38
+ − 1 /**
+ − 2 ******************************************************************************
+ − 3 * @file compass.c
+ − 4 * @author heinrichs weikamp gmbh
+ − 5 * @date 27-March-2014
+ − 6 * @version V0.2.0
+ − 7 * @since 21-April-2016
+ − 8 * @brief for Honeywell Compass and ST LSM303D
+ − 9 *
+ − 10 @verbatim
+ − 11 ==============================================================================
+ − 12 ##### How to use #####
+ − 13 ==============================================================================
+ − 14 V0.1.0 09-March-2016
+ − 15 V0.2.0 21-April-2016 Orientation fixed for LSM303D,
+ − 16 roll and pitch added to calibration output,
+ − 17 orientation double checked with datasheets and layout
+ − 18 as well as with value output during calibration
+ − 19 V0.2.1 19-May-2016 New date rate config and full-scale selection
+ − 20
+ − 21 @endverbatim
+ − 22 ******************************************************************************
+ − 23 * @attention
+ − 24 *
+ − 25 * <h2><center>© COPYRIGHT(c) 2016 heinrichs weikamp</center></h2>
+ − 26 *
+ − 27 ******************************************************************************
+ − 28 */
+ − 29
+ − 30 #include <math.h>
+ − 31 #include <string.h>
+ − 32
+ − 33 #include "compass.h"
+ − 34 #include "compass_LSM303D.h"
+ − 35
+ − 36 #include "i2c.h"
219
+ − 37 #include "spi.h"
555
+ − 38 #include "scheduler.h"
38
+ − 39 #include "RTE_FlashAccess.h" // to store compass_calib_data
+ − 40
+ − 41 #include "stm32f4xx_hal.h"
+ − 42
410
+ − 43 extern uint32_t time_elapsed_ms(uint32_t ticksstart,uint32_t ticksnow);
555
+ − 44 extern SGlobal global;
38
+ − 45
+ − 46
+ − 47 /// crazy compass calibration stuff
+ − 48 typedef struct
+ − 49 {
+ − 50 unsigned short int compass_N;
+ − 51 float Su, Sv, Sw;
+ − 52 float Suu, Svv, Sww, Suv, Suw, Svw;
+ − 53 float Suuu, Svvv, Swww;
+ − 54 float Suuv, Suuw, Svvu, Svvw, Swwu, Swwv;
+ − 55 } SCompassCalib;
+ − 56
+ − 57
+ − 58 #define Q_PI (18000)
+ − 59 #define Q_PIO2 (9000)
+ − 60
+ − 61
+ − 62
+ − 63 //////////////////////////////////////////////////////////////////////////////
+ − 64 // fifth order of polynomial approximation of atan(), giving 0.05 deg max error
+ − 65 //
+ − 66 #define K1 (5701) // Needs K1/2**16
+ − 67 #define K2 (1645) // Needs K2/2**48 WAS NEGATIV
+ − 68 #define K3 ( 446) // Needs K3/2**80
+ − 69
+ − 70 const float PI = 3.14159265; ///< pi, used in compass_calc()
+ − 71
+ − 72 typedef short int Int16;
+ − 73 typedef signed char Int8;
+ − 74 typedef Int16 Angle;
+ − 75
+ − 76
+ − 77 /// The (filtered) components of the magnetometer sensor
+ − 78 int16_t compass_DX_f; ///< output from sensor
+ − 79 int16_t compass_DY_f; ///< output from sensor
+ − 80 int16_t compass_DZ_f; ///< output from sensor
+ − 81
+ − 82
+ − 83 /// Found soft-iron calibration values, deduced from already filtered values
+ − 84 int16_t compass_CX_f; ///< calibration value
+ − 85 int16_t compass_CY_f; ///< calibration value
+ − 86 int16_t compass_CZ_f; ///< calibration value
+ − 87
+ − 88
+ − 89 /// The (filtered) components of the accelerometer sensor
+ − 90 int16_t accel_DX_f; ///< output from sensor
+ − 91 int16_t accel_DY_f; ///< output from sensor
+ − 92 int16_t accel_DZ_f; ///< output from sensor
+ − 93
+ − 94
+ − 95 /// The compass result values
+ − 96 float compass_heading; ///< the final result calculated in compass_calc()
+ − 97 float compass_roll; ///< the final result calculated in compass_calc()
+ − 98 float compass_pitch; ///< the final result calculated in compass_calc()
+ − 99
+ − 100
+ − 101 uint8_t compass_gain; ///< 7 on start, can be reduced during calibration
+ − 102
571
+ − 103 uint8_t hardwareCompass = compass_generation_undef; ///< either HMC5883L (=1) or LSM303D (=2) or LSM303AGR (=3) or not defined yet (=0)
38
+ − 104
+ − 105 /// LSM303D variables
+ − 106 uint8_t magDataBuffer[6]; ///< here raw data from LSM303D is stored, can be local
+ − 107 uint8_t accDataBuffer[6]; ///< here raw data from LSM303D is stored, can be local
+ − 108
+ − 109
+ − 110 // struct accel_scale _accel_scale;
+ − 111 unsigned _accel_range_m_s2;
+ − 112 float _accel_range_scale;
+ − 113 unsigned _accel_samplerate;
+ − 114 unsigned _accel_onchip_filter_bandwith;
+ − 115
+ − 116 // struct mag_scale _mag_scale;
+ − 117 unsigned _mag_range_ga;
+ − 118 float _mag_range_scale;
+ − 119 unsigned _mag_samplerate;
+ − 120
+ − 121 // default scale factors
+ − 122 float _accel_scale_x_offset = 0.0f;
+ − 123 float _accel_scale_x_scale = 1.0f;
+ − 124 float _accel_scale_y_offset = 0.0f;
+ − 125 float _accel_scale_y_scale = 1.0f;
+ − 126 float _accel_scale_z_offset = 0.0f;
+ − 127 float _accel_scale_z_scale = 1.0f;
+ − 128
+ − 129 float _mag_scale_x_offset = 0.0f;
+ − 130 float _mag_scale_x_scale = 1.0f;
+ − 131 float _mag_scale_y_offset = 0.0f;
+ − 132 float _mag_scale_y_scale = 1.0f;
+ − 133 float _mag_scale_z_offset = 0.0f;
+ − 134 float _mag_scale_z_scale = 1.0f;
+ − 135
+ − 136
+ − 137 /* External function prototypes ----------------------------------------------*/
+ − 138
+ − 139 extern void copyCompassDataDuringCalibration(int16_t dx, int16_t dy, int16_t dz);
+ − 140
+ − 141 /* Private function prototypes -----------------------------------------------*/
+ − 142
+ − 143 void compass_reset_calibration(SCompassCalib *g);
+ − 144 void compass_add_calibration(SCompassCalib *g);
+ − 145 void compass_solve_calibration(SCompassCalib *g);
+ − 146
+ − 147 void compass_init_HMC5883L(uint8_t fast, uint8_t gain);
+ − 148 void compass_sleep_HMC5883L(void);
+ − 149 void compass_read_HMC5883L(void);
+ − 150
+ − 151 void accelerator_init_MMA8452Q(void);
+ − 152 void accelerator_sleep_MMA8452Q(void);
+ − 153 void acceleration_read_MMA8452Q(void);
+ − 154
+ − 155 void compass_init_LSM303D(uint8_t fast, uint8_t gain);
+ − 156 void compass_sleep_LSM303D(void);
+ − 157 void compass_read_LSM303D(void);
+ − 158 void acceleration_read_LSM303D(void);
+ − 159
357
+ − 160 void compass_init_LSM303AGR(uint8_t fast, uint8_t gain);
+ − 161 void compass_sleep_LSM303AGR(void);
+ − 162 void compass_read_LSM303AGR(void);
+ − 163 void acceleration_read_LSM303AGR(void);
+ − 164
38
+ − 165 int LSM303D_accel_set_onchip_lowpass_filter_bandwidth(unsigned bandwidth);
+ − 166 int compass_calib_common(void);
+ − 167
+ − 168 void compass_calc_roll_pitch_only(void);
+ − 169
+ − 170 void rotate_mag_3f(float *x, float *y, float *z);
+ − 171 void rotate_accel_3f(float *x, float *y, float *z);
+ − 172
+ − 173
+ − 174 /* Exported functions --------------------------------------------------------*/
+ − 175
+ − 176
+ − 177 // ===============================================================================
+ − 178 // compass_init
+ − 179 /// @brief This might be called several times with different gain values during calibration
+ − 180 /// On first call it figures out which hardware is integrated
+ − 181 ///
+ − 182 /// @param gain: 7 is max gain, compass_calib() might reduce it
+ − 183 // ===============================================================================
+ − 184
+ − 185 void compass_init(uint8_t fast, uint8_t gain)
+ − 186 {
+ − 187
+ − 188 // don't call again with fast, gain in calib mode etc.
+ − 189 // if unknown
+ − 190 if(hardwareCompass == COMPASS_NOT_RECOGNIZED)
+ − 191 {
+ − 192 return;
+ − 193 }
+ − 194
571
+ − 195 if(hardwareCompass == compass_generation_undef) /* check if compass had been detected before */
+ − 196 {
+ − 197 tfull32 dataBlock[4];
+ − 198 if(BFA_readLastDataBlock(dataBlock) == BFA_OK)
+ − 199 {
+ − 200 if(dataBlock[3].Word16.hi16 == BFA_calc_Block_Checksum(dataBlock))
+ − 201 {
+ − 202 compass_CX_f = dataBlock[0].Word16.low16;
+ − 203 compass_CY_f = dataBlock[0].Word16.hi16;
+ − 204 compass_CZ_f = dataBlock[1].Word16.low16;
+ − 205 hardwareCompass = dataBlock[1].Word16.hi16;
+ − 206 if(hardwareCompass >= compass_generation_future) /* no generation stored (including COMPASS_NOT_RECOGNIZED) */
+ − 207 {
+ − 208 hardwareCompass = compass_generation_undef;
+ − 209 }
+ − 210 }
+ − 211 }
+ − 212 }
+ − 213
38
+ − 214 // old code but without else
571
+ − 215 if(hardwareCompass == compass_generation_undef)
38
+ − 216 {
+ − 217 uint8_t data = WHO_AM_I;
+ − 218 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
+ − 219 I2C_Master_Receive( DEVICE_COMPASS_303D, &data, 1);
357
+ − 220 if(data == WHOIAM_VALUE_LSM303D)
+ − 221 hardwareCompass = compass_generation2; //LSM303D;
358
+ − 222 data = WHO_AM_I;
+ − 223 I2C_Master_Transmit( DEVICE_ACCELARATOR_303AGR, &data, 1);
+ − 224 I2C_Master_Receive( DEVICE_ACCELARATOR_303AGR, &data, 1);
357
+ − 225 if(data == WHOIAM_VALUE_LSM303AGR)
+ − 226 hardwareCompass = compass_generation3; //LSM303AGR;
38
+ − 227 }
+ − 228
180
+ − 229 /* No compass identified => Retry */
571
+ − 230 if(hardwareCompass == compass_generation_undef)
38
+ − 231 {
514
+ − 232 I2C_DeInit();
+ − 233 HAL_Delay(100);
+ − 234 MX_I2C1_Init();
+ − 235 HAL_Delay(100);
38
+ − 236 uint8_t data = WHO_AM_I;
+ − 237 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
+ − 238 I2C_Master_Receive( DEVICE_COMPASS_303D, &data, 1);
357
+ − 239 if(data == WHOIAM_VALUE_LSM303D)
580
+ − 240 {
357
+ − 241 hardwareCompass = compass_generation2; //LSM303D;
580
+ − 242 }
+ − 243 else
+ − 244 {
+ − 245 data = WHO_AM_I;
+ − 246 I2C_Master_Transmit( DEVICE_ACCELARATOR_303AGR, &data, 1);
+ − 247 I2C_Master_Receive( DEVICE_ACCELARATOR_303AGR, &data, 1);
+ − 248 if(data == WHOIAM_VALUE_LSM303AGR)
+ − 249 hardwareCompass = compass_generation3; //LSM303AGR;
+ − 250 }
38
+ − 251 }
70
+ − 252
180
+ − 253 /* Assume that a HMC5883L is equipped by default if detection still failed */
571
+ − 254 if(hardwareCompass == compass_generation_undef)
357
+ − 255 hardwareCompass = compass_generation1; //HMC5883L;
38
+ − 256
+ − 257 HAL_StatusTypeDef resultOfOperationHMC_MMA = HAL_TIMEOUT;
+ − 258
358
+ − 259 // test if both chips of the two-chip solution (gen 1) are present
357
+ − 260 if(hardwareCompass == compass_generation1) // HMC5883L)
38
+ − 261 {
488
+ − 262 HAL_Delay(100);
+ − 263 I2C_DeInit();
+ − 264 HAL_Delay(100);
358
+ − 265 MX_I2C1_Init();
488
+ − 266 HAL_Delay(100);
38
+ − 267 uint8_t data = 0x2A; // CTRL_REG1 of DEVICE_ACCELARATOR_MMA8452Q
+ − 268 resultOfOperationHMC_MMA = I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, &data, 1);
+ − 269 if(resultOfOperationHMC_MMA == HAL_OK)
+ − 270 {
357
+ − 271 hardwareCompass = compass_generation1; //HMC5883L; // all fine, keep it
38
+ − 272 }
+ − 273 else
+ − 274 {
+ − 275 hardwareCompass = COMPASS_NOT_RECOGNIZED;
+ − 276 }
+ − 277 }
+ − 278
357
+ − 279 if(hardwareCompass == compass_generation2) //LSM303D)
38
+ − 280 compass_init_LSM303D(fast, gain);
357
+ − 281 if(hardwareCompass == compass_generation3) //LSM303AGR)
+ − 282 compass_init_LSM303AGR(fast, gain);
+ − 283 if(hardwareCompass == compass_generation1) //HMC5883L)
38
+ − 284 compass_init_HMC5883L(fast, gain);
+ − 285
555
+ − 286 if(global.deviceDataSendToMaster.hw_Info.compass == 0)
+ − 287 {
+ − 288 global.deviceDataSendToMaster.hw_Info.compass = hardwareCompass;
559
+ − 289 global.deviceDataSendToMaster.hw_Info.checkCompass = 1;
555
+ − 290 }
38
+ − 291 }
+ − 292
+ − 293
+ − 294 // ===============================================================================
+ − 295 // compass_calib
+ − 296 /// @brief with onchip_lowpass_filter configuration for accelerometer of LSM303D
+ − 297 // ===============================================================================
+ − 298 int compass_calib(void)
+ − 299 {
357
+ − 300 if(hardwareCompass == compass_generation2) //LSM303D)
38
+ − 301 {
+ − 302 LSM303D_accel_set_onchip_lowpass_filter_bandwidth(773);
+ − 303 int out = compass_calib_common();
+ − 304 LSM303D_accel_set_onchip_lowpass_filter_bandwidth(LSM303D_ACCEL_DEFAULT_ONCHIP_FILTER_FREQ);
+ − 305 return out;
+ − 306 }
+ − 307 else
357
+ − 308 if(hardwareCompass == compass_generation1) //HMC5883L)
+ − 309 {
+ − 310 return compass_calib_common();
+ − 311 }
+ − 312 else
+ − 313 if(hardwareCompass == compass_generation3) //LSM303AGR)
38
+ − 314 {
+ − 315 return compass_calib_common();
+ − 316 }
+ − 317 else
+ − 318 {
+ − 319 return 0; // standard answer of compass_calib_common();
+ − 320 }
+ − 321
+ − 322
+ − 323 }
+ − 324
+ − 325
+ − 326 // ===============================================================================
+ − 327 // compass_sleep
+ − 328 /// @brief low power mode
+ − 329 // ===============================================================================
+ − 330 void compass_sleep(void)
+ − 331 {
514
+ − 332 if(hardwareCompass == compass_generation2) //LSM303D
38
+ − 333 compass_sleep_LSM303D();
514
+ − 334 if(hardwareCompass == compass_generation1) //HMC5883L
38
+ − 335 compass_sleep_HMC5883L();
514
+ − 336 if(hardwareCompass == compass_generation3) //LSM303AGR
+ − 337 compass_sleep_LSM303AGR();
38
+ − 338 }
+ − 339
+ − 340
+ − 341 // ===============================================================================
+ − 342 // compass_read
+ − 343 /// @brief reads magnetometer and accelerometer for LSM303D,
+ − 344 /// otherwise magnetometer only
+ − 345 // ===============================================================================
+ − 346 void compass_read(void)
+ − 347 {
357
+ − 348 if(hardwareCompass == compass_generation2) //LSM303D)
38
+ − 349 compass_read_LSM303D();
357
+ − 350 if(hardwareCompass == compass_generation1) //HMC5883L)
38
+ − 351 compass_read_HMC5883L();
357
+ − 352 if(hardwareCompass == compass_generation3) //LSM303AGR)
514
+ − 353 compass_read_LSM303AGR();
357
+ − 354
38
+ − 355 }
+ − 356
+ − 357
+ − 358 // ===============================================================================
+ − 359 // accelerator_init
+ − 360 /// @brief empty for for LSM303D
+ − 361 // ===============================================================================
+ − 362 void accelerator_init(void)
+ − 363 {
357
+ − 364 if(hardwareCompass == compass_generation1) //HMC5883L)
38
+ − 365 accelerator_init_MMA8452Q();
+ − 366 }
+ − 367
+ − 368
+ − 369 // ===============================================================================
+ − 370 // accelerator_sleep
+ − 371 /// @brief empty for for LSM303D
+ − 372 // ===============================================================================
+ − 373 void accelerator_sleep(void)
+ − 374 {
357
+ − 375 if(hardwareCompass == compass_generation1) //HMC5883L)
38
+ − 376 accelerator_sleep_MMA8452Q();
+ − 377 }
+ − 378
+ − 379
+ − 380 // ===============================================================================
+ − 381 // acceleration_read
+ − 382 /// @brief empty for for LSM303D
+ − 383 // ===============================================================================
+ − 384 void acceleration_read(void)
+ − 385 {
357
+ − 386 if(hardwareCompass == compass_generation2) //LSM303D)
38
+ − 387 acceleration_read_LSM303D();
357
+ − 388 if(hardwareCompass == compass_generation1) //HMC5883L)
38
+ − 389 acceleration_read_MMA8452Q();
357
+ − 390 if(hardwareCompass == compass_generation3) //LSM303AGR)
+ − 391 acceleration_read_LSM303AGR();
38
+ − 392 }
+ − 393
+ − 394
+ − 395 /* Private functions ---------------------------------------------------------*/
+ − 396
+ − 397 // ===============================================================================
357
+ − 398 // LSM303AGR_read_reg
+ − 399 // ===============================================================================
+ − 400 uint8_t LSM303AGR_read_reg(uint8_t addr)
+ − 401 {
+ − 402 uint8_t data;
+ − 403
+ − 404 I2C_Master_Transmit( DEVICE_COMPASS_303AGR, &addr, 1);
+ − 405 I2C_Master_Receive( DEVICE_COMPASS_303AGR, &data, 1);
+ − 406 return data;
+ − 407 }
+ − 408
+ − 409
+ − 410 // ===============================================================================
+ − 411 // LSM303AGR_write_reg
+ − 412 // ===============================================================================
+ − 413 void LSM303AGR_write_reg(uint8_t addr, uint8_t value)
+ − 414 {
+ − 415 uint8_t data[2];
+ − 416
+ − 417 data[0] = addr;
+ − 418 data[1] = value;
+ − 419 I2C_Master_Transmit( DEVICE_COMPASS_303AGR, data, 2);
+ − 420 }
+ − 421
+ − 422 // ===============================================================================
+ − 423 // LSM303AGR_acc_write_reg
+ − 424 // ===============================================================================
+ − 425 void LSM303AGR_acc_write_reg(uint8_t addr, uint8_t value)
+ − 426 {
+ − 427 uint8_t data[2];
+ − 428
+ − 429 data[0] = addr;
+ − 430 data[1] = value;
+ − 431 I2C_Master_Transmit( DEVICE_ACCELARATOR_303AGR, data, 2);
+ − 432 }
+ − 433
+ − 434
+ − 435 // ===============================================================================
+ − 436 // LSM303AGR_write_checked_reg
+ − 437 // ===============================================================================
+ − 438 void LSM303AGR_write_checked_reg(uint8_t addr, uint8_t value)
+ − 439 {
+ − 440 LSM303AGR_write_reg(addr, value);
+ − 441 }
+ − 442
+ − 443 // ===============================================================================
+ − 444 // LSM303AGR_acc_write_checked_reg
+ − 445 // ===============================================================================
+ − 446 void LSM303AGR_acc_write_checked_reg(uint8_t addr, uint8_t value)
+ − 447 {
+ − 448 LSM303AGR_acc_write_reg(addr, value);
+ − 449 }
+ − 450
+ − 451 // ===============================================================================
38
+ − 452 // LSM303D_read_reg
+ − 453 // ===============================================================================
+ − 454 uint8_t LSM303D_read_reg(uint8_t addr)
+ − 455 {
+ − 456 uint8_t data;
+ − 457
+ − 458 I2C_Master_Transmit( DEVICE_COMPASS_303D, &addr, 1);
+ − 459 I2C_Master_Receive( DEVICE_COMPASS_303D, &data, 1);
+ − 460 return data;
+ − 461 }
+ − 462
+ − 463
+ − 464 // ===============================================================================
+ − 465 // LSM303D_write_reg
+ − 466 // ===============================================================================
+ − 467 void LSM303D_write_reg(uint8_t addr, uint8_t value)
+ − 468 {
+ − 469 uint8_t data[2];
+ − 470
+ − 471 /* enable accel*/
+ − 472 data[0] = addr;
+ − 473 data[1] = value;
+ − 474 I2C_Master_Transmit( DEVICE_COMPASS_303D, data, 2);
+ − 475 }
+ − 476
+ − 477
+ − 478 // ===============================================================================
+ − 479 // LSM303D_write_checked_reg
+ − 480 // ===============================================================================
+ − 481 void LSM303D_write_checked_reg(uint8_t addr, uint8_t value)
+ − 482 {
+ − 483 LSM303D_write_reg(addr, value);
+ − 484 }
+ − 485
+ − 486
+ − 487 // ===============================================================================
+ − 488 // LSM303D_modify_reg
+ − 489 // ===============================================================================
+ − 490 void LSM303D_modify_reg(unsigned reg, uint8_t clearbits, uint8_t setbits)
+ − 491 {
+ − 492 uint8_t val;
+ − 493
+ − 494 val = LSM303D_read_reg(reg);
+ − 495 val &= ~clearbits;
+ − 496 val |= setbits;
+ − 497 LSM303D_write_checked_reg(reg, val);
+ − 498 }
+ − 499
+ − 500 // ===============================================================================
+ − 501 // LSM303D_accel_set_onchip_lowpass_filter_bandwidth
+ − 502 // ===============================================================================
+ − 503 int LSM303D_accel_set_onchip_lowpass_filter_bandwidth(unsigned bandwidth)
+ − 504 {
+ − 505 uint8_t setbits = 0;
+ − 506 uint8_t clearbits = REG2_ANTIALIAS_FILTER_BW_BITS_A;
+ − 507
+ − 508 if (bandwidth == 0) {
+ − 509 bandwidth = 773;
+ − 510 }
+ − 511
+ − 512 if (bandwidth <= 50) {
+ − 513 setbits |= REG2_AA_FILTER_BW_50HZ_A;
+ − 514 _accel_onchip_filter_bandwith = 50;
+ − 515
+ − 516 } else if (bandwidth <= 194) {
+ − 517 setbits |= REG2_AA_FILTER_BW_194HZ_A;
+ − 518 _accel_onchip_filter_bandwith = 194;
+ − 519
+ − 520 } else if (bandwidth <= 362) {
+ − 521 setbits |= REG2_AA_FILTER_BW_362HZ_A;
+ − 522 _accel_onchip_filter_bandwith = 362;
+ − 523
+ − 524 } else if (bandwidth <= 773) {
+ − 525 setbits |= REG2_AA_FILTER_BW_773HZ_A;
+ − 526 _accel_onchip_filter_bandwith = 773;
+ − 527
+ − 528 } else {
+ − 529 return -1;
+ − 530 }
+ − 531
+ − 532 LSM303D_modify_reg(ADDR_CTRL_REG2, clearbits, setbits);
+ − 533
+ − 534 return 0;
+ − 535 }
+ − 536
+ − 537
+ − 538 // ===============================================================================
+ − 539 // LSM303D_accel_set_driver_lowpass_filter
+ − 540 // ===============================================================================
+ − 541 int LSM303D_accel_set_driver_lowpass_filter(float samplerate, float bandwidth)
+ − 542 {
+ − 543 /*
+ − 544 _accel_filter_x_set_cutoff_frequency(samplerate, bandwidth);
+ − 545 _accel_filter_y_set_cutoff_frequency(samplerate, bandwidth);
+ − 546 _accel_filter_z_set_cutoff_frequency(samplerate, bandwidth);
+ − 547 */
+ − 548 return 0;
+ − 549 }
+ − 550
+ − 551
+ − 552 // rotate_mag_3f: nicht genutzt aber praktisch; rotate_accel_3f wird benutzt
+ − 553 // ===============================================================================
+ − 554 // rotate_mag_3f
+ − 555 /// @brief swap axis in convient way, by hw
+ − 556 /// @param *x raw input is set to *y input
+ − 557 /// @param *y raw input is set to -*x input
+ − 558 /// @param *z raw is not touched
+ − 559 // ===============================================================================
+ − 560 void rotate_mag_3f(float *x, float *y, float *z)
+ − 561 {
+ − 562 return;
+ − 563 /*
+ − 564 *x = *x; // HMC: *x = -*y
+ − 565 *y = *y; // HMC: *y = *x // change 20.04.2016: zuvor *y = -*y
+ − 566 *z = *z; // HMC: *z = *z
+ − 567 */
+ − 568 }
+ − 569
+ − 570
+ − 571 // ===============================================================================
+ − 572 // rotate_accel_3f
+ − 573 /// @brief swap axis in convient way, by hw, same as MMA8452Q
+ − 574 /// @param *x raw input, output is with sign change
+ − 575 /// @param *y raw input, output is with sign change
+ − 576 /// @param *z raw input, output is with sign change
+ − 577 // ===============================================================================
+ − 578 void rotate_accel_3f(float *x, float *y, float *z)
+ − 579 {
+ − 580 *x = -*x;
+ − 581 *y = -*y;
+ − 582 *z = -*z;
+ − 583 /* tested:
+ − 584 x = x, y =-y, z=-z: does not work with roll
+ − 585 x = x, y =y, z=-z: does not work with pitch
+ − 586 x = x, y =y, z=z: does not work at all
+ − 587 */
+ − 588 }
+ − 589
+ − 590
+ − 591 // ===============================================================================
357
+ − 592 // compass_init_LSM303D
38
+ − 593 /// This might be called several times with different gain values during calibration
+ − 594 /// but gain change is not supported at the moment.
+ − 595 ///
+ − 596 /// @param gain: 7 is max gain and set with here, compass_calib() might reduce it
+ − 597 // ===============================================================================
+ − 598
+ − 599 //uint8_t testCompassLS303D[11];
+ − 600
+ − 601 void compass_init_LSM303D(uint8_t fast, uint8_t gain)
+ − 602 {
+ − 603 if(fast == 0)
+ − 604 {
+ − 605 LSM303D_write_checked_reg(ADDR_CTRL_REG0, 0x00);
580
+ − 606 LSM303D_write_checked_reg(ADDR_CTRL_REG1, 0x3F); // mod 12,5 Hz 3 instead of 6,25 Hz 2 BDU and all axis
+ − 607 LSM303D_write_checked_reg(ADDR_CTRL_REG2, 0xC0); // 50Hz anti alias filter
+ − 608 LSM303D_write_checked_reg(ADDR_CTRL_REG3, 0x00); // no interrupts
+ − 609 LSM303D_write_checked_reg(ADDR_CTRL_REG4, 0x00); // no interrupts
+ − 610 LSM303D_write_checked_reg(ADDR_CTRL_REG5, 0x68); // mod 12,5 Hz 8 instead of 6,25 Hz 4 High resolution
38
+ − 611 }
+ − 612 else
+ − 613 {
+ − 614 LSM303D_write_checked_reg(ADDR_CTRL_REG0, 0x00);
+ − 615 LSM303D_write_checked_reg(ADDR_CTRL_REG1, 0x6F); // 100 Hz
+ − 616 LSM303D_write_checked_reg(ADDR_CTRL_REG2, 0xC0);
+ − 617 LSM303D_write_checked_reg(ADDR_CTRL_REG3, 0x00);
+ − 618 LSM303D_write_checked_reg(ADDR_CTRL_REG4, 0x00);
+ − 619 LSM303D_write_checked_reg(ADDR_CTRL_REG5, 0x74); // 100 Hz
+ − 620 }
+ − 621 LSM303D_write_checked_reg(ADDR_CTRL_REG6, 0x00);
+ − 622 LSM303D_write_checked_reg(ADDR_CTRL_REG7, 0x00);
+ − 623
+ − 624 return;
+ − 625 }
+ − 626
+ − 627
+ − 628 // ===============================================================================
+ − 629 // compass_sleep_LSM303D
357
+ − 630 // @brief Gen 2 chip
38
+ − 631 // ===============================================================================
+ − 632 void compass_sleep_LSM303D(void)
+ − 633 {
+ − 634 LSM303D_write_checked_reg(ADDR_CTRL_REG1, 0x00); // CNTRL1: acceleration sensor Power-down mode
+ − 635 LSM303D_write_checked_reg(ADDR_CTRL_REG7, 0x02); // CNTRL7: magnetic sensor Power-down mode
+ − 636 }
+ − 637
+ − 638
+ − 639 // ===============================================================================
+ − 640 // acceleration_read_LSM303D
357
+ − 641 // output is accel_DX_f, accel_DY_f, accel_DZ_f
38
+ − 642 // ===============================================================================
+ − 643 void acceleration_read_LSM303D(void)
+ − 644 {
+ − 645 uint8_t data;
+ − 646 float xraw_f, yraw_f, zraw_f;
+ − 647 float accel_report_x, accel_report_y, accel_report_z;
+ − 648
+ − 649 memset(accDataBuffer,0,6);
+ − 650
+ − 651 accel_DX_f = 0;
+ − 652 accel_DY_f = 0;
+ − 653 accel_DZ_f = 0;
+ − 654
+ − 655 for(int i=0;i<6;i++)
+ − 656 {
+ − 657 data = ADDR_OUT_X_L_A + i;
+ − 658 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
+ − 659 I2C_Master_Receive( DEVICE_COMPASS_303D, &accDataBuffer[i], 1);
+ − 660 }
+ − 661
+ − 662 xraw_f = ((float)( (int16_t)((accDataBuffer[1] << 8) | (accDataBuffer[0]))));
+ − 663 yraw_f = ((float)( (int16_t)((accDataBuffer[3] << 8) | (accDataBuffer[2]))));
+ − 664 zraw_f = ((float)( (int16_t)((accDataBuffer[5] << 8) | (accDataBuffer[4]))));
+ − 665
+ − 666 rotate_accel_3f(&xraw_f, &yraw_f, &zraw_f);
+ − 667
+ − 668 // mh
+ − 669 accel_report_x = xraw_f;
+ − 670 accel_report_y = yraw_f;
+ − 671 accel_report_z = zraw_f;
+ − 672
+ − 673 accel_DX_f = ((int16_t)(accel_report_x));
+ − 674 accel_DY_f = ((int16_t)(accel_report_y));
+ − 675 accel_DZ_f = ((int16_t)(accel_report_z));
+ − 676 }
+ − 677
+ − 678
+ − 679 // ===============================================================================
+ − 680 // compass_read_LSM303D
+ − 681 ///
+ − 682 /// output is compass_DX_f, compass_DY_f, compass_DZ_f
+ − 683 // ===============================================================================
+ − 684 void compass_read_LSM303D(void)
+ − 685 {
+ − 686 uint8_t data;
+ − 687 // float xraw_f, yraw_f, zraw_f;
+ − 688 // float mag_report_x, mag_report_y, mag_report_z;
+ − 689
+ − 690 memset(magDataBuffer,0,6);
+ − 691
+ − 692 compass_DX_f = 0;
+ − 693 compass_DY_f = 0;
+ − 694 compass_DZ_f = 0;
+ − 695
+ − 696 for(int i=0;i<6;i++)
+ − 697 {
+ − 698 data = ADDR_OUT_X_L_M + i;
+ − 699 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
+ − 700 I2C_Master_Receive( DEVICE_COMPASS_303D, &magDataBuffer[i], 1);
+ − 701 }
+ − 702
+ − 703 // mh 160620 flip x and y if flip display
+ − 704 compass_DX_f = (((int16_t)((magDataBuffer[1] << 8) | (magDataBuffer[0]))));
+ − 705 compass_DY_f = (((int16_t)((magDataBuffer[3] << 8) | (magDataBuffer[2]))));
+ − 706 compass_DZ_f = (((int16_t)((magDataBuffer[5] << 8) | (magDataBuffer[4]))));
+ − 707 // no rotation
+ − 708 return;
357
+ − 709 }
+ − 710
+ − 711
+ − 712 // ===============================================================================
+ − 713 // compass_init_LSM303AGR
+ − 714 /// This might be called several times with different gain values during calibration
+ − 715 /// but gain change is not supported at the moment.
+ − 716 ///
+ − 717 /// @param gain: 7 is max gain and set with here, compass_calib() might reduce it
+ − 718 // ===============================================================================
38
+ − 719
357
+ − 720 void compass_init_LSM303AGR(uint8_t fast, uint8_t gain)
+ − 721 {
+ − 722 if(fast == 0)
+ − 723 {
358
+ − 724 // init compass
580
+ − 725 LSM303AGR_write_checked_reg(0x60, 0x80); // CFG_REG_A_M 10Hz continuous measurement
+ − 726 LSM303AGR_write_checked_reg(0x61, 0x03); // CFG_REG_B_M Enable offset cancellation and low pass filter
+ − 727 LSM303AGR_write_checked_reg(0x62, 0x10); // CFG_REG_C_M Avoid incoherence (BDU)
+ − 728 LSM303AGR_write_checked_reg(0x63, 0x00); // INT_CTRL_REG_M No interrupts
358
+ − 729
+ − 730 // init accel (Same chip, but different address...)
+ − 731 LSM303AGR_acc_write_checked_reg(0x1F, 0x00); // TEMP_CFG_REG_A (Temp sensor off)
580
+ − 732 LSM303AGR_acc_write_checked_reg(0x20, 0x27); // CTRL_REG1_A (10Hz, x,y,z = ON, low power mode)
+ − 733 LSM303AGR_acc_write_checked_reg(0x21, 0x00); // CTRL_REG2_A (High pass filter normal mode)
+ − 734 LSM303AGR_acc_write_checked_reg(0x22, 0x00); // CTRL_REG3_A (no interrupts)
+ − 735 LSM303AGR_acc_write_checked_reg(0x23, 0x88); // CTRL_REG4_A, High Resolution Mode enabled, enable BDU
357
+ − 736 }
+ − 737 else
+ − 738 {
358
+ − 739 // init compass
+ − 740 LSM303AGR_write_checked_reg(0x60, 0x84); // 20Hz
357
+ − 741 LSM303AGR_write_checked_reg(0x61, 0x03); // CFG_REG_B_M
+ − 742 LSM303AGR_write_checked_reg(0x62, 0x10); // CFG_REG_C_M
358
+ − 743 LSM303AGR_write_checked_reg(0x63, 0x00); // INT_CTRL_REG_M
+ − 744
+ − 745 // init accel (Same chip, but different address...)
+ − 746 LSM303AGR_acc_write_checked_reg(0x1F, 0x00); // TEMP_CFG_REG_A (Temp sensor off)
580
+ − 747 LSM303AGR_acc_write_checked_reg(0x20, 0x47); // CTRL_REG1_A (50Hz, x,y,z = ON)
358
+ − 748 LSM303AGR_acc_write_checked_reg(0x21, 0x00); // CTRL_REG2_A
+ − 749 LSM303AGR_acc_write_checked_reg(0x22, 0x00); // CTRL_REG3_A
580
+ − 750 LSM303AGR_acc_write_checked_reg(0x23, 0x88); // CTRL_REG4_A, High Resolution Mode enabled
357
+ − 751 }
+ − 752
+ − 753 return;
+ − 754 }
+ − 755
+ − 756
+ − 757 // ===============================================================================
+ − 758 // compass_sleep_LSM303D
+ − 759 // @brief Gen 2 chip
+ − 760 // ===============================================================================
+ − 761 void compass_sleep_LSM303AGR(void)
+ − 762 {
580
+ − 763 LSM303AGR_write_checked_reg(0x60, 0x13); // low power and idle mode
+ − 764 LSM303AGR_write_checked_reg(0x61, 0x04); // pulse only at power on
+ − 765 LSM303AGR_write_checked_reg(0x62, 0x51); // int mag pin used (?), BDU and DRDY is output
+ − 766 LSM303AGR_write_checked_reg(0x63, 0x00); // no interrupts
357
+ − 767
+ − 768
580
+ − 769 LSM303AGR_acc_write_checked_reg(0x1F, 0x00); // temperature off
+ − 770 LSM303AGR_acc_write_checked_reg(0x20, 0x00); // power down
357
+ − 771 }
+ − 772
38
+ − 773
357
+ − 774 // ===============================================================================
+ − 775 // acceleration_read_LSM303AGR
+ − 776 // output is accel_DX_f, accel_DY_f, accel_DZ_f
+ − 777 // ===============================================================================
+ − 778 void acceleration_read_LSM303AGR(void)
+ − 779 {
+ − 780 uint8_t data;
+ − 781 float xraw_f, yraw_f, zraw_f;
+ − 782 float accel_report_x, accel_report_y, accel_report_z;
+ − 783
+ − 784 memset(accDataBuffer,0,6);
+ − 785
+ − 786 accel_DX_f = 0;
+ − 787 accel_DY_f = 0;
+ − 788 accel_DZ_f = 0;
+ − 789
+ − 790 for(int i=0;i<6;i++)
+ − 791 {
358
+ − 792 data = 0x28 + i; // OUT_X_L_A
357
+ − 793 I2C_Master_Transmit( DEVICE_ACCELARATOR_303AGR, &data, 1);
+ − 794 I2C_Master_Receive( DEVICE_ACCELARATOR_303AGR, &accDataBuffer[i], 1);
+ − 795 }
+ − 796
+ − 797 xraw_f = ((float)( (int16_t)((accDataBuffer[1] << 8) | (accDataBuffer[0]))));
+ − 798 yraw_f = ((float)( (int16_t)((accDataBuffer[3] << 8) | (accDataBuffer[2]))));
+ − 799 zraw_f = ((float)( (int16_t)((accDataBuffer[5] << 8) | (accDataBuffer[4]))));
+ − 800
+ − 801 rotate_accel_3f(&xraw_f, &yraw_f, &zraw_f);
+ − 802
+ − 803 // mh
+ − 804 accel_report_x = xraw_f;
+ − 805 accel_report_y = yraw_f;
358
+ − 806 accel_report_z = -zraw_f; // flip Z in gen 2 hardware
357
+ − 807
+ − 808 accel_DX_f = ((int16_t)(accel_report_x));
+ − 809 accel_DY_f = ((int16_t)(accel_report_y));
+ − 810 accel_DZ_f = ((int16_t)(accel_report_z));
+ − 811 }
+ − 812
+ − 813
+ − 814 // ===============================================================================
+ − 815 // compass_read_LSM303AGR
+ − 816 ///
+ − 817 /// output is compass_DX_f, compass_DY_f, compass_DZ_f
+ − 818 // ===============================================================================
+ − 819 void compass_read_LSM303AGR(void)
+ − 820 {
+ − 821 uint8_t data;
+ − 822 // float xraw_f, yraw_f, zraw_f;
+ − 823 // float mag_report_x, mag_report_y, mag_report_z;
+ − 824
+ − 825 memset(magDataBuffer,0,6);
+ − 826
+ − 827 compass_DX_f = 0;
+ − 828 compass_DY_f = 0;
+ − 829 compass_DZ_f = 0;
+ − 830
+ − 831 for(int i=0;i<6;i++)
+ − 832 {
+ − 833 data = 0x68 + i; // OUTX_L_REG_M
+ − 834 I2C_Master_Transmit( DEVICE_COMPASS_303AGR, &data, 1);
+ − 835 I2C_Master_Receive( DEVICE_COMPASS_303AGR, &magDataBuffer[i], 1);
+ − 836 }
+ − 837
+ − 838 // mh 160620 flip x and y if flip display
+ − 839 compass_DX_f = (((int16_t)((magDataBuffer[1] << 8) | (magDataBuffer[0]))));
+ − 840 compass_DY_f = (((int16_t)((magDataBuffer[3] << 8) | (magDataBuffer[2]))));
+ − 841 compass_DZ_f = (((int16_t)((magDataBuffer[5] << 8) | (magDataBuffer[4]))));
358
+ − 842
+ − 843 // align axis in gen 2 hardware
+ − 844 compass_DZ_f *= -1;
+ − 845
357
+ − 846 return;
38
+ − 847 }
+ − 848
+ − 849
+ − 850 // --------------------------------------------------------------------------------
+ − 851 // ----------EARLIER COMPONENTS ---------------------------------------------------
+ − 852 // --------------------------------------------------------------------------------
+ − 853
+ − 854 // ===============================================================================
+ − 855 // compass_init_HMC5883L
+ − 856 /// @brief The horrible Honeywell compass chip
+ − 857 /// This might be called several times during calibration
+ − 858 ///
+ − 859 /// @param fast: 1 is fast mode, 0 is normal mode
+ − 860 /// @param gain: 7 is max gain and set with here, compass_calib() might reduce it
+ − 861 // ===============================================================================
+ − 862 void compass_init_HMC5883L(uint8_t fast, uint8_t gain)
+ − 863 {
+ − 864 uint8_t write_buffer[4];
+ − 865
+ − 866 compass_gain = gain;
+ − 867 uint16_t length = 0;
+ − 868 write_buffer[0] = 0x00; // 00 = config Register A
+ − 869
+ − 870 if( fast )
+ − 871 write_buffer[1] = 0x38; // 0b 0011 1000; // ConfigA: 75Hz, 2 Samples averaged
+ − 872 else
+ − 873 write_buffer[1] = 0x68; // 0b 0110 1000; // ConfigA: 3Hz, 8 Samples averaged
+ − 874
+ − 875 switch(gain)
+ − 876 {
+ − 877 case 7:
+ − 878 write_buffer[2] = 0xE0; //0b 1110 0000; // ConfigB: gain
+ − 879 break;
+ − 880 case 6:
+ − 881 write_buffer[2] = 0xC0; //0b 1100 0000; // ConfigB: gain
+ − 882 break;
+ − 883 case 5:
+ − 884 write_buffer[2] = 0xA0; //0b 1010 0000; // ConfigB: gain
+ − 885 break;
+ − 886 case 4:
+ − 887 write_buffer[2] = 0x80; //0b 1000 0000; // ConfigB: gain
+ − 888 break;
+ − 889 case 3:
+ − 890 write_buffer[2] = 0x60; //0b 0110 0000; // ConfigB: gain
+ − 891 break;
+ − 892 case 2:
+ − 893 write_buffer[2] = 0x40; //0b 01000 0000; // ConfigB: gain
+ − 894 break;
+ − 895 case 1:
+ − 896 write_buffer[2] = 0x20; //0b 00100 0000; // ConfigB: gain
+ − 897 break;
+ − 898 case 0:
+ − 899 write_buffer[2] = 0x00; //0b 00000 0000; // ConfigB: gain
+ − 900 break;
+ − 901 }
+ − 902 write_buffer[3] = 0x00; // Mode: continuous mode
+ − 903 length = 4;
+ − 904 //hmc_twi_write(0);
+ − 905 I2C_Master_Transmit( DEVICE_COMPASS_HMC5883L, write_buffer, length);
+ − 906 }
+ − 907
+ − 908
+ − 909
+ − 910 // ===============================================================================
+ − 911 // compass_sleep_HMC5883L
+ − 912 /// @brief Power-down mode for Honeywell compass chip
+ − 913 // ===============================================================================
+ − 914 void compass_sleep_HMC5883L(void)
+ − 915 {
+ − 916 uint8_t write_buffer[4];
+ − 917 uint16_t length = 0;
+ − 918
+ − 919 write_buffer[0] = 0x00; // 00 = config Register A
+ − 920 write_buffer[1] = 0x68; // 0b 0110 1000; // ConfigA
+ − 921 write_buffer[2] = 0x20; // 0b 0010 0000; // ConfigB
+ − 922 write_buffer[3] = 0x02; // 0b 0000 0010; // Idle Mode
+ − 923 length = 4;
+ − 924 I2C_Master_Transmit( DEVICE_COMPASS_HMC5883L, write_buffer, length);
+ − 925 }
+ − 926
+ − 927
+ − 928 // ===============================================================================
+ − 929 // accelerator_init_MMA8452Q
+ − 930 /// @brief Power-down mode for acceleration chip used in combination with Honeywell compass
+ − 931 // ===============================================================================
+ − 932 void accelerator_init_MMA8452Q(void)
+ − 933 {
+ − 934 uint8_t write_buffer[4];
+ − 935 uint16_t length = 0;
+ − 936 //HAL_Delay(1);
+ − 937 //return;
+ − 938 write_buffer[0] = 0x0E; // XYZ_DATA_CFG
+ − 939 write_buffer[1] = 0x00;//0b00000000; // High pass Filter=0 , +/- 2g range
+ − 940 length = 2;
+ − 941 I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, write_buffer, length);
+ − 942 //HAL_Delay(1);
+ − 943 write_buffer[0] = 0x2A; // CTRL_REG1
+ − 944 write_buffer[1] = 0x34; //0b00110100; // CTRL_REG1: 160ms data rate, St.By Mode, reduced noise mode
+ − 945 write_buffer[2] = 0x02; //0b00000010; // CTRL_REG2: High Res in Active mode
+ − 946 length = 3;
+ − 947 I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, write_buffer, length);
+ − 948
+ − 949 //HAL_Delay(1);
+ − 950 //hw_delay_us(100);
+ − 951 write_buffer[0] = 0x2A; // CTRL_REG1
+ − 952 write_buffer[1] = 0x35; //0b00110101; // CTRL_REG1: ... Active Mode
+ − 953 length = 2;
+ − 954 I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, write_buffer, length);
+ − 955 /*
+ − 956 HAL_Delay(6);
+ − 957 compass_read();
+ − 958 HAL_Delay(1);
+ − 959 acceleration_read();
+ − 960
+ − 961 compass_calc();
+ − 962 */
+ − 963 }
+ − 964
+ − 965
+ − 966 // ===============================================================================
+ − 967 // accelerator_sleep_MMA8452Q
+ − 968 /// @brief compass_sleep_HMC5883L
+ − 969 // ===============================================================================
+ − 970 void accelerator_sleep_MMA8452Q(void)
+ − 971 {
+ − 972 uint16_t length = 0;
+ − 973 uint8_t write_buffer[4];
+ − 974
+ − 975 write_buffer[0] = 0x2A; // CTRL_REG1
+ − 976 write_buffer[1] = 0x00; //0b00000000; // CTRL_REG1: Standby Mode
+ − 977 length = 2;
+ − 978 I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, write_buffer, length);
+ − 979 }
+ − 980
+ − 981
+ − 982 // ===============================================================================
+ − 983 // compass_read_HMC5883L
+ − 984 /// @brief The new ST 303D - get ALL data and store in static variables
+ − 985 ///
+ − 986 /// output is compass_DX_f, compass_DY_f, compass_DZ_f
+ − 987 // ===============================================================================
+ − 988 void compass_read_HMC5883L(void)
+ − 989 {
+ − 990 uint8_t buffer[20];
+ − 991 compass_DX_f = 0;
+ − 992 compass_DY_f = 0;
+ − 993 compass_DZ_f = 0;
+ − 994 uint8_t length = 0;
+ − 995 uint8_t read_buffer[6];
+ − 996 signed_tword data;
+ − 997 for(int i = 0; i<6;i++)
+ − 998 read_buffer[i] = 0;
+ − 999 buffer[0] = 0x03; // 03 = Data Output X MSB Register
+ − 1000 length = 1;
+ − 1001 I2C_Master_Transmit( DEVICE_COMPASS_HMC5883L, buffer, length);
+ − 1002 length = 6;
+ − 1003 I2C_Master_Receive( DEVICE_COMPASS_HMC5883L, read_buffer, length);
+ − 1004
+ − 1005
+ − 1006 data.Byte.hi = read_buffer[0];
+ − 1007 data.Byte.low = read_buffer[1];
+ − 1008 //Y = Z
+ − 1009 compass_DY_f = - data.Word;
+ − 1010
+ − 1011 data.Byte.hi = read_buffer[2];
+ − 1012 data.Byte.low = read_buffer[3];
+ − 1013 compass_DZ_f = data.Word;
+ − 1014
+ − 1015 data.Byte.hi = read_buffer[4];
+ − 1016 data.Byte.low = read_buffer[5];
+ − 1017 //X = -Y
+ − 1018 compass_DX_f = data.Word;
+ − 1019 }
+ − 1020
+ − 1021
+ − 1022 // ===============================================================================
+ − 1023 // acceleration_read_MMA8452Q
+ − 1024 /// @brief The old MMA8452Q used with the Honeywell compass
+ − 1025 /// get the acceleration data and store in static variables
+ − 1026 ///
+ − 1027 /// output is accel_DX_f, accel_DY_f, accel_DZ_f
+ − 1028 // ===============================================================================
+ − 1029 void acceleration_read_MMA8452Q(void)
+ − 1030 {
+ − 1031 uint8_t buffer[20];
+ − 1032 accel_DX_f = 0;
+ − 1033 accel_DY_f = 0;
+ − 1034 accel_DZ_f = 0;
+ − 1035 uint8_t length = 0;
+ − 1036 // bit8_Type status ;
+ − 1037 uint8_t read_buffer[7];
+ − 1038 signed_tword data;
+ − 1039 for(int i = 0; i<6;i++)
+ − 1040 read_buffer[i] = 0;
+ − 1041 buffer[0] = 0x00; // 03 = Data Output X MSB Register
+ − 1042 length = 1;
+ − 1043 I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, buffer, length);
+ − 1044 length = 7;
+ − 1045 I2C_Master_Receive( DEVICE_ACCELARATOR_MMA8452Q, read_buffer, length);
+ − 1046
+ − 1047 // status.uw = read_buffer[0];
+ − 1048 data.Byte.hi = read_buffer[1];
+ − 1049 data.Byte.low = read_buffer[2];
+ − 1050 accel_DX_f =data.Word/16;
+ − 1051 data.Byte.hi = read_buffer[3];
+ − 1052 data.Byte.low = read_buffer[4];
+ − 1053 accel_DY_f =data.Word/16;
+ − 1054 data.Byte.hi = read_buffer[5];
+ − 1055 data.Byte.low = read_buffer[6];
+ − 1056 accel_DZ_f =data.Word/16;
+ − 1057
+ − 1058 accel_DX_f *= -1;
+ − 1059 accel_DY_f *= -1;
+ − 1060 accel_DZ_f *= -1;
+ − 1061 }
+ − 1062
+ − 1063
+ − 1064 // ===============================================================================
+ − 1065 // compass_calc_roll_pitch_only
+ − 1066 /// @brief only the roll and pitch parts of compass_calc()
+ − 1067 ///
+ − 1068 /// input is accel_DX_f, accel_DY_f, accel_DZ_f
+ − 1069 /// output is compass_pitch and compass_roll
+ − 1070 // ===============================================================================
+ − 1071 void compass_calc_roll_pitch_only(void)
+ − 1072 {
+ − 1073 float sinPhi, cosPhi;
+ − 1074 float Phi, Teta;
+ − 1075
+ − 1076 //---- Calculate sine and cosine of roll angle Phi -----------------------
+ − 1077 Phi= atan2f(accel_DY_f, accel_DZ_f) ;
+ − 1078 compass_roll = Phi * 180.0f /PI;
+ − 1079 sinPhi = sinf(Phi);
+ − 1080 cosPhi = cosf(Phi);
+ − 1081
+ − 1082 //---- calculate sin and cosine of pitch angle Theta ---------------------
+ − 1083 Teta = atanf(-(float)accel_DX_f/(accel_DY_f * sinPhi + accel_DZ_f * cosPhi));
+ − 1084 compass_pitch = Teta * 180.0f /PI;
+ − 1085 }
+ − 1086
+ − 1087
+ − 1088 // ===============================================================================
+ − 1089 // compass_calc
+ − 1090 /// @brief all the fancy stuff first implemented in OSTC3
+ − 1091 ///
+ − 1092 /// input is compass_DX_f, compass_DY_f, compass_DZ_f, accel_DX_f, accel_DY_f, accel_DZ_f
+ − 1093 /// and compass_CX_f, compass_CY_f, compass_CZ_f
+ − 1094 /// output is compass_heading, compass_pitch and compass_roll
+ − 1095 // ===============================================================================
+ − 1096 void compass_calc(void)
+ − 1097 {
+ − 1098 float sinPhi, cosPhi, sinTeta, cosTeta;
+ − 1099 float Phi, Teta, Psi;
+ − 1100 int16_t iBfx, iBfy;
+ − 1101 int16_t iBpx, iBpy, iBpz;
+ − 1102
+ − 1103 //---- Make hard iron correction -----------------------------------------
+ − 1104 // Measured magnetometer orientation, measured ok.
+ − 1105 // From matthias drawing: (X,Y,Z) --> (X,Y,Z) : no rotation.
+ − 1106 iBpx = compass_DX_f - compass_CX_f; // X
+ − 1107 iBpy = compass_DY_f - compass_CY_f; // Y
+ − 1108 iBpz = compass_DZ_f - compass_CZ_f; // Z
+ − 1109
+ − 1110 //---- Calculate sine and cosine of roll angle Phi -----------------------
+ − 1111 //sincos(accel_DZ_f, accel_DY_f, &sin, &cos);
+ − 1112 Phi= atan2f(accel_DY_f, accel_DZ_f) ;
+ − 1113 compass_roll = Phi * 180.0f /PI;
+ − 1114 sinPhi = sinf(Phi);
+ − 1115 cosPhi = cosf(Phi);
+ − 1116
+ − 1117 //---- rotate by roll angle (-Phi) ---------------------------------------
+ − 1118 iBfy = iBpy * cosPhi - iBpz * sinPhi;
+ − 1119 iBpz = iBpy * sinPhi + iBpz * cosPhi;
+ − 1120 //Gz = imul(accel_DY_f, sin) + imul(accel_DZ_f, cos);
+ − 1121
+ − 1122 //---- calculate sin and cosine of pitch angle Theta ---------------------
+ − 1123 //sincos(Gz, -accel_DX_f, &sin, &cos); // NOTE: changed sin sign.
+ − 1124 // Teta takes into account roll of computer and sends combination of Y and Z :-) understand now hw 160421
+ − 1125 Teta = atanf(-(float)accel_DX_f/(accel_DY_f * sinPhi + accel_DZ_f * cosPhi));
+ − 1126 compass_pitch = Teta * 180.0f /PI;
+ − 1127 sinTeta = sinf(Teta);
+ − 1128 cosTeta = cosf(Teta);
+ − 1129 /* correct cosine if pitch not in range -90 to 90 degrees */
+ − 1130 if( cosTeta < 0 ) cosTeta = -cosTeta;
+ − 1131
+ − 1132 ///---- de-rotate by pitch angle Theta -----------------------------------
+ − 1133 iBfx = iBpx * cosTeta + iBpz * sinTeta;
+ − 1134
+ − 1135 //---- Detect uncalibrated compass ---------------------------------------
+ − 1136 if( !compass_CX_f && !compass_CY_f && !compass_CZ_f )
+ − 1137 {
+ − 1138 compass_heading = -1;
+ − 1139 return;
+ − 1140 }
+ − 1141
+ − 1142 //---- calculate current yaw = e-compass angle Psi -----------------------
+ − 1143 // Result in degree (no need of 0.01 deg precision...
+ − 1144 Psi = atan2f(-iBfy,iBfx);
+ − 1145 compass_heading = Psi * 180.0f /PI;
+ − 1146 // Result in 0..360 range:
+ − 1147 if( compass_heading < 0 )
+ − 1148 compass_heading += 360;
+ − 1149 }
+ − 1150
+ − 1151
+ − 1152 // //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+ − 1153 // // - Calibration - ///////////////////////////////////////////////////////////////////////////////////////////////////////
+ − 1154 // //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+ − 1155
+ − 1156 /* can be lost during sleep as those are reset with compass_reset_calibration() */
+ − 1157
+ − 1158 // ===============================================================================
+ − 1159 // compass_reset_calibration
+ − 1160 /// @brief all the fancy stuff first implemented in OSTC3
+ − 1161 ///
+ − 1162 /// output is struct g and compass_CX_f, compass_CY_f, compass_CZ_f
+ − 1163 ///
+ − 1164 /// @param g: is a struct with crazy stuff like Suuu, Svvv, Svvu, etc.
+ − 1165 /// all is set to zero here
+ − 1166 // ===============================================================================
+ − 1167 void compass_reset_calibration(SCompassCalib *g)
+ − 1168 {
+ − 1169 g->compass_N = 0;
+ − 1170 g->Su = g->Sv = g->Sw = 0.0;
+ − 1171 g->Suu = g->Svv = g->Sww = g->Suv = g->Suw = g->Svw = 0.0;
+ − 1172 g->Suuu = g->Svvv = g->Swww = 0.0;
+ − 1173 g->Suuv = g->Suuw = g->Svvu = g->Svvw = g->Swwu = g->Swwv = 0.0;
+ − 1174 compass_CX_f = compass_CY_f = compass_CZ_f = 0.0;
+ − 1175 }
+ − 1176
+ − 1177
+ − 1178 // ===============================================================================
+ − 1179 // compass_add_calibration
+ − 1180 /// @brief all the fancy stuff first implemented in OSTC3
+ − 1181 ///
+ − 1182 /// input is compass_DX_f, compass_DY_f, compass_DZ_f
+ − 1183 /// and compass_CX_f, compass_CY_f, compass_CZ_f
+ − 1184 /// output is struct g
+ − 1185 ///
+ − 1186 /// @param g: is a struct with crazy stuff like Suuu, Svvv, Svvu, etc.
+ − 1187 // ===============================================================================
+ − 1188 void compass_add_calibration(SCompassCalib *g)
+ − 1189 {
+ − 1190 float u, v, w;
+ − 1191
+ − 1192 u = (compass_DX_f - compass_CX_f) / 32768.0f;
+ − 1193 v = (compass_DY_f - compass_CY_f) / 32768.0f;
+ − 1194 w = (compass_DZ_f - compass_CZ_f) / 32768.0f;
+ − 1195
+ − 1196 g->compass_N++;
+ − 1197 g->Su += u;
+ − 1198 g->Sv += v;
+ − 1199 g->Sw += w;
+ − 1200 g->Suv += u*v;
+ − 1201 g->Suw += u*w;
+ − 1202 g->Svw += v*w;
+ − 1203 g->Suu += u*u;
+ − 1204 g->Suuu += u*u*u;
+ − 1205 g->Suuv += v*u*u;
+ − 1206 g->Suuw += w*u*u;
+ − 1207 g->Svv += v*v;
+ − 1208 g->Svvv += v*v*v;
+ − 1209 g->Svvu += u*v*v;
+ − 1210 g->Svvw += w*v*v;
+ − 1211 g->Sww += w*w;
+ − 1212 g->Swww += w*w*w;
+ − 1213 g->Swwu += u*w*w;
+ − 1214 g->Swwv += v*w*w;
+ − 1215 }
+ − 1216
+ − 1217 //////////////////////////////////////////////////////////////////////////////
+ − 1218
+ − 1219 // ===============================================================================
+ − 1220 // compass_solve_calibration
+ − 1221 /// @brief all the fancy stuff first implemented in OSTC3
+ − 1222 ///
+ − 1223 /// input is compass_CX_f, compass_CY_f, compass_CZ_f and g
+ − 1224 /// output is struct g
+ − 1225 ///
+ − 1226 /// @param g: is a struct with crazy stuff like Suuu, Svvv, Svvu, etc.
+ − 1227 // ===============================================================================
+ − 1228 void compass_solve_calibration(SCompassCalib *g)
+ − 1229 {
+ − 1230 float yu, yv, yw;
+ − 1231 float delta;
+ − 1232 float uc, vc, wc;
+ − 1233
+ − 1234
+ − 1235 //---- Normalize partial sums --------------------------------------------
+ − 1236 //
+ − 1237 // u, v, w should be centered on the mean value um, vm, wm:
+ − 1238 // x = u + um, with um = Sx/N
+ − 1239 //
+ − 1240 // So:
+ − 1241 // (u + um)**2 = u**2 + 2u*um + um**2
+ − 1242 // Su = 0, um = Sx/N
+ − 1243 // Sxx = Suu + 2 um Su + N*(Sx/N)**2 = Suu + Sx**2/N
+ − 1244 // Suu = Sxx - Sx**2/N
+ − 1245 yu = g->Su/g->compass_N;
+ − 1246 yv = g->Sv/g->compass_N;
+ − 1247 yw = g->Sw/g->compass_N;
+ − 1248
+ − 1249 g->Suu -= g->Su*yu;
+ − 1250 g->Svv -= g->Sv*yv;
+ − 1251 g->Sww -= g->Sw*yw;
+ − 1252
+ − 1253 // (u + um)(v + vm) = uv + u vm + v um + um vm
+ − 1254 // Sxy = Suv + N * um vm
+ − 1255 // Suv = Sxy - N * (Sx/N)(Sy/N);
+ − 1256 g->Suv -= g->Su*yv;
+ − 1257 g->Suw -= g->Su*yw;
+ − 1258 g->Svw -= g->Sv*yw;
+ − 1259
+ − 1260 // (u + um)**3 = u**3 + 3 u**2 um + 3 u um**2 + um**3
+ − 1261 // Sxxx = Suuu + 3 um Suu + 3 um**2 Su + N.um**3
+ − 1262 // Su = 0, um = Sx/N:
+ − 1263 // Suuu = Sxxx - 3 Sx*Suu/N - N.(Sx/N)**3
+ − 1264 // = Sxxx - 3 Sx*Suu/N - Sx**3/N**2
+ − 1265
+ − 1266 // (u + um)**2 (v + vm) = (u**2 + 2 u um + um**2)(v + vm)
+ − 1267 // Sxxy = Suuv + vm Suu + 2 um (Suv + vm Su) + um**2 (Sv + N.vm)
+ − 1268 //
+ − 1269 // Su = 0, Sv = 0, vm = Sy/N:
+ − 1270 // Sxxy = Suuv + vm Suu + 2 um Suv + N um**2 vm
+ − 1271 //
+ − 1272 // Suuv = Sxxy - (Sy/N) Suu - 2 (Sx/N) Suv - (Sx/N)**2 Sy
+ − 1273 // = Sxxy - Suu*Sy/N - 2 Suv*Sx/N - Sx*Sx*Sy/N/N
+ − 1274 // = Sxxy - (Suu + Sx*Sx/N)*Sy/N - 2 Suv*Sx/N
+ − 1275 g->Suuu -= (3*g->Suu + g->Su*yu)*yu;
+ − 1276 g->Suuv -= (g->Suu + g->Su*yu)*yv + 2*g->Suv*yu;
+ − 1277 g->Suuw -= (g->Suu + g->Su*yu)*yw + 2*g->Suw*yu;
+ − 1278
+ − 1279 g->Svvu -= (g->Svv + g->Sv*yv)*yu + 2*g->Suv*yv;
+ − 1280 g->Svvv -= (3*g->Svv + g->Sv*yv)*yv;
+ − 1281 g->Svvw -= (g->Svv + g->Sv*yv)*yw + 2*g->Svw*yv;
+ − 1282
+ − 1283 g->Swwu -= (g->Sww + g->Sw*yw)*yu + 2*g->Suw*yw;
+ − 1284 g->Swwv -= (g->Sww + g->Sw*yw)*yv + 2*g->Svw*yw;
+ − 1285 g->Swww -= (3*g->Sww + g->Sw*yw)*yw;
+ − 1286
+ − 1287 //---- Solve the system --------------------------------------------------
+ − 1288 // uc Suu + vc Suv + wc Suw = (Suuu + Svvu + Swwu) / 2
+ − 1289 // uc Suv + vc Svv + wc Svw = (Suuv + Svvv + Swwv) / 2
+ − 1290 // uc Suw + vc Svw + wc Sww = (Suuw + Svvw + Swww) / 2
+ − 1291 // Note this is symetric, with a positiv diagonal, hence
+ − 1292 // it always have a uniq solution.
+ − 1293 yu = 0.5f * (g->Suuu + g->Svvu + g->Swwu);
+ − 1294 yv = 0.5f * (g->Suuv + g->Svvv + g->Swwv);
+ − 1295 yw = 0.5f * (g->Suuw + g->Svvw + g->Swww);
+ − 1296 delta = g->Suu * (g->Svv * g->Sww - g->Svw * g->Svw)
+ − 1297 - g->Suv * (g->Suv * g->Sww - g->Svw * g->Suw)
+ − 1298 + g->Suw * (g->Suv * g->Svw - g->Svv * g->Suw);
+ − 1299
+ − 1300 uc = (yu * (g->Svv * g->Sww - g->Svw * g->Svw)
+ − 1301 - yv * (g->Suv * g->Sww - g->Svw * g->Suw)
+ − 1302 + yw * (g->Suv * g->Svw - g->Svv * g->Suw) )/delta;
+ − 1303 vc = (g->Suu * ( yv * g->Sww - yw * g->Svw)
+ − 1304 - g->Suv * ( yu * g->Sww - yw * g->Suw)
+ − 1305 + g->Suw * ( yu * g->Svw - yv * g->Suw) )/delta;
+ − 1306 wc = (g->Suu * (g->Svv * yw - g->Svw * yv )
+ − 1307 - g->Suv * (g->Suv * yw - g->Svw * yu )
+ − 1308 + g->Suw * (g->Suv * yv - g->Svv * yu ) )/delta;
+ − 1309
+ − 1310 // Back to uncentered coordinates:
+ − 1311 // xc = um + uc
+ − 1312 uc = g->Su/g->compass_N + compass_CX_f/32768.0f + uc;
+ − 1313 vc = g->Sv/g->compass_N + compass_CY_f/32768.0f + vc;
+ − 1314 wc = g->Sw/g->compass_N + compass_CZ_f/32768.0f + wc;
+ − 1315
+ − 1316 // Then save the new calibrated center:
+ − 1317 compass_CX_f = (short)(32768 * uc);
+ − 1318 compass_CY_f = (short)(32768 * vc);
+ − 1319 compass_CZ_f = (short)(32768 * wc);
+ − 1320 }
+ − 1321
+ − 1322
+ − 1323 // ===============================================================================
+ − 1324 // compass_calib
+ − 1325 /// @brief the main loop for calibration
+ − 1326 /// output is compass_CX_f, compass_CY_f, compass_CZ_f and g
+ − 1327 /// 160704 removed -4096 limit for LSM303D
+ − 1328 ///
+ − 1329 /// @return always 0
+ − 1330 // ===============================================================================
+ − 1331 int compass_calib_common(void)
+ − 1332 {
410
+ − 1333 SCompassCalib g;
38
+ − 1334
+ − 1335 // Starts with no calibration at all:
410
+ − 1336 compass_reset_calibration(&g);
+ − 1337 uint32_t tickstart = 0;
+ − 1338 tickstart = HAL_GetTick();
+ − 1339 /* run calibration for one minute */
+ − 1340 while(time_elapsed_ms(tickstart,HAL_GetTick()) < 60000)
38
+ − 1341 {
410
+ − 1342 while((SPI_Evaluate_RX_Data() == 0) && (time_elapsed_ms(tickstart,HAL_GetTick()) < 60000))
+ − 1343 {
+ − 1344 HAL_Delay(1);
+ − 1345 }
+ − 1346 compass_read();
+ − 1347 acceleration_read();
+ − 1348 compass_calc_roll_pitch_only();
38
+ − 1349
410
+ − 1350 if((hardwareCompass == compass_generation1 ) //HMC5883L)
38
+ − 1351 &&((compass_DX_f == -4096) ||
410
+ − 1352 (compass_DY_f == -4096) ||
+ − 1353 (compass_DZ_f == -4096) ))
+ − 1354 {
+ − 1355 if(compass_gain == 0)
+ − 1356 return -1;
+ − 1357 compass_gain--;
+ − 1358 compass_init(1, compass_gain);
+ − 1359 compass_reset_calibration(&g);
+ − 1360 continue;
+ − 1361 }
38
+ − 1362
410
+ − 1363 copyCompassDataDuringCalibration(compass_DX_f,compass_DY_f,compass_DZ_f);
+ − 1364 compass_add_calibration(&g);
104
+ − 1365 }
38
+ − 1366
+ − 1367 compass_solve_calibration(&g);
+ − 1368
571
+ − 1369 if((hardwareCompass != compass_generation_undef) /* if compass is not know at this point in time storing data makes no sense */
+ − 1370 && (hardwareCompass != COMPASS_NOT_RECOGNIZED))
+ − 1371 {
+ − 1372 tfull32 dataBlock[4];
+ − 1373 dataBlock[0].Word16.low16 = compass_CX_f;
+ − 1374 dataBlock[0].Word16.hi16 = compass_CY_f;
+ − 1375 dataBlock[1].Word16.low16 = compass_CZ_f;
+ − 1376 dataBlock[1].Word16.hi16 = hardwareCompass;
+ − 1377 dataBlock[2].Full32 = 0x7FFFFFFF;
+ − 1378 dataBlock[3].Word16.low16 = 0xFFFF;
+ − 1379 dataBlock[3].Word16.hi16 = BFA_calc_Block_Checksum(dataBlock);
+ − 1380 BFA_writeDataBlock(dataBlock);
+ − 1381 }
410
+ − 1382 return 0;
38
+ − 1383 }
+ − 1384