerator_init(void)
+ − 399 {
+ − 400 if(hardwareCompass == HMC5883L)
+ − 401 accelerator_init_MMA8452Q();
+ − 402 }
+ − 403
+ − 404
+ − 405 // ===============================================================================
+ − 406 // accelerator_sleep
+ − 407 /// @brief empty for for LSM303D
+ − 408 // ===============================================================================
+ − 409 void accelerator_sleep(void)
+ − 410 {
+ − 411 if(hardwareCompass == HMC5883L)
+ − 412 accelerator_sleep_MMA8452Q();
+ − 413 }
+ − 414
+ − 415
+ − 416 // ===============================================================================
+ − 417 // acceleration_read
+ − 418 /// @brief empty for for LSM303D
+ − 419 // ===============================================================================
+ − 420 void acceleration_read(void)
+ − 421 {
+ − 422 if(hardwareCompass == LSM303D)
+ − 423 {
+ − 424 acceleration_read_LSM303D();
+ − 425 }
+ − 426 else
+ − 427 if(hardwareCompass == HMC5883L)
+ − 428 {
+ − 429 acceleration_read_MMA8452Q();
+ − 430 }
+ − 431 }
+ − 432
+ − 433
+ − 434 /* Private functions ---------------------------------------------------------*/
+ − 435
+ − 436 // ===============================================================================
+ − 437 // LSM303D_read_reg
+ − 438 /// @brief tiny helpers by pixhawk
+ − 439 // ===============================================================================
+ − 440 uint8_t LSM303D_read_reg(uint8_t addr)
+ − 441 {
+ − 442 uint8_t data;
+ − 443
+ − 444 I2C_Master_Transmit( DEVICE_COMPASS_303D, &addr, 1);
+ − 445 I2C_Master_Receive( DEVICE_COMPASS_303D, &data, 1);
+ − 446 return data;
+ − 447 }
+ − 448
+ − 449
+ − 450 // ===============================================================================
+ − 451 // LSM303D_write_reg
+ − 452 /// @brief tiny helpers by pixhawk
+ − 453 // ===============================================================================
+ − 454 void LSM303D_write_reg(uint8_t addr, uint8_t value)
+ − 455 {
+ − 456 uint8_t data[2];
+ − 457
+ − 458 /* enable accel*/
+ − 459 data[0] = addr;
+ − 460 data[1] = value;
+ − 461 I2C_Master_Transmit( DEVICE_COMPASS_303D, data, 2);
+ − 462 }
+ − 463
+ − 464
+ − 465 // ===============================================================================
+ − 466 // LSM303D_write_checked_reg
+ − 467 /// @brief tiny helpers by pixhawk. This runs unchecked at the moment.
+ − 468 // ===============================================================================
+ − 469 void LSM303D_write_checked_reg(uint8_t addr, uint8_t value)
+ − 470 {
+ − 471 LSM303D_write_reg(addr, value);
+ − 472 }
+ − 473
+ − 474
+ − 475 // ===============================================================================
+ − 476 // LSM303D_modify_reg
+ − 477 /// @brief tiny helpers by pixhawk
+ − 478 // ===============================================================================
+ − 479 void LSM303D_modify_reg(unsigned reg, uint8_t clearbits, uint8_t setbits)
+ − 480 {
+ − 481 uint8_t val;
+ − 482
+ − 483 val = LSM303D_read_reg(reg);
+ − 484 val &= ~clearbits;
+ − 485 val |= setbits;
+ − 486 LSM303D_write_checked_reg(reg, val);
+ − 487 }
+ − 488
+ − 489 /*
+ − 490 // ===============================================================================
+ − 491 // LSM303D_accel_set_range
+ − 492 /// @brief tiny helpers by pixhawk
+ − 493 // ===============================================================================
+ − 494 int LSM303D_accel_set_range(unsigned max_g)
+ − 495 {
+ − 496 uint8_t setbits = 0;
+ − 497 uint8_t clearbits = REG2_FULL_SCALE_BITS_A;
+ − 498 float new_scale_g_digit = 0.0f;
+ − 499
+ − 500 if (max_g == 0) {
+ − 501 max_g = 16;
+ − 502 }
+ − 503
+ − 504 if (max_g <= 2) {
+ − 505 _accel_range_m_s2 = 2.0f * LSM303D_ONE_G;
+ − 506 setbits |= REG2_FULL_SCALE_2G_A;
+ − 507 new_scale_g_digit = 0.061e-3f;
+ − 508
+ − 509 } else if (max_g <= 4) {
+ − 510 _accel_range_m_s2 = 4.0f * LSM303D_ONE_G;
+ − 511 setbits |= REG2_FULL_SCALE_4G_A;
+ − 512 new_scale_g_digit = 0.122e-3f;
+ − 513
+ − 514 } else if (max_g <= 6) {
+ − 515 _accel_range_m_s2 = 6.0f * LSM303D_ONE_G;
+ − 516 setbits |= REG2_FULL_SCALE_6G_A;
+ − 517 new_scale_g_digit = 0.183e-3f;
+ − 518
+ − 519 } else if (max_g <= 8) {
+ − 520 _accel_range_m_s2 = 8.0f * LSM303D_ONE_G;
+ − 521 setbits |= REG2_FULL_SCALE_8G_A;
+ − 522 new_scale_g_digit = 0.244e-3f;
+ − 523
+ − 524 } else if (max_g <= 16) {
+ − 525 _accel_range_m_s2 = 16.0f * LSM303D_ONE_G;
+ − 526 setbits |= REG2_FULL_SCALE_16G_A;
+ − 527 new_scale_g_digit = 0.732e-3f;
+ − 528
+ − 529 } else {
+ − 530 return -1;
+ − 531 }
+ − 532
+ − 533 _accel_range_scale = new_scale_g_digit * LSM303D_ONE_G;
+ − 534
+ − 535
+ − 536 LSM303D_modify_reg(ADDR_CTRL_REG2, clearbits, setbits);
+ − 537
+ − 538 return 0;
+ − 539 }
+ − 540 */
+ − 541 /*
+ − 542 // ===============================================================================
+ − 543 // LSM303D_mag_set_range
+ − 544 /// @brief tiny helpers by pixhawk
+ − 545 // ===============================================================================
+ − 546 int LSM303D_mag_set_range(unsigned max_ga)
+ − 547 {
+ − 548 uint8_t setbits = 0;
+ − 549 uint8_t clearbits = REG6_FULL_SCALE_BITS_M;
+ − 550 float new_scale_ga_digit = 0.0f;
+ − 551
+ − 552 if (max_ga == 0) {
+ − 553 max_ga = 12;
+ − 554 }
+ − 555
+ − 556 if (max_ga <= 2) {
+ − 557 _mag_range_ga = 2;
+ − 558 setbits |= REG6_FULL_SCALE_2GA_M;
+ − 559 new_scale_ga_digit = 0.080e-3f;
+ − 560
+ − 561 } else if (max_ga <= 4) {
+ − 562 _mag_range_ga = 4;
+ − 563 setbits |= REG6_FULL_SCALE_4GA_M;
+ − 564 new_scale_ga_digit = 0.160e-3f;
+ − 565
+ − 566 } else if (max_ga <= 8) {
+ − 567 _mag_range_ga = 8;
+ − 568 setbits |= REG6_FULL_SCALE_8GA_M;
+ − 569 new_scale_ga_digit = 0.320e-3f;
+ − 570
+ − 571 } else if (max_ga <= 12) {
+ − 572 _mag_range_ga = 12;
+ − 573 setbits |= REG6_FULL_SCALE_12GA_M;
+ − 574 new_scale_ga_digit = 0.479e-3f;
+ − 575
+ − 576 } else {
+ − 577 return -1;
+ − 578 }
+ − 579
+ − 580 _mag_range_scale = new_scale_ga_digit;
+ − 581
+ − 582 LSM303D_modify_reg(ADDR_CTRL_REG6, clearbits, setbits);
+ − 583
+ − 584 return 0;
+ − 585 }
+ − 586 */
+ − 587
+ − 588 // ===============================================================================
+ − 589 // LSM303D_accel_set_onchip_lowpass_filter_bandwidth
+ − 590 /// @brief tiny helpers by pixhawk
+ − 591 // ===============================================================================
+ − 592 int LSM303D_accel_set_onchip_lowpass_filter_bandwidth(unsigned bandwidth)
+ − 593 {
+ − 594 uint8_t setbits = 0;
+ − 595 uint8_t clearbits = REG2_ANTIALIAS_FILTER_BW_BITS_A;
+ − 596
+ − 597 if (bandwidth == 0) {
+ − 598 bandwidth = 773;
+ − 599 }
+ − 600
+ − 601 if (bandwidth <= 50) {
+ − 602 setbits |= REG2_AA_FILTER_BW_50HZ_A;
+ − 603 _accel_onchip_filter_bandwith = 50;
+ − 604
+ − 605 } else if (bandwidth <= 194) {
+ − 606 setbits |= REG2_AA_FILTER_BW_194HZ_A;
+ − 607 _accel_onchip_filter_bandwith = 194;
+ − 608
+ − 609 } else if (bandwidth <= 362) {
+ − 610 setbits |= REG2_AA_FILTER_BW_362HZ_A;
+ − 611 _accel_onchip_filter_bandwith = 362;
+ − 612
+ − 613 } else if (bandwidth <= 773) {
+ − 614 setbits |= REG2_AA_FILTER_BW_773HZ_A;
+ − 615 _accel_onchip_filter_bandwith = 773;
+ − 616
+ − 617 } else {
+ − 618 return -1;
+ − 619 }
+ − 620
+ − 621 LSM303D_modify_reg(ADDR_CTRL_REG2, clearbits, setbits);
+ − 622
+ − 623 return 0;
+ − 624 }
+ − 625
+ − 626
+ − 627 // ===============================================================================
+ − 628 // LSM303D_accel_set_driver_lowpass_filter
+ − 629 /// @brief tiny helpers by pixhawk. This one is not used at the moment!
+ − 630 // ===============================================================================
+ − 631 int LSM303D_accel_set_driver_lowpass_filter(float samplerate, float bandwidth)
+ − 632 {
+ − 633 /*
+ − 634 _accel_filter_x_set_cutoff_frequency(samplerate, bandwidth);
+ − 635 _accel_filter_y_set_cutoff_frequency(samplerate, bandwidth);
+ − 636 _accel_filter_z_set_cutoff_frequency(samplerate, bandwidth);
+ − 637 */
+ − 638 return 0;
+ − 639 }
+ − 640
+ − 641 /* unused 170821
+ − 642 // ===============================================================================
+ − 643 // LSM303D_accel_set_samplerate
+ − 644 /// @brief tiny helpers by pixhawk
+ − 645 // ===============================================================================
+ − 646 int LSM303D_accel_set_samplerate(unsigned frequency)
+ − 647 {
+ − 648 uint8_t setbits = 0;
+ − 649 uint8_t clearbits = REG1_RATE_BITS_A;
+ − 650
+ − 651 // if (frequency == 0 || frequency == ACCEL_SAMPLERATE_DEFAULT) {
+ − 652 frequency = 1600;
+ − 653 // }
+ − 654
+ − 655 if (frequency <= 3) {
+ − 656 setbits |= REG1_RATE_3_125HZ_A;
+ − 657 _accel_samplerate = 3;
+ − 658
+ − 659 } else if (frequency <= 6) {
+ − 660 setbits |= REG1_RATE_6_25HZ_A;
+ − 661 _accel_samplerate = 6;
+ − 662
+ − 663 } else if (frequency <= 12) {
+ − 664 setbits |= REG1_RATE_12_5HZ_A;
+ − 665 _accel_samplerate = 12;
+ − 666
+ − 667 } else if (frequency <= 25) {
+ − 668 setbits |= REG1_RATE_25HZ_A;
+ − 669 _accel_samplerate = 25;
+ − 670
+ − 671 } else if (frequency <= 50) {
+ − 672 setbits |= REG1_RATE_50HZ_A;
+ − 673 _accel_samplerate = 50;
+ − 674
+ − 675 } else if (frequency <= 100) {
+ − 676 setbits |= REG1_RATE_100HZ_A;
+ − 677 _accel_samplerate = 100;
+ − 678
+ − 679 } else if (frequency <= 200) {
+ − 680 setbits |= REG1_RATE_200HZ_A;
+ − 681 _accel_samplerate = 200;
+ − 682
+ − 683 } else if (frequency <= 400) {
+ − 684 setbits |= REG1_RATE_400HZ_A;
+ − 685 _accel_samplerate = 400;
+ − 686
+ − 687 } else if (frequency <= 800) {
+ − 688 setbits |= REG1_RATE_800HZ_A;
+ − 689 _accel_samplerate = 800;
+ − 690
+ − 691 } else if (frequency <= 1600) {
+ − 692 setbits |= REG1_RATE_1600HZ_A;
+ − 693 _accel_samplerate = 1600;
+ − 694
+ − 695 } else {
+ − 696 return -1;
+ − 697 }
+ − 698
+ − 699 LSM303D_modify_reg(ADDR_CTRL_REG1, clearbits, setbits);
+ − 700 return 0;
+ − 701 }
+ − 702 // ===============================================================================
+ − 703 // LSM303D_mag_set_samplerate
+ − 704 /// @brief tiny helpers by pixhawk
+ − 705 // ===============================================================================
+ − 706 int LSM303D_mag_set_samplerate(unsigned frequency)
+ − 707 {
+ − 708 uint8_t setbits = 0;
+ − 709 uint8_t clearbits = REG5_RATE_BITS_M;
+ − 710
+ − 711 if (frequency == 0) {
+ − 712 frequency = 100;
+ − 713 }
+ − 714
+ − 715 if (frequency <= 3) {
+ − 716 setbits |= REG5_RATE_3_125HZ_M;
+ − 717 _mag_samplerate = 25;
+ − 718
+ − 719 } else if (frequency <= 6) {
+ − 720 setbits |= REG5_RATE_6_25HZ_M;
+ − 721 _mag_samplerate = 25;
+ − 722
+ − 723 } else if (frequency <= 12) {
+ − 724 setbits |= REG5_RATE_12_5HZ_M;
+ − 725 _mag_samplerate = 25;
+ − 726
+ − 727 } else if (frequency <= 25) {
+ − 728 setbits |= REG5_RATE_25HZ_M;
+ − 729 _mag_samplerate = 25;
+ − 730
+ − 731 } else if (frequency <= 50) {
+ − 732 setbits |= REG5_RATE_50HZ_M;
+ − 733 _mag_samplerate = 50;
+ − 734
+ − 735 } else if (frequency <= 100) {
+ − 736 setbits |= REG5_RATE_100HZ_M;
+ − 737 _mag_samplerate = 100;
+ − 738
+ − 739 } else {
+ − 740 return -1;
+ − 741 }
+ − 742
+ − 743 LSM303D_modify_reg(ADDR_CTRL_REG5, clearbits, setbits);
+ − 744 return 0;
+ − 745 }
+ − 746 */
+ − 747
+ − 748
+ − 749 // rotate_mag_3f: nicht genutzt aber praktisch; rotate_accel_3f wird benutzt
+ − 750 // ===============================================================================
+ − 751 // rotate_mag_3f
+ − 752 /// @brief swap axis in convient way, by hw
+ − 753 /// @param *x raw input is set to *y input
+ − 754 /// @param *y raw input is set to -*x input
+ − 755 /// @param *z raw is not touched
+ − 756 // ===============================================================================
+ − 757 void rotate_mag_3f(float *x, float *y, float *z)
+ − 758 {
+ − 759 return;
+ − 760 /*
+ − 761 *x = *x; // HMC: *x = -*y
+ − 762 *y = *y; // HMC: *y = *x // change 20.04.2016: zuvor *y = -*y
+ − 763 *z = *z; // HMC: *z = *z
+ − 764 */
+ − 765 }
+ − 766
+ − 767
+ − 768 // ===============================================================================
+ − 769 // rotate_accel_3f
+ − 770 /// @brief swap axis in convient way, by hw, same as MMA8452Q
+ − 771 /// @param *x raw input, output is with sign change
+ − 772 /// @param *y raw input, output is with sign change
+ − 773 /// @param *z raw input, output is with sign change
+ − 774 // ===============================================================================
+ − 775 void rotate_accel_3f(float *x, float *y, float *z)
+ − 776 {
+ − 777 *x = -*x;
+ − 778 *y = -*y;
+ − 779 *z = -*z;
+ − 780 /* tested:
+ − 781 x = x, y =-y, z=-z: does not work with roll
+ − 782 x = x, y =y, z=-z: does not work with pitch
+ − 783 x = x, y =y, z=z: does not work at all
+ − 784 */
+ − 785 }
+ − 786
+ − 787
+ − 788 // ===============================================================================
+ − 789 // compass_init_LSM303D by PIXhawk (LSM303D::reset())
+ − 790 // https://raw.githubusercontent.com/PX4/Firmware/master/src/drivers/lsm303d/lsm303d.cpp
+ − 791 /// @brief The new ST 303D
+ − 792 /// This might be called several times with different gain values during calibration
+ − 793 /// but gain change is not supported at the moment.
+ − 794 ///
+ − 795 /// @param gain: 7 is max gain and set with here, compass_calib() might reduce it
+ − 796 // ===============================================================================
+ − 797
+ − 798 //uint8_t testCompassLS303D[11];
+ − 799
+ − 800 void compass_init_LSM303D(uint8_t fast, uint8_t gain)
+ − 801 {
+ − 802 // matthias version 160620
+ − 803 if(fast == 0)
+ − 804 {
+ − 805 LSM303D_write_checked_reg(ADDR_CTRL_REG0, 0x00);
+ − 806 LSM303D_write_checked_reg(ADDR_CTRL_REG1, 0x3F); // mod 12,5 Hz 3 instead of 6,25 Hz 2
+ − 807 LSM303D_write_checked_reg(ADDR_CTRL_REG2, 0xC0);
+ − 808 LSM303D_write_checked_reg(ADDR_CTRL_REG3, 0x00);
+ − 809 LSM303D_write_checked_reg(ADDR_CTRL_REG4, 0x00);
+ − 810 LSM303D_write_checked_reg(ADDR_CTRL_REG5, 0x68); // mod 12,5 Hz 8 instead of 6,25 Hz 4
+ − 811 }
+ − 812 else
+ − 813 {
+ − 814 LSM303D_write_checked_reg(ADDR_CTRL_REG0, 0x00);
+ − 815 LSM303D_write_checked_reg(ADDR_CTRL_REG1, 0x6F); // 100 Hz
+ − 816 LSM303D_write_checked_reg(ADDR_CTRL_REG2, 0xC0);
+ − 817 LSM303D_write_checked_reg(ADDR_CTRL_REG3, 0x00);
+ − 818 LSM303D_write_checked_reg(ADDR_CTRL_REG4, 0x00);
+ − 819 LSM303D_write_checked_reg(ADDR_CTRL_REG5, 0x74); // 100 Hz
+ − 820 }
+ − 821 LSM303D_write_checked_reg(ADDR_CTRL_REG6, 0x00);
+ − 822 LSM303D_write_checked_reg(ADDR_CTRL_REG7, 0x00);
+ − 823
+ − 824 /*
+ − 825 uint8_t data;
+ − 826 for(int i=0;i<11;i++)
+ − 827 {
+ − 828 data = ADDR_INT_THS_L_M + i;
+ − 829 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
+ − 830 I2C_Master_Receive( DEVICE_COMPASS_303D, &testCompassLS303D[i], 1);
+ − 831 }
+ − 832 */
+ − 833
+ − 834 return;
+ − 835 /*
+ − 836 LSM303D_accel_set_range(LSM303D_ACCEL_DEFAULT_RANGE_G); // modifies ADDR_CTRL_REG2
+ − 837 LSM303D_accel_set_samplerate(LSM303D_ACCEL_DEFAULT_RATE); // modifies ADDR_CTRL_REG1
+ − 838
+ − 839 LSM303D_mag_set_range(LSM303D_MAG_DEFAULT_RANGE_GA);
+ − 840 LSM303D_mag_set_samplerate(LSM303D_MAG_DEFAULT_RATE);
+ − 841 */
+ − 842
+ − 843 /*
+ − 844 // my stuff hw
+ − 845 // enable accel
+ − 846 LSM303D_write_checked_reg(ADDR_CTRL_REG1,
+ − 847 REG1_X_ENABLE_A | REG1_Y_ENABLE_A | REG1_Z_ENABLE_A | REG1_BDU_UPDATE | REG1_RATE_800HZ_A);
+ − 848
+ − 849 // enable mag
+ − 850 LSM303D_write_checked_reg(ADDR_CTRL_REG7, REG7_CONT_MODE_M);
+ − 851 LSM303D_write_checked_reg(ADDR_CTRL_REG5, REG5_RES_HIGH_M | REG5_ENABLE_T);
+ − 852 LSM303D_write_checked_reg(ADDR_CTRL_REG3, 0x04); // DRDY on ACCEL on INT1
+ − 853 LSM303D_write_checked_reg(ADDR_CTRL_REG4, 0x04); // DRDY on MAG on INT2
+ − 854
+ − 855 LSM303D_accel_set_range(LSM303D_ACCEL_DEFAULT_RANGE_G);
+ − 856 LSM303D_accel_set_samplerate(LSM303D_ACCEL_DEFAULT_RATE);
+ − 857 LSM303D_accel_set_driver_lowpass_filter((float)LSM303D_ACCEL_DEFAULT_RATE, (float)LSM303D_ACCEL_DEFAULT_DRIVER_FILTER_FREQ);
+ − 858 //LSM303D_accel_set_onchip_lowpass_filter_bandwidth(773); // factory setting
+ − 859
+ − 860 // we setup the anti-alias on-chip filter as 50Hz. We believe
+ − 861 // this operates in the analog domain, and is critical for
+ − 862 // anti-aliasing. The 2 pole software filter is designed to
+ − 863 // operate in conjunction with this on-chip filter
+ − 864 if(fast)
+ − 865 LSM303D_accel_set_onchip_lowpass_filter_bandwidth(773); // factory setting
+ − 866 else
+ − 867 LSM303D_accel_set_onchip_lowpass_filter_bandwidth(LSM303D_ACCEL_DEFAULT_ONCHIP_FILTER_FREQ);
+ − 868
+ − 869
+ − 870 LSM303D_mag_set_range(LSM303D_MAG_DEFAULT_RANGE_GA);
+ − 871 LSM303D_mag_set_samplerate(LSM303D_MAG_DEFAULT_RATE);
+ − 872 */
+ − 873 }
+ − 874
+ − 875
+ − 876 // ===============================================================================
+ − 877 // compass_sleep_LSM303D
+ − 878 /// @brief The new compass chip, hopefully this works!
+ − 879 // ===============================================================================
+ − 880 void compass_sleep_LSM303D(void)
+ − 881 {
+ − 882 LSM303D_write_checked_reg(ADDR_CTRL_REG1, 0x00); // CNTRL1: acceleration sensor Power-down mode
+ − 883 LSM303D_write_checked_reg(ADDR_CTRL_REG7, 0x02); // CNTRL7: magnetic sensor Power-down mode
+ − 884 }
+ − 885
+ − 886
+ − 887 // ===============================================================================
+ − 888 // acceleration_read_LSM303D
+ − 889 /// @brief The new LSM303D, code by pixhawk
+ − 890 ///
+ − 891 /// output is accel_DX_f, accel_DY_f, accel_DZ_f
+ − 892 // ===============================================================================
+ − 893 void acceleration_read_LSM303D(void)
+ − 894 {
+ − 895 uint8_t data;
+ − 896 float xraw_f, yraw_f, zraw_f;
+ − 897 float accel_report_x, accel_report_y, accel_report_z;
+ − 898
+ − 899 memset(accDataBuffer,0,6);
+ − 900
+ − 901 accel_DX_f = 0;
+ − 902 accel_DY_f = 0;
+ − 903 accel_DZ_f = 0;
+ − 904
+ − 905 for(int i=0;i<6;i++)
+ − 906 {
+ − 907 data = ADDR_OUT_X_L_A + i;
+ − 908 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
+ − 909 I2C_Master_Receive( DEVICE_COMPASS_303D, &accDataBuffer[i], 1);
+ − 910 }
+ − 911
+ − 912 xraw_f = ((float)( (int16_t)((accDataBuffer[1] << 8) | (accDataBuffer[0]))));
+ − 913 yraw_f = ((float)( (int16_t)((accDataBuffer[3] << 8) | (accDataBuffer[2]))));
+ − 914 zraw_f = ((float)( (int16_t)((accDataBuffer[5] << 8) | (accDataBuffer[4]))));
+ − 915
+ − 916 rotate_accel_3f(&xraw_f, &yraw_f, &zraw_f);
+ − 917
+ − 918 // mh
+ − 919 accel_report_x = xraw_f;
+ − 920 accel_report_y = yraw_f;
+ − 921 accel_report_z = zraw_f;
+ − 922
+ − 923 // my stuff
+ − 924 /*
+ − 925 accel_report_x = ((xraw_f * _accel_range_scale) - _accel_scale_x_offset) * _accel_scale_x_scale;
+ − 926 accel_report_y = ((yraw_f * _accel_range_scale) - _accel_scale_y_offset) * _accel_scale_y_scale;
+ − 927 accel_report_z = ((zraw_f * _accel_range_scale) - _accel_scale_z_offset) * _accel_scale_z_scale;
+ − 928 */
+ − 929 accel_DX_f = ((int16_t)(accel_report_x));
+ − 930 accel_DY_f = ((int16_t)(accel_report_y));
+ − 931 accel_DZ_f = ((int16_t)(accel_report_z));
+ − 932 }
+ − 933 /* special code after accel_report_z = ...
+ − 934 * prior to output
+ − 935 // we have logs where the accelerometers get stuck at a fixed
+ − 936 // large value. We want to detect this and mark the sensor as
+ − 937 // being faulty
+ − 938
+ − 939 if (fabsf(_last_accel[0] - x_in_new) < 0.001f &&
+ − 940 fabsf(_last_accel[1] - y_in_new) < 0.001f &&
+ − 941 fabsf(_last_accel[2] - z_in_new) < 0.001f &&
+ − 942 fabsf(x_in_new) > 20 &&
+ − 943 fabsf(y_in_new) > 20 &&
+ − 944 fabsf(z_in_new) > 20) {
+ − 945 _constant_accel_count += 1;
+ − 946
+ − 947 } else {
+ − 948 _constant_accel_count = 0;
+ − 949 }
+ − 950
+ − 951 if (_constant_accel_count > 100) {
+ − 952 // we've had 100 constant accel readings with large
+ − 953 // values. The sensor is almost certainly dead. We
+ − 954 // will raise the error_count so that the top level
+ − 955 // flight code will know to avoid this sensor, but
+ − 956 // we'll still give the data so that it can be logged
+ − 957 // and viewed
+ − 958 perf_count(_bad_values);
+ − 959 _constant_accel_count = 0;
+ − 960 }
+ − 961
+ − 962 _last_accel[0] = x_in_new;
+ − 963 _last_accel[1] = y_in_new;
+ − 964 _last_accel[2] = z_in_new;
+ − 965
+ − 966 accel_report.x = _accel_filter_x.apply(x_in_new);
+ − 967 accel_report.y = _accel_filter_y.apply(y_in_new);
+ − 968 accel_report.z = _accel_filter_z.apply(z_in_new);
+ − 969
+ − 970 math::Vector<3> aval(x_in_new, y_in_new, z_in_new);
+ − 971 math::Vector<3> aval_integrated;
+ − 972
+ − 973 bool accel_notify = _accel_int.put(accel_report.timestamp, aval, aval_integrated, accel_report.integral_dt);
+ − 974 accel_report.x_integral = aval_integrated(0);
+ − 975 accel_report.y_integral = aval_integrated(1);
+ − 976 accel_report.z_integral = aval_integrated(2);
+ − 977 */
+ − 978
+ − 979
+ − 980 // ===============================================================================
+ − 981 // compass_read_LSM303D
+ − 982 /// @brief The new LSM303D, code by pixhawk
+ − 983 ///
+ − 984 /// output is compass_DX_f, compass_DY_f, compass_DZ_f
+ − 985 // ===============================================================================
+ − 986 void compass_read_LSM303D(void)
+ − 987 {
+ − 988 uint8_t data;
+ − 989 // float xraw_f, yraw_f, zraw_f;
+ − 990 // float mag_report_x, mag_report_y, mag_report_z;
+ − 991
+ − 992 memset(magDataBuffer,0,6);
+ − 993
+ − 994 compass_DX_f = 0;
+ − 995 compass_DY_f = 0;
+ − 996 compass_DZ_f = 0;
+ − 997
+ − 998 for(int i=0;i<6;i++)
+ − 999 {
+ − 1000 data = ADDR_OUT_X_L_M + i;
+ − 1001 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
+ − 1002 I2C_Master_Receive( DEVICE_COMPASS_303D, &magDataBuffer[i], 1);
+ − 1003 }
+ − 1004
+ − 1005 // mh 160620 flip x and y if flip display
+ − 1006 compass_DX_f = (((int16_t)((magDataBuffer[1] << 8) | (magDataBuffer[0]))));
+ − 1007 compass_DY_f = (((int16_t)((magDataBuffer[3] << 8) | (magDataBuffer[2]))));
+ − 1008 compass_DZ_f = (((int16_t)((magDataBuffer[5] << 8) | (magDataBuffer[4]))));
+ − 1009 // no rotation
+ − 1010 return;
+ − 1011 /*
+ − 1012 // my stuff
+ − 1013 compass_DX_f = (((int16_t)((magDataBuffer[1] << 8) | (magDataBuffer[0]))) / 10) - 200;
+ − 1014 compass_DY_f = (((int16_t)((magDataBuffer[3] << 8) | (magDataBuffer[2]))) / 10) - 200;
+ − 1015 compass_DZ_f = (((int16_t)((magDataBuffer[5] << 8) | (magDataBuffer[4]))) / 10) - 200;
+ − 1016 */
+ − 1017 // old
+ − 1018 /*
+ − 1019 xraw_f = ((float)( (int16_t)((magDataBuffer[1] << 8) | (magDataBuffer[0]))));
+ − 1020 yraw_f = ((float)( (int16_t)((magDataBuffer[3] << 8) | (magDataBuffer[2]))));
+ − 1021 zraw_f = ((float)( (int16_t)((magDataBuffer[5] << 8) | (magDataBuffer[4]))));
+ − 1022
+ − 1023 rotate_mag_3f(&xraw_f, &yraw_f, &zraw_f);
+ − 1024
+ − 1025 compass_DX_f = (int16_t)((xraw_f * 0.1f) - 200.0f);
+ − 1026 compass_DY_f = (int16_t)((yraw_f * 0.1f) - 200.0f);
+ − 1027 compass_DZ_f = (int16_t)((zraw_f * 0.1f) - 200.0f);
+ − 1028 */
+ − 1029 /*
+ − 1030 mag_report_x = ((xraw_f * _mag_range_scale) - _mag_scale_x_offset) * _mag_scale_x_scale;
+ − 1031 mag_report_y = ((yraw_f * _mag_range_scale) - _mag_scale_y_offset) * _mag_scale_y_scale;
+ − 1032 mag_report_z = ((zraw_f * _mag_range_scale) - _mag_scale_z_offset) * _mag_scale_z_scale;
+ − 1033
+ − 1034 compass_DX_f = (int16_t)(mag_report_x * 1000.0f); // 1000.0 is just a wild guess by hw
+ − 1035 compass_DY_f = (int16_t)(mag_report_y * 1000.0f);
+ − 1036 compass_DZ_f = (int16_t)(mag_report_z * 1000.0f);
+ − 1037 */
+ − 1038 }
+ − 1039
+ − 1040
+ − 1041 // --------------------------------------------------------------------------------
+ − 1042 // ----------EARLIER COMPONENTS ---------------------------------------------------
+ − 1043 // --------------------------------------------------------------------------------
+ − 1044
+ − 1045 // ===============================================================================
+ − 1046 // compass_init_HMC5883L
+ − 1047 /// @brief The horrible Honeywell compass chip
+ − 1048 /// This might be called several times during calibration
+ − 1049 ///
+ − 1050 /// @param fast: 1 is fast mode, 0 is normal mode
+ − 1051 /// @param gain: 7 is max gain and set with here, compass_calib() might reduce it
+ − 1052 // ===============================================================================
+ − 1053 void compass_init_HMC5883L(uint8_t fast, uint8_t gain)
+ − 1054 {
+ − 1055 uint8_t write_buffer[4];
+ − 1056
+ − 1057 compass_gain = gain;
+ − 1058 uint16_t length = 0;
+ − 1059 write_buffer[0] = 0x00; // 00 = config Register A
+ − 1060
+ − 1061 if( fast )
+ − 1062 write_buffer[1] = 0x38; // 0b 0011 1000; // ConfigA: 75Hz, 2 Samples averaged
+ − 1063 else
+ − 1064 write_buffer[1] = 0x68; // 0b 0110 1000; // ConfigA: 3Hz, 8 Samples averaged
+ − 1065
+ − 1066 switch(gain)
+ − 1067 {
+ − 1068 case 7:
+ − 1069 write_buffer[2] = 0xE0; //0b 1110 0000; // ConfigB: gain
+ − 1070 break;
+ − 1071 case 6:
+ − 1072 write_buffer[2] = 0xC0; //0b 1100 0000; // ConfigB: gain
+ − 1073 break;
+ − 1074 case 5:
+ − 1075 write_buffer[2] = 0xA0; //0b 1010 0000; // ConfigB: gain
+ − 1076 break;
+ − 1077 case 4:
+ − 1078 write_buffer[2] = 0x80; //0b 1000 0000; // ConfigB: gain
+ − 1079 break;
+ − 1080 case 3:
+ − 1081 write_buffer[2] = 0x60; //0b 0110 0000; // ConfigB: gain
+ − 1082 break;
+ − 1083 case 2:
+ − 1084 write_buffer[2] = 0x40; //0b 01000 0000; // ConfigB: gain
+ − 1085 break;
+ − 1086 case 1:
+ − 1087 write_buffer[2] = 0x20; //0b 00100 0000; // ConfigB: gain
+ − 1088 break;
+ − 1089 case 0:
+ − 1090 write_buffer[2] = 0x00; //0b 00000 0000; // ConfigB: gain
+ − 1091 break;
+ − 1092 }
+ − 1093 write_buffer[3] = 0x00; // Mode: continuous mode
+ − 1094 length = 4;
+ − 1095 //hmc_twi_write(0);
+ − 1096 I2C_Master_Transmit( DEVICE_COMPASS_HMC5883L, write_buffer, length);
+ − 1097 }
+ − 1098
+ − 1099
+ − 1100
+ − 1101 // ===============================================================================
+ − 1102 // compass_sleep_HMC5883L
+ − 1103 /// @brief Power-down mode for Honeywell compass chip
+ − 1104 // ===============================================================================
+ − 1105 void compass_sleep_HMC5883L(void)
+ − 1106 {
+ − 1107 uint8_t write_buffer[4];
+ − 1108 uint16_t length = 0;
+ − 1109
+ − 1110 write_buffer[0] = 0x00; // 00 = config Register A
+ − 1111 write_buffer[1] = 0x68; // 0b 0110 1000; // ConfigA
+ − 1112 write_buffer[2] = 0x20; // 0b 0010 0000; // ConfigB
+ − 1113 write_buffer[3] = 0x02; // 0b 0000 0010; // Idle Mode
+ − 1114 length = 4;
+ − 1115 I2C_Master_Transmit( DEVICE_COMPASS_HMC5883L, write_buffer, length);
+ − 1116 }
+ − 1117
+ − 1118
+ − 1119 // ===============================================================================
+ − 1120 // accelerator_init_MMA8452Q
+ − 1121 /// @brief Power-down mode for acceleration chip used in combination with Honeywell compass
+ − 1122 // ===============================================================================
+ − 1123 void accelerator_init_MMA8452Q(void)
+ − 1124 {
+ − 1125 uint8_t write_buffer[4];
+ − 1126 uint16_t length = 0;
+ − 1127 //HAL_Delay(1);
+ − 1128 //return;
+ − 1129 write_buffer[0] = 0x0E; // XYZ_DATA_CFG
+ − 1130 write_buffer[1] = 0x00;//0b00000000; // High pass Filter=0 , +/- 2g range
+ − 1131 length = 2;
+ − 1132 I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, write_buffer, length);
+ − 1133 //HAL_Delay(1);
+ − 1134 write_buffer[0] = 0x2A; // CTRL_REG1
+ − 1135 write_buffer[1] = 0x34; //0b00110100; // CTRL_REG1: 160ms data rate, St.By Mode, reduced noise mode
+ − 1136 write_buffer[2] = 0x02; //0b00000010; // CTRL_REG2: High Res in Active mode
+ − 1137 length = 3;
+ − 1138 I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, write_buffer, length);
+ − 1139
+ − 1140 //HAL_Delay(1);
+ − 1141 //hw_delay_us(100);
+ − 1142 write_buffer[0] = 0x2A; // CTRL_REG1
+ − 1143 write_buffer[1] = 0x35; //0b00110101; // CTRL_REG1: ... Active Mode
+ − 1144 length = 2;
+ − 1145 I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, write_buffer, length);
+ − 1146 /*
+ − 1147 HAL_Delay(6);
+ − 1148 compass_read();
+ − 1149 HAL_Delay(1);
+ − 1150 acceleration_read();
+ − 1151
+ − 1152 compass_calc();
+ − 1153 */
+ − 1154 }
+ − 1155
+ − 1156
+ − 1157 // ===============================================================================
+ − 1158 // accelerator_sleep_MMA8452Q
+ − 1159 /// @brief compass_sleep_HMC5883L
+ − 1160 // ===============================================================================
+ − 1161 void accelerator_sleep_MMA8452Q(void)
+ − 1162 {
+ − 1163 uint16_t length = 0;
+ − 1164 uint8_t write_buffer[4];
+ − 1165
+ − 1166 write_buffer[0] = 0x2A; // CTRL_REG1
+ − 1167 write_buffer[1] = 0x00; //0b00000000; // CTRL_REG1: Standby Mode
+ − 1168 length = 2;
+ − 1169 I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, write_buffer, length);
+ − 1170 }
+ − 1171
+ − 1172
+ − 1173 // ===============================================================================
+ − 1174 // compass_read_HMC5883L
+ − 1175 /// @brief The new ST 303D - get ALL data and store in static variables
+ − 1176 ///
+ − 1177 /// output is compass_DX_f, compass_DY_f, compass_DZ_f
+ − 1178 // ===============================================================================
+ − 1179 void compass_read_HMC5883L(void)
+ − 1180 {
+ − 1181 uint8_t buffer[20];
+ − 1182 compass_DX_f = 0;
+ − 1183 compass_DY_f = 0;
+ − 1184 compass_DZ_f = 0;
+ − 1185 uint8_t length = 0;
+ − 1186 uint8_t read_buffer[6];
+ − 1187 signed_tword data;
+ − 1188 for(int i = 0; i<6;i++)
+ − 1189 read_buffer[i] = 0;
+ − 1190 buffer[0] = 0x03; // 03 = Data Output X MSB Register
+ − 1191 length = 1;
+ − 1192 I2C_Master_Transmit( DEVICE_COMPASS_HMC5883L, buffer, length);
+ − 1193 length = 6;
+ − 1194 I2C_Master_Receive( DEVICE_COMPASS_HMC5883L, read_buffer, length);
+ − 1195
+ − 1196
+ − 1197 data.Byte.hi = read_buffer[0];
+ − 1198 data.Byte.low = read_buffer[1];
+ − 1199 //Y = Z
+ − 1200 compass_DY_f = - data.Word;
+ − 1201
+ − 1202 data.Byte.hi = read_buffer[2];
+ − 1203 data.Byte.low = read_buffer[3];
+ − 1204 compass_DZ_f = data.Word;
+ − 1205
+ − 1206 data.Byte.hi = read_buffer[4];
+ − 1207 data.Byte.low = read_buffer[5];
+ − 1208 //X = -Y
+ − 1209 compass_DX_f = data.Word;
+ − 1210 }
+ − 1211
+ − 1212
+ − 1213 // ===============================================================================
+ − 1214 // acceleration_read_MMA8452Q
+ − 1215 /// @brief The old MMA8452Q used with the Honeywell compass
+ − 1216 /// get the acceleration data and store in static variables
+ − 1217 ///
+ − 1218 /// output is accel_DX_f, accel_DY_f, accel_DZ_f
+ − 1219 // ===============================================================================
+ − 1220 void acceleration_read_MMA8452Q(void)
+ − 1221 {
+ − 1222 uint8_t buffer[20];
+ − 1223 accel_DX_f = 0;
+ − 1224 accel_DY_f = 0;
+ − 1225 accel_DZ_f = 0;
+ − 1226 uint8_t length = 0;
+ − 1227 // bit8_Type status ;
+ − 1228 uint8_t read_buffer[7];
+ − 1229 signed_tword data;
+ − 1230 for(int i = 0; i<6;i++)
+ − 1231 read_buffer[i] = 0;
+ − 1232 buffer[0] = 0x00; // 03 = Data Output X MSB Register
+ − 1233 length = 1;
+ − 1234 I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, buffer, length);
+ − 1235 length = 7;
+ − 1236 I2C_Master_Receive( DEVICE_ACCELARATOR_MMA8452Q, read_buffer, length);
+ − 1237
+ − 1238 // status.uw = read_buffer[0];
+ − 1239 data.Byte.hi = read_buffer[1];
+ − 1240 data.Byte.low = read_buffer[2];
+ − 1241 accel_DX_f =data.Word/16;
+ − 1242 data.Byte.hi = read_buffer[3];
+ − 1243 data.Byte.low = read_buffer[4];
+ − 1244 accel_DY_f =data.Word/16;
+ − 1245 data.Byte.hi = read_buffer[5];
+ − 1246 data.Byte.low = read_buffer[6];
+ − 1247 accel_DZ_f =data.Word/16;
+ − 1248
+ − 1249 accel_DX_f *= -1;
+ − 1250 accel_DY_f *= -1;
+ − 1251 accel_DZ_f *= -1;
+ − 1252 }
+ − 1253
+ − 1254
+ − 1255 // ===============================================================================
+ − 1256 // compass_calc_roll_pitch_only
+ − 1257 /// @brief only the roll and pitch parts of compass_calc()
+ − 1258 ///
+ − 1259 /// input is accel_DX_f, accel_DY_f, accel_DZ_f
+ − 1260 /// output is compass_pitch and compass_roll
+ − 1261 // ===============================================================================
+ − 1262 void compass_calc_roll_pitch_only(void)
+ − 1263 {
+ − 1264 float sinPhi, cosPhi;
+ − 1265 float Phi, Teta;
+ − 1266
+ − 1267 //---- Calculate sine and cosine of roll angle Phi -----------------------
+ − 1268 Phi= atan2f(accel_DY_f, accel_DZ_f) ;
+ − 1269 compass_roll = Phi * 180.0f /PI;
+ − 1270 sinPhi = sinf(Phi);
+ − 1271 cosPhi = cosf(Phi);
+ − 1272
+ − 1273 //---- calculate sin and cosine of pitch angle Theta ---------------------
+ − 1274 Teta = atanf(-(float)accel_DX_f/(accel_DY_f * sinPhi + accel_DZ_f * cosPhi));
+ − 1275 compass_pitch = Teta * 180.0f /PI;
+ − 1276 }
+ − 1277
+ − 1278
+ − 1279 // ===============================================================================
+ − 1280 // compass_calc
+ − 1281 /// @brief all the fancy stuff first implemented in OSTC3
+ − 1282 ///
+ − 1283 /// input is compass_DX_f, compass_DY_f, compass_DZ_f, accel_DX_f, accel_DY_f, accel_DZ_f
+ − 1284 /// and compass_CX_f, compass_CY_f, compass_CZ_f
+ − 1285 /// output is compass_heading, compass_pitch and compass_roll
+ − 1286 // ===============================================================================
+ − 1287 void compass_calc(void)
+ − 1288 {
+ − 1289 float sinPhi, cosPhi, sinTeta, cosTeta;
+ − 1290 float Phi, Teta, Psi;
+ − 1291 int16_t iBfx, iBfy;
+ − 1292 int16_t iBpx, iBpy, iBpz;
+ − 1293
+ − 1294 //---- Make hard iron correction -----------------------------------------
+ − 1295 // Measured magnetometer orientation, measured ok.
+ − 1296 // From matthias drawing: (X,Y,Z) --> (X,Y,Z) : no rotation.
+ − 1297 iBpx = compass_DX_f - compass_CX_f; // X
+ − 1298 iBpy = compass_DY_f - compass_CY_f; // Y
+ − 1299 iBpz = compass_DZ_f - compass_CZ_f; // Z
+ − 1300
+ − 1301 //---- Calculate sine and cosine of roll angle Phi -----------------------
+ − 1302 //sincos(accel_DZ_f, accel_DY_f, &sin, &cos);
+ − 1303 Phi= atan2f(accel_DY_f, accel_DZ_f) ;
+ − 1304 compass_roll = Phi * 180.0f /PI;
+ − 1305 sinPhi = sinf(Phi);
+ − 1306 cosPhi = cosf(Phi);
+ − 1307
+ − 1308 //---- rotate by roll angle (-Phi) ---------------------------------------
+ − 1309 iBfy = iBpy * cosPhi - iBpz * sinPhi;
+ − 1310 iBpz = iBpy * sinPhi + iBpz * cosPhi;
+ − 1311 //Gz = imul(accel_DY_f, sin) + imul(accel_DZ_f, cos);
+ − 1312
+ − 1313 //---- calculate sin and cosine of pitch angle Theta ---------------------
+ − 1314 //sincos(Gz, -accel_DX_f, &sin, &cos); // NOTE: changed sin sign.
+ − 1315 // Teta takes into account roll of computer and sends combination of Y and Z :-) understand now hw 160421
+ − 1316 Teta = atanf(-(float)accel_DX_f/(accel_DY_f * sinPhi + accel_DZ_f * cosPhi));
+ − 1317 compass_pitch = Teta * 180.0f /PI;
+ − 1318 sinTeta = sinf(Teta);
+ − 1319 cosTeta = cosf(Teta);
+ − 1320 /* correct cosine if pitch not in range -90 to 90 degrees */
+ − 1321 if( cosTeta < 0 ) cosTeta = -cosTeta;
+ − 1322
+ − 1323 ///---- de-rotate by pitch angle Theta -----------------------------------
+ − 1324 iBfx = iBpx * cosTeta + iBpz * sinTeta;
+ − 1325
+ − 1326 //---- Detect uncalibrated compass ---------------------------------------
+ − 1327 if( !compass_CX_f && !compass_CY_f && !compass_CZ_f )
+ − 1328 {
+ − 1329 compass_heading = -1;
+ − 1330 return;
+ − 1331 }
+ − 1332
+ − 1333 //---- calculate current yaw = e-compass angle Psi -----------------------
+ − 1334 // Result in degree (no need of 0.01 deg precision...
+ − 1335 Psi = atan2f(-iBfy,iBfx);
+ − 1336 compass_heading = Psi * 180.0f /PI;
+ − 1337 // Result in 0..360 range:
+ − 1338 if( compass_heading < 0 )
+ − 1339 compass_heading += 360;
+ − 1340 }
+ − 1341
+ − 1342
+ − 1343 /*
+ − 1344 // ===============================================================================
+ − 1345 // compass_calc_mini_during_calibration
+ − 1346 /// @brief all the fancy stuff first implemented in OSTC3
+ − 1347 ///
+ − 1348 /// input is accel_DX_f, accel_DY_f, accel_DZ_f
+ − 1349 /// output is compass_pitch and compass_roll
+ − 1350 // ===============================================================================
+ − 1351 void compass_calc_mini_during_calibration(void)
+ − 1352 {
+ − 1353 float sinPhi, cosPhi;
+ − 1354 float Phi, Teta;
+ − 1355
+ − 1356 //---- Calculate sine and cosine of roll angle Phi -----------------------
+ − 1357 //sincos(accel_DZ_f, accel_DY_f, &sin, &cos);
+ − 1358 Phi= atan2f(accel_DY_f, accel_DZ_f) ;
+ − 1359 compass_roll = Phi * 180.0f /PI;
+ − 1360 sinPhi = sinf(Phi);
+ − 1361 cosPhi = cosf(Phi);
+ − 1362
+ − 1363 //---- calculate sin and cosine of pitch angle Theta ---------------------
+ − 1364 //sincos(Gz, -accel_DX_f, &sin, &cos); // NOTE: changed sin sign.
+ − 1365 Teta = atanf(-(float)accel_DX_f/(accel_DY_f * sinPhi + accel_DZ_f * cosPhi));
+ − 1366 compass_pitch = Teta * 180.0f /PI;
+ − 1367 }
+ − 1368 */
+ − 1369
+ − 1370
+ − 1371 // //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+ − 1372 // // - Calibration - ///////////////////////////////////////////////////////////////////////////////////////////////////////
+ − 1373 // //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+ − 1374
+ − 1375 /* can be lost during sleep as those are reset with compass_reset_calibration() */
+ − 1376
+ − 1377 // ===============================================================================
+ − 1378 // compass_reset_calibration
+ − 1379 /// @brief all the fancy stuff first implemented in OSTC3
+ − 1380 ///
+ − 1381 /// output is struct g and compass_CX_f, compass_CY_f, compass_CZ_f
+ − 1382 ///
+ − 1383 /// @param g: is a struct with crazy stuff like Suuu, Svvv, Svvu, etc.
+ − 1384 /// all is set to zero here
+ − 1385 // ===============================================================================
+ − 1386 void compass_reset_calibration(SCompassCalib *g)
+ − 1387 {
+ − 1388 g->compass_N = 0;
+ − 1389 g->Su = g->Sv = g->Sw = 0.0;
+ − 1390 g->Suu = g->Svv = g->Sww = g->Suv = g->Suw = g->Svw = 0.0;
+ − 1391 g->Suuu = g->Svvv = g->Swww = 0.0;
+ − 1392 g->Suuv = g->Suuw = g->Svvu = g->Svvw = g->Swwu = g->Swwv = 0.0;
+ − 1393 compass_CX_f = compass_CY_f = compass_CZ_f = 0.0;
+ − 1394 }
+ − 1395
+ − 1396
+ − 1397 // ===============================================================================
+ − 1398 // compass_add_calibration
+ − 1399 /// @brief all the fancy stuff first implemented in OSTC3
+ − 1400 ///
+ − 1401 /// input is compass_DX_f, compass_DY_f, compass_DZ_f
+ − 1402 /// and compass_CX_f, compass_CY_f, compass_CZ_f
+ − 1403 /// output is struct g
+ − 1404 ///
+ − 1405 /// @param g: is a struct with crazy stuff like Suuu, Svvv, Svvu, etc.
+ − 1406 // ===============================================================================
+ − 1407 void compass_add_calibration(SCompassCalib *g)
+ − 1408 {
+ − 1409 float u, v, w;
+ − 1410
+ − 1411 u = (compass_DX_f - compass_CX_f) / 32768.0f;
+ − 1412 v = (compass_DY_f - compass_CY_f) / 32768.0f;
+ − 1413 w = (compass_DZ_f - compass_CZ_f) / 32768.0f;
+ − 1414
+ − 1415 g->compass_N++;
+ − 1416 g->Su += u;
+ − 1417 g->Sv += v;
+ − 1418 g->Sw += w;
+ − 1419 g->Suv += u*v;
+ − 1420 g->Suw += u*w;
+ − 1421 g->Svw += v*w;
+ − 1422 g->Suu += u*u;
+ − 1423 g->Suuu += u*u*u;
+ − 1424 g->Suuv += v*u*u;
+ − 1425 g->Suuw += w*u*u;
+ − 1426 g->Svv += v*v;
+ − 1427 g->Svvv += v*v*v;
+ − 1428 g->Svvu += u*v*v;
+ − 1429 g->Svvw += w*v*v;
+ − 1430 g->Sww += w*w;
+ − 1431 g->Swww += w*w*w;
+ − 1432 g->Swwu += u*w*w;
+ − 1433 g->Swwv += v*w*w;
+ − 1434 }
+ − 1435
+ − 1436 //////////////////////////////////////////////////////////////////////////////
+ − 1437
+ − 1438 // ===============================================================================
+ − 1439 // compass_solve_calibration
+ − 1440 /// @brief all the fancy stuff first implemented in OSTC3
+ − 1441 ///
+ − 1442 /// input is compass_CX_f, compass_CY_f, compass_CZ_f and g
+ − 1443 /// output is struct g
+ − 1444 ///
+ − 1445 /// @param g: is a struct with crazy stuff like Suuu, Svvv, Svvu, etc.
+ − 1446 // ===============================================================================
+ − 1447 void compass_solve_calibration(SCompassCalib *g)
+ − 1448 {
+ − 1449 float yu, yv, yw;
+ − 1450 float delta;
+ − 1451 float uc, vc, wc;
+ − 1452
+ − 1453
+ − 1454 //---- Normalize partial sums --------------------------------------------
+ − 1455 //
+ − 1456 // u, v, w should be centered on the mean value um, vm, wm:
+ − 1457 // x = u + um, with um = Sx/N
+ − 1458 //
+ − 1459 // So:
+ − 1460 // (u + um)**2 = u**2 + 2u*um + um**2
+ − 1461 // Su = 0, um = Sx/N
+ − 1462 // Sxx = Suu + 2 um Su + N*(Sx/N)**2 = Suu + Sx**2/N
+ − 1463 // Suu = Sxx - Sx**2/N
+ − 1464 yu = g->Su/g->compass_N;
+ − 1465 yv = g->Sv/g->compass_N;
+ − 1466 yw = g->Sw/g->compass_N;
+ − 1467
+ − 1468 g->Suu -= g->Su*yu;
+ − 1469 g->Svv -= g->Sv*yv;
+ − 1470 g->Sww -= g->Sw*yw;
+ − 1471
+ − 1472 // (u + um)(v + vm) = uv + u vm + v um + um vm
+ − 1473 // Sxy = Suv + N * um vm
+ − 1474 // Suv = Sxy - N * (Sx/N)(Sy/N);
+ − 1475 g->Suv -= g->Su*yv;
+ − 1476 g->Suw -= g->Su*yw;
+ − 1477 g->Svw -= g->Sv*yw;
+ − 1478
+ − 1479 // (u + um)**3 = u**3 + 3 u**2 um + 3 u um**2 + um**3
+ − 1480 // Sxxx = Suuu + 3 um Suu + 3 um**2 Su + N.um**3
+ − 1481 // Su = 0, um = Sx/N:
+ − 1482 // Suuu = Sxxx - 3 Sx*Suu/N - N.(Sx/N)**3
+ − 1483 // = Sxxx - 3 Sx*Suu/N - Sx**3/N**2
+ − 1484
+ − 1485 // (u + um)**2 (v + vm) = (u**2 + 2 u um + um**2)(v + vm)
+ − 1486 // Sxxy = Suuv + vm Suu + 2 um (Suv + vm Su) + um**2 (Sv + N.vm)
+ − 1487 //
+ − 1488 // Su = 0, Sv = 0, vm = Sy/N:
+ − 1489 // Sxxy = Suuv + vm Suu + 2 um Suv + N um**2 vm
+ − 1490 //
+ − 1491 // Suuv = Sxxy - (Sy/N) Suu - 2 (Sx/N) Suv - (Sx/N)**2 Sy
+ − 1492 // = Sxxy - Suu*Sy/N - 2 Suv*Sx/N - Sx*Sx*Sy/N/N
+ − 1493 // = Sxxy - (Suu + Sx*Sx/N)*Sy/N - 2 Suv*Sx/N
+ − 1494 g->Suuu -= (3*g->Suu + g->Su*yu)*yu;
+ − 1495 g->Suuv -= (g->Suu + g->Su*yu)*yv + 2*g->Suv*yu;
+ − 1496 g->Suuw -= (g->Suu + g->Su*yu)*yw + 2*g->Suw*yu;
+ − 1497
+ − 1498 g->Svvu -= (g->Svv + g->Sv*yv)*yu + 2*g->Suv*yv;
+ − 1499 g->Svvv -= (3*g->Svv + g->Sv*yv)*yv;
+ − 1500 g->Svvw -= (g->Svv + g->Sv*yv)*yw + 2*g->Svw*yv;
+ − 1501
+ − 1502 g->Swwu -= (g->Sww + g->Sw*yw)*yu + 2*g->Suw*yw;
+ − 1503 g->Swwv -= (g->Sww + g->Sw*yw)*yv + 2*g->Svw*yw;
+ − 1504 g->Swww -= (3*g->Sww + g->Sw*yw)*yw;
+ − 1505
+ − 1506 //---- Solve the system --------------------------------------------------
+ − 1507 // uc Suu + vc Suv + wc Suw = (Suuu + Svvu + Swwu) / 2
+ − 1508 // uc Suv + vc Svv + wc Svw = (Suuv + Svvv + Swwv) / 2
+ − 1509 // uc Suw + vc Svw + wc Sww = (Suuw + Svvw + Swww) / 2
+ − 1510 // Note this is symetric, with a positiv diagonal, hence
+ − 1511 // it always have a uniq solution.
+ − 1512 yu = 0.5f * (g->Suuu + g->Svvu + g->Swwu);
+ − 1513 yv = 0.5f * (g->Suuv + g->Svvv + g->Swwv);
+ − 1514 yw = 0.5f * (g->Suuw + g->Svvw + g->Swww);
+ − 1515 delta = g->Suu * (g->Svv * g->Sww - g->Svw * g->Svw)
+ − 1516 - g->Suv * (g->Suv * g->Sww - g->Svw * g->Suw)
+ − 1517 + g->Suw * (g->Suv * g->Svw - g->Svv * g->Suw);
+ − 1518
+ − 1519 uc = (yu * (g->Svv * g->Sww - g->Svw * g->Svw)
+ − 1520 - yv * (g->Suv * g->Sww - g->Svw * g->Suw)
+ − 1521 + yw * (g->Suv * g->Svw - g->Svv * g->Suw) )/delta;
+ − 1522 vc = (g->Suu * ( yv * g->Sww - yw * g->Svw)
+ − 1523 - g->Suv * ( yu * g->Sww - yw * g->Suw)
+ − 1524 + g->Suw * ( yu * g->Svw - yv * g->Suw) )/delta;
+ − 1525 wc = (g->Suu * (g->Svv * yw - g->Svw * yv )
+ − 1526 - g->Suv * (g->Suv * yw - g->Svw * yu )
+ − 1527 + g->Suw * (g->Suv * yv - g->Svv * yu ) )/delta;
+ − 1528
+ − 1529 // Back to uncentered coordinates:
+ − 1530 // xc = um + uc
+ − 1531 uc = g->Su/g->compass_N + compass_CX_f/32768.0f + uc;
+ − 1532 vc = g->Sv/g->compass_N + compass_CY_f/32768.0f + vc;
+ − 1533 wc = g->Sw/g->compass_N + compass_CZ_f/32768.0f + wc;
+ − 1534
+ − 1535 // Then save the new calibrated center:
+ − 1536 compass_CX_f = (short)(32768 * uc);
+ − 1537 compass_CY_f = (short)(32768 * vc);
+ − 1538 compass_CZ_f = (short)(32768 * wc);
+ − 1539 }
+ − 1540
+ − 1541
+ − 1542 // ===============================================================================
+ − 1543 // compass_calib
+ − 1544 /// @brief the main loop for calibration
+ − 1545 /// output is compass_CX_f, compass_CY_f, compass_CZ_f and g
+ − 1546 /// 160704 removed -4096 limit for LSM303D
+ − 1547 ///
+ − 1548 /// @return always 0
+ − 1549 // ===============================================================================
+ − 1550 int compass_calib_common(void)
+ − 1551 {
+ − 1552 SCompassCalib g;
+ − 1553
+ − 1554 // Starts with no calibration at all:
+ − 1555 compass_reset_calibration(&g);
+ − 1556
+ − 1557 int64_t tickstart = 0;
+ − 1558 uint32_t ticks = 0;
+ − 1559 uint32_t lasttick = 0;
+ − 1560 tickstart = HAL_GetTick();
+ − 1561 // Eine Minute kalibrieren
+ − 1562 while((ticks) < 60 * 1000)
+ − 1563 {
+ − 1564 compass_read();
+ − 1565 acceleration_read();
+ − 1566 compass_calc_roll_pitch_only();
+ − 1567
+ − 1568 if((hardwareCompass == HMC5883L)
+ − 1569 &&((compass_DX_f == -4096) ||
+ − 1570 (compass_DY_f == -4096) ||
+ − 1571 (compass_DZ_f == -4096) ))
+ − 1572 {
+ − 1573 if(compass_gain == 0)
+ − 1574 return -1;
+ − 1575 compass_gain--;
+ − 1576
+ − 1577 compass_init(1, compass_gain);
+ − 1578 compass_reset_calibration(&g);
+ − 1579 //tickstart = HAL_GetTick();
+ − 1580 continue;
+ − 1581 }
+ − 1582
+ − 1583 copyCompassDataDuringCalibration(compass_DX_f,compass_DY_f,compass_DZ_f);
104
+ − 1584 compass_add_calibration(&g);
38
+ − 1585 HAL_Delay(1);
+ − 1586 lasttick = HAL_GetTick();
+ − 1587 if(lasttick == 0)
+ − 1588 {
+ − 1589 tickstart = -ticks;
+ − 1590 }
104
+ − 1591 HAL_Delay(1);
38
+ − 1592 ticks = lasttick - tickstart;
147
+ − 1593 SPI_Evaluate_RX_Data();
104
+ − 1594 }
38
+ − 1595
+ − 1596 compass_solve_calibration(&g);
+ − 1597
+ − 1598 tfull32 dataBlock[4];
+ − 1599 dataBlock[0].Word16.low16 = compass_CX_f;
+ − 1600 dataBlock[0].Word16.hi16 = compass_CY_f;
+ − 1601 dataBlock[1].Word16.low16 = compass_CZ_f;
+ − 1602 dataBlock[1].Word16.hi16 = 0xFFFF;
+ − 1603 dataBlock[2].Full32 = 0x7FFFFFFF;
+ − 1604 dataBlock[3].Full32 = 0x7FFFFFFF;
+ − 1605 BFA_writeDataBlock((uint32_t *)dataBlock);
+ − 1606
+ − 1607 return 0;
+ − 1608 }
+ − 1609
+ − 1610 // //////////////////////////// TEST CODE /////////////////////////////////////
+ − 1611
+ − 1612
+ − 1613
+ − 1614 //#include <QtDebug>
+ − 1615 //#include <stdio.h>
+ − 1616 //#include <math.h>
+ − 1617 /*#include <stdlib.h>
+ − 1618
+ − 1619 short compass_DX_f, compass_DY_f, compass_DZ_f;
+ − 1620 short compass_CX_f, compass_CY_f, compass_CZ_f;
+ − 1621
+ − 1622 inline float uniform(void) {
+ − 1623 return (rand() & 0xFFFF) / 65536.0f;
+ − 1624 }
+ − 1625 inline float sqr(float x) {
+ − 1626 return x*x;
+ − 1627 }
+ − 1628
+ − 1629 static const float radius = 0.21f;
+ − 1630 static const float cx = 0.79f, cy = -0.46f, cz = 0.24f;
+ − 1631 // const float cx = 0, cy = 0, cz = 0;
+ − 1632
+ − 1633 float check_compass_calib(void)
+ − 1634 {
+ − 1635
+ − 1636 // Starts with no calibration at all:
+ − 1637 compass_CX_f = compass_CY_f = compass_CZ_f = 0;
+ − 1638
+ − 1639 // Try 10 recalibration passes:
+ − 1640 for(int p=0; p<10; ++p)
+ − 1641 {
+ − 1642 compass_reset_calibration();
+ − 1643
+ − 1644 //---- Generates random points on a sphere -------------------------------
+ − 1645 // of radius,center (cx, cy, cz):
+ − 1646 for(int i=0; i<100; ++i)
+ − 1647 {
+ − 1648 float theta = uniform()*360.0f;
+ − 1649 float phi = uniform()*180.0f - 90.0f;
+ − 1650
+ − 1651 float x = cx + radius * cosf(phi)*cosf(theta);
+ − 1652 float y = cy + radius * cosf(phi)*sinf(theta);
+ − 1653 float z = cz + radius * sinf(phi);
+ − 1654
+ − 1655 compass_DX_f = (short)(32768 * x);
+ − 1656 compass_DY_f = (short)(32768 * y);
+ − 1657 compass_DZ_f = (short)(32768 * z);
+ − 1658 compass_add_calibration();
+ − 1659 }
+ − 1660
+ − 1661 compass_solve_calibration();
+ − 1662 //qDebug() << "Center ="
+ − 1663 // << compass_CX_f/32768.0f
+ − 1664 // << compass_CY_f/32768.0f
+ − 1665 // << compass_CZ_f/32768.0f;
+ − 1666
+ − 1667 float r2 = sqr(compass_CX_f/32768.0f - cx)
+ − 1668 + sqr(compass_CY_f/32768.0f - cy)
+ − 1669 + sqr(compass_CZ_f/32768.0f - cz);
+ − 1670 if( r2 > 0.01f*0.01f )
+ − 1671 return sqrtf(r2);
+ − 1672 }
+ − 1673 return 0;
+ − 1674 }*/
+ − 1675
+ − 1676
+ − 1677
+ − 1678 /*
+ − 1679 void compass_read_LSM303D_v3(void)
+ − 1680 {
+ − 1681 uint8_t data;
+ − 1682
+ − 1683 memset(magDataBuffer,0,6);
+ − 1684
+ − 1685 compass_DX_f = 0;
+ − 1686 compass_DY_f = 0;
+ − 1687 compass_DZ_f = 0;
+ − 1688
+ − 1689 //magnetometer multi read, order xl,xh, yl,yh, zl, zh
+ − 1690 data = REG_MAG_DATA_ADDR;
+ − 1691 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
+ − 1692 I2C_Master_Receive( DEVICE_COMPASS_303D, magDataBuffer, 6);
+ − 1693
+ − 1694 compass_DX_f = ((int16_t)( (int16_t)((magDataBuffer[1] << 8) | (magDataBuffer[0]))));
+ − 1695 compass_DY_f = ((int16_t)( (int16_t)((magDataBuffer[3] << 8) | (magDataBuffer[2]))));
+ − 1696 compass_DZ_f = ((int16_t)( (int16_t)((magDataBuffer[5] << 8) | (magDataBuffer[4]))));
+ − 1697
+ − 1698 // compass_DX_f = compass_DX_f * stat->sensitivity_mag;
+ − 1699 // compass_DY_f = compass_DY_f * stat->sensitivity_mag;
+ − 1700 // compass_DZ_f = compass_DZ_f * stat->sensitivity_mag;
+ − 1701 }
+ − 1702
+ − 1703
+ − 1704 // ===============================================================================
+ − 1705 // compass_init_LSM303D by STMicroelectronics 2013 V1.0.5 2013/Oct/23
+ − 1706 /// @brief The new ST 303D
+ − 1707 /// This might be called several times with different gain values during calibration
+ − 1708 ///
+ − 1709 /// @param gain: 7 is max gain and set with here, compass_calib() might reduce it
+ − 1710 // ===============================================================================
+ − 1711
+ − 1712 void compass_init_LSM303D_v3(uint8_t gain)
+ − 1713 {
+ − 1714 uint8_t data[10];
+ − 1715
+ − 1716 // CNTRL1
+ − 1717 // 0011 acceleration data rate 0011 = 12.5 Hz (3.125 Hz - 1600 Hz)
+ − 1718 // 0xxx block data update off
+ − 1719 // x111 enable all three axes
+ − 1720
+ − 1721 // CNTRL5
+ − 1722 // 0xxx xxxx temp sensor off
+ − 1723 // x00x xxxx magnetic resolution
+ − 1724 // xxx0 1xxx magentic data rate 01 = 6,25 Hz (3.125 Hz - 50 Hz (100 Hz))
+ − 1725 // xxxx xx00 latch irq requests off
+ − 1726
+ − 1727 // CNTRL7
+ − 1728 // 00xx high pass filter mode, 00 normal mode
+ − 1729 // xx0x filter for acceleration data bypassed
+ − 1730 // xxx0 temperature sensor mode only off
+ − 1731 // x0xx magnetic data low-power mode off
+ − 1732 // xx00 magnetic sensor mode 00 = continous-conversion mode (default 10 power-down)
+ − 1733
+ − 1734 data[0] = CNTRL0;
+ − 1735 data[1] = 0x00;
+ − 1736 I2C_Master_Transmit( DEVICE_COMPASS_303D, data, 2);
+ − 1737
+ − 1738 // acc
+ − 1739 data[0] = CNTRL1;
+ − 1740 data[1] = 0x00;
+ − 1741 data[2] = 0x0F;
+ − 1742 data[3] = 0x00;
+ − 1743 data[4] = 0x00;
+ − 1744 I2C_Master_Transmit( DEVICE_COMPASS_303D, data, 5);
+ − 1745
+ − 1746 // mag
+ − 1747 data[0] = CNTRL3;
+ − 1748 data[1] = 0x00;
+ − 1749 data[2] = 0x00;
+ − 1750 data[3] = 0x18;
+ − 1751 data[4] = 0x20;
+ − 1752 I2C_Master_Transmit( DEVICE_COMPASS_303D, data, 5);
+ − 1753
+ − 1754 data[0] = CNTRL7;
+ − 1755 data[1] = ((MSMS_MASK & CONTINUOS_CONVERSION) |
+ − 1756 ((~MSMS_MASK) & CNTRL7_RESUME_VALUE));
+ − 1757 I2C_Master_Transmit( DEVICE_COMPASS_303D, data, 2);
+ − 1758
+ − 1759 HAL_Delay(100);
+ − 1760 }
+ − 1761
+ − 1762
+ − 1763 // ===============================================================================
+ − 1764 // compass_init_LSM303D by nordevx for arduion
+ − 1765 /// @brief The new ST 303D
+ − 1766 /// This might be called several times with different gain values during calibration
+ − 1767 ///
+ − 1768 /// @param gain: 7 is max gain and set with here, compass_calib() might reduce it
+ − 1769 // ===============================================================================
+ − 1770 void compass_init_LSM303D_v2(uint8_t gain)
+ − 1771 {
+ − 1772 uint8_t data[2];
+ − 1773
+ − 1774 // CNTRL1
+ − 1775 // 0011 acceleration data rate 0011 = 12.5 Hz (3.125 Hz - 1600 Hz)
+ − 1776 // 0xxx block data update off
+ − 1777 // x111 enable all three axes
+ − 1778
+ − 1779 // CNTRL5
+ − 1780 // 0xxx xxxx temp sensor off
+ − 1781 // x00x xxxx magnetic resolution
+ − 1782 // xxx0 1xxx magentic data rate 01 = 6,25 Hz (3.125 Hz - 50 Hz (100 Hz))
+ − 1783 // xxxx xx00 latch irq requests off
+ − 1784
+ − 1785 // CNTRL7
+ − 1786 // 00xx high pass filter mode, 00 normal mode
+ − 1787 // xx0x filter for acceleration data bypassed
+ − 1788 // xxx0 temperature sensor mode only off
+ − 1789 // x0xx magnetic data low-power mode off
+ − 1790 // xx00 magnetic sensor mode 00 = continous-conversion mode (default 10 power-down)
+ − 1791
+ − 1792 data[0] = CNTRL1;
+ − 1793 data[1] = 0x37; //0b 0011 0111
+ − 1794 I2C_Master_Transmit( DEVICE_COMPASS_303D, data, 2);
+ − 1795
+ − 1796 data[0] = CNTRL5;
+ − 1797 data[1] = 0x08; // 0b 0000 1000
+ − 1798 I2C_Master_Transmit( DEVICE_COMPASS_303D, data, 2);
+ − 1799
+ − 1800 data[0] = CNTRL7;
+ − 1801 data[1] = 0x00; // 0b 0000 0000
+ − 1802 I2C_Master_Transmit( DEVICE_COMPASS_303D, data, 2);
+ − 1803
+ − 1804 HAL_Delay(100);
+ − 1805 }
+ − 1806
+ − 1807
+ − 1808 // ===============================================================================
+ − 1809 // compass_init_LSM303D_v1 by ST lsm303d.c
+ − 1810 /// @brief The new ST 303D
+ − 1811 /// This might be called several times with different gain values during calibration
+ − 1812 ///
+ − 1813 /// @param gain: 7 is max gain and set with here, compass_calib() might reduce it
+ − 1814 // ===============================================================================
+ − 1815 void compass_init_LSM303D_v1(uint8_t gain)
+ − 1816 {
+ − 1817 uint8_t data;
+ − 1818
+ − 1819 compass_gain = gain;
+ − 1820
+ − 1821 memset(magDataBuffer,0,6);
+ − 1822 memset(accDataBuffer,0,6);
+ − 1823
+ − 1824 data = CNTRL5;
+ − 1825 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
+ − 1826 I2C_Master_Receive( DEVICE_COMPASS_303D, &data, 1);
+ − 1827 data = (data & 0x1c) >> 2;
+ − 1828 velMag = magODR[data];
+ − 1829
+ − 1830 data = CNTRL1;
+ − 1831 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
+ − 1832 I2C_Master_Receive( DEVICE_COMPASS_303D, &data, 1);
+ − 1833 data = (data & 0xf0) >> 4;
+ − 1834 velAcc = accODR[data];
+ − 1835
+ − 1836 data = CNTRL7;
+ − 1837 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
+ − 1838 I2C_Master_Receive( DEVICE_COMPASS_303D, &datas1, 1);
+ − 1839 datas1 = (datas1 & 0x02);
+ − 1840
+ − 1841 //if mag is not pd
+ − 1842 //mag is bigger than gyro
+ − 1843 if( (velMag < velAcc) || datas1 != 0 ) {
+ − 1844 //acc is the biggest
+ − 1845 fastest = ACC_IS_FASTEST;
+ − 1846 }
+ − 1847 else {
+ − 1848 //acc is the biggest
+ − 1849 fastest = MAG_IS_FASTEST;
+ − 1850 }
+ − 1851
+ − 1852 zoffFlag = 1;
+ − 1853
+ − 1854 if( fastest == MAG_IS_FASTEST)
+ − 1855 {
+ − 1856 data = STATUS_REG_M;
+ − 1857 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
+ − 1858 I2C_Master_Receive( DEVICE_COMPASS_303D, &data, 1);
+ − 1859
+ − 1860 // if(ValBit(data, ZYXMDA)) {
+ − 1861 sendFlag = 1;
+ − 1862 // }
+ − 1863
+ − 1864 }
+ − 1865 else if(fastest == ACC_IS_FASTEST)
+ − 1866 {
+ − 1867 data = STATUS_REG_A;
+ − 1868 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
+ − 1869 I2C_Master_Receive( DEVICE_COMPASS_303D, &data, 1);
+ − 1870 // if(ValBit(data, DATAREADY_BIT)) {
+ − 1871 sendFlag = 1;
+ − 1872 // }
+ − 1873 }
+ − 1874 }
+ − 1875
+ − 1876 // ===============================================================================
+ − 1877 // compass_read_LSM303D
+ − 1878 /// @brief The new LSM303D :-)
+ − 1879 ///
+ − 1880 /// output is compass_DX_f, compass_DY_f, compass_DZ_f, accel_DX_f, accel_DY_f, accel_DZ_f
+ − 1881 // ===============================================================================
+ − 1882 void compass_read_LSM303D_v2(void)
+ − 1883 {
+ − 1884 uint8_t data;
+ − 1885
+ − 1886 memset(magDataBuffer,0,6);
+ − 1887 memset(accDataBuffer,0,6);
+ − 1888
+ − 1889 compass_DX_f = 0;
+ − 1890 compass_DY_f = 0;
+ − 1891 compass_DZ_f = 0;
+ − 1892
+ − 1893 accel_DX_f = 0;
+ − 1894 accel_DY_f = 0;
+ − 1895 accel_DZ_f = 0;
+ − 1896
+ − 1897 //Accelerometer multi read, order xl,xh, yl,yh, zl, zh
+ − 1898 data = REG_ACC_DATA_ADDR;
+ − 1899 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
+ − 1900 I2C_Master_Receive( DEVICE_COMPASS_303D, accDataBuffer, 6);
+ − 1901
+ − 1902 //magnetometer multi read, order xl,xh, yl,yh, zl, zh
+ − 1903 data = OUT_X_L_M;
+ − 1904 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
+ − 1905 I2C_Master_Receive( DEVICE_COMPASS_303D, magDataBuffer, 6);
+ − 1906
+ − 1907 accel_DX_f = ((int16_t)( (int16_t)((accDataBuffer[1] << 8) | (accDataBuffer[0]))));
+ − 1908 accel_DY_f = ((int16_t)( (int16_t)((accDataBuffer[3] << 8) | (accDataBuffer[2]))));
+ − 1909 accel_DZ_f = ((int16_t)( (int16_t)((accDataBuffer[5] << 8) | (accDataBuffer[4]))));
+ − 1910
+ − 1911 // accel_DX_f = accel_DX_f * stat->sensitivity_acc;
+ − 1912 // accel_DY_f = accel_DY_f * stat->sensitivity_acc;
+ − 1913 // accel_DZ_f = accel_DZ_f * stat->sensitivity_acc;
+ − 1914
+ − 1915
+ − 1916 compass_DX_f = magDataBuffer[1];
+ − 1917 compass_DX_f *= 256;
+ − 1918 compass_DX_f += magDataBuffer[0];
+ − 1919
+ − 1920 compass_DY_f = magDataBuffer[3];
+ − 1921 compass_DY_f *= 256;
+ − 1922 compass_DY_f += magDataBuffer[2];
+ − 1923
+ − 1924 compass_DY_f = magDataBuffer[5];
+ − 1925 compass_DY_f *= 256;
+ − 1926 compass_DY_f += magDataBuffer[4];
+ − 1927
+ − 1928 }
+ − 1929
+ − 1930
+ − 1931 */
+ − 1932