Mercurial > public > ostc4
annotate Discovery/Src/vpm.c @ 1017:5924a2d1d3ba GasConsumption
Prepare custom block update function:
In the flash area of the font lib some sectors may be used for custom data or a boot updater image. With this change a flash option is added to the maintainance menu.
IMPORTANT: The fimwareEraseProgram.c is needed for compiling the firmware now => Add it e.g. by adding a link from the OtherSources location to your source folder.
| author | Ideenmodellierer |
|---|---|
| date | Thu, 29 May 2025 22:04:46 +0200 |
| parents | 22d5b477c903 |
| children | d91345e9c009 |
| rev | line source |
|---|---|
| 38 | 1 /////////////////////////////////////////////////////////////////////////////// |
| 2 /// -*- coding: UTF-8 -*- | |
| 3 /// | |
| 4 /// \file Discovery/Src/vpm.c | |
| 5 /// \brief critical_volume comment by hw | |
| 6 /// \author Heinrichs Weikamp, Erik C. Baker | |
| 7 /// \date 19-April-2014 | |
| 8 /// | |
| 9 /// \details | |
| 10 /// | |
| 11 /// $Id$ | |
| 12 /////////////////////////////////////////////////////////////////////////////// | |
| 13 /// \par Copyright (c) 2014-2018 Heinrichs Weikamp gmbh | |
| 14 /// | |
| 15 /// This program is free software: you can redistribute it and/or modify | |
| 16 /// it under the terms of the GNU General Public License as published by | |
| 17 /// the Free Software Foundation, either version 3 of the License, or | |
| 18 /// (at your option) any later version. | |
| 19 /// | |
| 20 /// This program is distributed in the hope that it will be useful, | |
| 21 /// but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| 22 /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| 23 /// GNU General Public License for more details. | |
| 24 /// | |
| 25 /// You should have received a copy of the GNU General Public License | |
| 26 /// along with this program. If not, see <http://www.gnu.org/licenses/>. | |
| 27 ////////////////////////////////////////////////////////////////////////////// | |
| 28 /// \par Varying Permeability Model (VPM) Decompression Program in c (converted from FORTRAN) | |
| 29 /// | |
| 30 /// Author: Erik C. Baker | |
| 31 /// | |
| 32 /// "DISTRIBUTE FREELY - CREDIT THE AUTHORS" | |
| 33 /// | |
| 34 /// This program extends the 1986 VPM algorithm (Yount & Hoffman) to include | |
| 35 /// mixed gas, repetitive, and altitude diving. Developments to the algorithm | |
| 36 /// were made by David E. Yount, Eric B. Maiken, and Erik C. Baker over a | |
| 37 /// period from 1999 to 2001. This work is dedicated in remembrance of | |
| 38 /// Professor David E. Yount who passed away on April 27, 2000. | |
| 39 /// | |
| 40 /// Notes: | |
| 41 /// 1. This program uses the sixteen (16) half-time compartments of the | |
| 42 /// Buhlmann ZH-L16 model. The optional Compartment 1b is used here with | |
| 43 /// half-times of 1.88 minutes for helium and 5.0 minutes for nitrogen. | |
| 44 /// | |
| 45 /// 2. This program uses various DEC, IBM, and Microsoft extensions which | |
| 46 /// may not be supported by all FORTRAN compilers. Comments are made with | |
| 47 /// a capital "C" in the first column or an exclamation point "!" placed | |
| 48 /// in a line after code. An asterisk "*" in column 6 is a continuation | |
| 49 /// of the previous line. All code, except for line numbers, starts in | |
| 50 /// column 7. | |
| 51 /// | |
| 52 /// 3. Comments and suggestions for improvements are welcome. Please | |
| 53 /// respond by e-mail to: EBaker@se.aeieng.com | |
| 54 /// | |
| 55 /// Acknowledgment: Thanks to Kurt Spaugh for recommendations on how to clean | |
| 56 /// up the code. | |
| 57 /// =============================================================================== | |
| 58 /// Converted to vpmdeco.c using f2c; R.McGinnis (CABER Swe) 5/01 | |
| 59 /// =============================================================================== | |
| 60 /// | |
| 61 /// ************************ Heirichs Weipkamp ************************************** | |
| 62 /// | |
| 63 /// The original Yount & Baker code has been adjusted for real life calculation. | |
| 64 /// | |
| 65 /// 1) The original main function has been split in several functions | |
| 66 /// | |
| 67 /// 2) When the deco zone is reached (while ascending) the gradient factors are kept fix | |
| 68 /// and critical volume algorithm is switched of. maxfirststopdepth is kept fix | |
| 69 /// to make shure Boeyls Law algorithm works correctly | |
| 70 /// | |
| 71 /// 4) gas_loadings_ascent_descend heeds all gaschanges and CCR support has been added | |
| 72 /// | |
| 73 | |
| 74 #include <stdio.h> | |
| 75 #include <stdlib.h> | |
| 76 #include <string.h> | |
| 77 #include <math.h> | |
| 78 #include <time.h> | |
| 79 | |
| 80 #include "vpm.h" | |
| 81 #include "decom.h" | |
| 82 | |
| 83 #define GAS_N2 0 | |
| 84 #define GAS_HE 1 | |
| 85 | |
| 290 | 86 static const _Bool buehlmannSafety = true; |
| 38 | 87 /* Common Block Declarations */ |
| 88 | |
| 89 extern const float SURFACE_TENSION_GAMMA; //!Adj. Range: 0.015 to 0.065 N/m | |
| 90 extern const float SKIN_COMPRESSION_GAMMAC; //!Adj. Range: 0.160 to 0.290 N/m | |
| 91 extern const float UNITS_FACTOR; | |
| 92 extern const float WATER_VAPOR_PRESSURE; // (Schreiner value) based on respiratory quotien | |
| 93 extern const float CRIT_VOLUME_PARAMETER_LAMBDA; //!Adj. Range: 6500 to 8300 fsw-min | |
| 290 | 94 //extern const float GRADIENT_ONSET_OF_IMPERM_ATM; //!Adj. Range: 5.0 to 10.0 atm |
| 38 | 95 extern const float REGENERATION_TIME_CONSTANT; //!Adj. Range: 10080 to 51840 min |
| 290 | 96 //extern const float PRESSURE_OTHER_GASES_MMHG; //!Constant value for PO2 up to 2 atm |
| 38 | 97 extern const float CONSTANT_PRESSURE_OTHER_GASES; // PRESSURE_OTHER_GASES_MMHG / 760. * UNITS_FACTOR; |
| 98 | |
| 99 extern const float HELIUM_TIME_CONSTANT[]; | |
| 100 extern const float NITROGEN_TIME_CONSTANT[]; | |
| 101 | |
| 290 | 102 static float minimum_deco_stop_time; |
| 103 static float run_time, run_time_first_stop; | |
| 104 static float segment_time; | |
| 105 static short mix_number; | |
| 106 static float barometric_pressure; | |
| 107 static _Bool altitude_dive_algorithm_off; | |
| 108 static _Bool units_equal_fsw, units_equal_msw; | |
| 38 | 109 |
| 110 /* by hw 11.06.2015 to allow */ | |
| 290 | 111 static float gCNS_VPM; |
| 38 | 112 |
| 290 | 113 static float helium_pressure[16], nitrogen_pressure[16]; |
| 114 static float surface_phase_volume_time[16]; | |
| 115 static float regenerated_radius_he[16], regenerated_radius_n2[16]; | |
| 116 static float allowable_gradient_he[16], allowable_gradient_n2[16]; | |
| 38 | 117 |
| 118 //_Bool deco_zone_reached; | |
| 290 | 119 static _Bool critical_volume_algorithm_off; |
| 120 static float max_first_stop_depth; | |
| 121 static float max_deco_ceiling_depth; | |
| 38 | 122 //Boylslaw compensation |
| 290 | 123 static float deco_gradient_he[16]; |
| 124 static float deco_gradient_n2[16]; | |
| 125 static int vpm_calc_what; | |
| 126 static int count_critical_volume_iteration; | |
| 127 static short number_of_changes; | |
| 128 static float depth_change[11]; | |
| 129 static float step_size_change[11]; | |
| 130 static float rate_change[11]; | |
| 131 static short mix_change[11]; | |
| 38 | 132 |
| 290 | 133 static const _Bool vpm_b = true; |
| 38 | 134 |
| 907 | 135 static SvpmTableState vpmTableState = VPM_TABLE_INIT; |
| 902 | 136 static SDecoinfo vpmTable; |
| 137 | |
| 38 | 138 extern const float float_buehlmann_N2_factor_expositon_20_seconds[]; |
| 139 extern const float float_buehlmann_He_factor_expositon_20_seconds[]; | |
| 140 extern const float float_buehlmann_N2_factor_expositon_one_minute[]; | |
| 141 extern const float float_buehlmann_He_factor_expositon_one_minute[]; | |
| 142 extern const float float_buehlmann_N2_factor_expositon_five_minutes[]; | |
| 143 extern const float float_buehlmann_He_factor_expositon_five_minutes[]; | |
| 144 extern const float float_buehlmann_N2_factor_expositon_one_hour[]; | |
| 145 extern const float float_buehlmann_He_factor_expositon_one_hour[]; | |
| 146 | |
| 290 | 147 static float depth_start_of_deco_calc; |
| 148 static float depth_start_of_deco_zone; | |
| 149 static float first_stop_depth; | |
| 150 static float run_time_start_of_deco_zone; | |
| 38 | 151 |
| 290 | 152 static float r_nint(float *x); |
| 153 static float r_int(float *x); | |
| 154 static _Bool nullzeit_unter60; | |
| 155 static int vpm_calc_status; | |
| 156 static _Bool buehlmann_wait_exceeded = false; | |
| 38 | 157 |
| 290 | 158 static SLifeData* pInput = NULL; |
| 159 static SVpm* pVpm = NULL; | |
| 160 static SDecoinfo* pDecoInfo = NULL; | |
| 161 static SDiveSettings* pDiveSettings = NULL; | |
| 162 | |
| 163 static float r_nint(float *x) | |
| 38 | 164 { |
| 165 return( (*x)>=0 ? | |
| 166 floorf(*x + 0.5f) : -floorf(0.5f - *x) ); | |
| 167 } | |
| 168 | |
| 290 | 169 static float r_int(float *x) |
| 38 | 170 { |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
171 return( (*x>0.0) ? floorf(*x) : -floorf(- *x) ); |
| 38 | 172 } |
| 173 | |
| 174 /** private functions | |
| 175 */ | |
| 290 | 176 extern int radius_root_finder (float *a, float *b, float *c,float *low_bound, float *high_bound, float *ending_radius); |
| 38 | 177 |
| 290 | 178 static int nuclear_regeneration(float *dive_time);// clock_(); |
| 179 static int calc_deco_ceiling(float *deco_ceiling_depth,_Bool fallowablw); | |
| 180 static int critical_volume(float *deco_phase_volume_time); ; | |
| 181 static int calc_start_of_deco_zone(float *starting_depth, float *rate, float *depth_start_of_deco_zone); | |
| 182 static int calc_initial_allowable_gradient(void); | |
| 183 static void decompression_stop(float *deco_stop_depth, float *step_size, _Bool final_deco_calculation); | |
| 184 static int gas_loadings_ascent_descen(float* helium_pressure, float* nitrogen_pressure, float starting_depth,float ending_depth, float rate,_Bool check_gas_change); | |
| 185 static int calc_surface_phase_volume_time(void); | |
| 186 static int calc_max_actual_gradient(float *deco_stop_depth); | |
| 187 static int projected_ascent(float *starting_depth, float *rate, float *deco_stop_depth, float *step_size); | |
| 188 static void vpm_calc_deco(void); | |
| 189 static int vpm_calc_critcal_volume(_Bool begin,_Bool calc_nulltime); | |
| 190 static int vpm_check_converged(_Bool calc_nulltime); | |
| 191 static int vpm_calc_final_deco(_Bool begin); | |
| 192 static void BOYLES_LAW_COMPENSATION (float* First_Stop_Depth,float * Deco_Stop_Depth,float* Step_Size); | |
| 292 | 193 static int vpm_calc_ndl(void); |
| 290 | 194 static void vpm_init_1(void); |
| 195 static void vpm_calc_deco_ceiling(void); | |
| 38 | 196 |
| 907 | 197 uint8_t vpm_get_decozone(void); |
| 198 | |
| 290 | 199 static void vpm_init_1(void) |
| 38 | 200 { |
| 201 units_equal_msw = true; | |
| 202 units_equal_fsw = false; | |
| 203 altitude_dive_algorithm_off= true; //!Options: ON or OFF | |
| 204 minimum_deco_stop_time=1.0; //!Options: float positive number | |
| 205 critical_volume_algorithm_off= false; //!Options: ON or OFF | |
| 206 run_time = 0.; | |
| 207 //barometric_pressure = dive_data.surface * 10; | |
| 208 | |
| 209 //mix_number = dive_data.selected_gas + 1; | |
| 210 | |
| 211 max_first_stop_depth = 0; | |
| 212 max_deco_ceiling_depth = 0; | |
| 213 //deco_zone_reached = false; | |
| 214 depth_start_of_deco_calc = 0; | |
| 215 depth_start_of_deco_zone = 0; | |
| 216 first_stop_depth = 0; | |
| 217 run_time_start_of_deco_zone = 0; | |
| 218 | |
| 219 gCNS_VPM = 0; | |
| 220 } | |
| 221 | |
| 222 float vpm_get_CNS(void) | |
| 223 { | |
| 224 return gCNS_VPM; | |
| 225 } | |
| 226 | |
| 902 | 227 |
| 228 void vpm_maintainTable(SLifeData* pLifeData,SDecoinfo* pDecoInfo) | |
| 229 { | |
| 230 static uint32_t lastDiveSecond = 0; | |
| 231 uint8_t actual_deco_stop = 0; | |
| 232 int8_t index = 0; | |
| 233 uint8_t decreaseStopTime = 1; | |
| 234 | |
| 235 if(lastDiveSecond < pLifeData->dive_time_seconds) | |
| 236 { | |
| 237 lastDiveSecond = pLifeData->dive_time_seconds; | |
| 238 actual_deco_stop = decom_get_actual_deco_stop((SDiveState*)stateUsed); | |
| 239 | |
| 240 pDecoInfo->output_time_to_surface_seconds = 0; | |
| 241 for(index = DECOINFO_STRUCT_MAX_STOPS -1 ;index >= 0; index--) | |
| 242 { | |
| 243 if(pDecoInfo->output_stop_length_seconds[index] > 0) | |
| 244 { | |
| 245 if(decreaseStopTime) | |
| 246 { | |
| 907 | 247 if((pLifeData->depth_meter > (float)(actual_deco_stop - 1.5)) |
| 902 | 248 && (pLifeData->depth_meter < (float)actual_deco_stop + 1.5)) |
| 249 { | |
| 250 pDecoInfo->output_stop_length_seconds[index]--; | |
| 251 decreaseStopTime = 0; | |
| 252 } | |
| 907 | 253 else if (pLifeData->depth_meter < (float)(actual_deco_stop - 1.5)) /* missed deco stop */ |
| 254 { | |
| 255 vpmTableState = VPM_TABLE_MISSED; | |
| 256 pDecoInfo->output_stop_length_seconds[index] = 0; | |
| 257 decreaseStopTime = 0; | |
| 258 } | |
| 902 | 259 } |
| 260 pDecoInfo->output_time_to_surface_seconds += pDecoInfo->output_stop_length_seconds[index]; | |
| 261 } | |
| 262 } | |
| 263 pDecoInfo->output_time_to_surface_seconds += pLifeData->depth_meter / 10.0 * 60.0; | |
| 264 } | |
| 265 else if(lastDiveSecond > pLifeData->dive_time_seconds) | |
| 266 { | |
| 267 lastDiveSecond = pLifeData->dive_time_seconds; | |
| 268 } | |
| 269 } | |
| 270 | |
| 38 | 271 int vpm_calc(SLifeData* pINPUT, |
| 272 SDiveSettings* pSettings, | |
| 273 SVpm* pVPM, | |
| 274 SDecoinfo* | |
| 275 pDECOINFO, | |
| 276 int calc_what) | |
| 277 { | |
| 902 | 278 static uint8_t vpmTableActive = 0; |
| 279 | |
| 38 | 280 vpm_init_1(); |
| 281 //decom_CreateGasChangeList(pSettings, pINPUT); | |
| 282 vpm_calc_what = calc_what; | |
| 283 /**clear decoInfo*/ | |
| 902 | 284 |
| 285 if((vpmTableActive) && (vpm_calc_what == DECOSTOPS)) | |
| 286 { | |
| 287 memcpy(&vpmTable, pDECOINFO, sizeof(SDecoinfo)); /* save changes done by e.g. the simulator */ | |
| 288 } | |
| 38 | 289 pDECOINFO->output_time_to_surface_seconds = 0; |
| 290 pDECOINFO->output_ndl_seconds = 0; | |
| 291 pDECOINFO->output_ceiling_meter = 0; | |
|
247
3949781096d4
feature: Relative GF to Saturation renames
Jan Mulder <jlmulder@xs4all.nl>
parents:
149
diff
changeset
|
292 pDECOINFO->super_saturation = 0; |
| 38 | 293 uint8_t tmp_calc_status; |
| 294 for(int i=0;i<DECOINFO_STRUCT_MAX_STOPS;i++) | |
| 295 { | |
| 296 pDECOINFO->output_stop_length_seconds[i] = 0; | |
| 297 } | |
| 298 | |
|
305
305f251cc981
bugfix, consistency: show deco/NDL really after 1 minute divetime
Jan Mulder <jlmulder@xs4all.nl>
parents:
293
diff
changeset
|
299 if(pINPUT->dive_time_seconds_without_surface_time < 60) |
| 38 | 300 { |
| 292 | 301 vpm_calc_status = CALC_NDL; |
| 38 | 302 return vpm_calc_status; |
| 303 } | |
| 304 pVpm = pVPM; | |
| 305 pInput = pINPUT; | |
| 306 pDecoInfo = pDECOINFO; | |
| 307 pDiveSettings = pSettings; | |
| 308 | |
| 292 | 309 if(vpm_calc_status == CALC_NDL) |
| 38 | 310 { |
| 292 | 311 tmp_calc_status = vpm_calc_ndl(); |
| 38 | 312 } |
| 313 else | |
| 314 { | |
| 315 tmp_calc_status = CALC_BEGIN; | |
| 316 } | |
| 317 //Normal Deco calculation | |
| 292 | 318 if(tmp_calc_status != CALC_NDL) |
| 38 | 319 { |
| 320 max_first_stop_depth = pVpm->max_first_stop_depth_save; | |
| 321 run_time_start_of_deco_zone = pVpm->run_time_start_of_deco_zone_save; | |
| 322 depth_start_of_deco_zone = pVpm->depth_start_of_deco_zone_save; | |
| 323 for (int i = 0; i < 16; ++i) { | |
| 324 helium_pressure[i] = pInput->tissue_helium_bar[i] * 10; | |
| 325 nitrogen_pressure[i] = pInput->tissue_nitrogen_bar[i] * 10; | |
| 326 } | |
| 327 vpm_calc_deco(); | |
| 328 tmp_calc_status = vpm_calc_critcal_volume(true,false); | |
| 329 if(vpm_calc_what == DECOSTOPS) | |
| 330 { | |
| 331 pVpm->max_first_stop_depth_save = max_first_stop_depth; | |
| 332 pVpm->run_time_start_of_deco_zone_save = run_time_start_of_deco_zone; | |
| 333 pVpm->depth_start_of_deco_zone_save = depth_start_of_deco_zone; | |
| 334 } | |
| 335 } | |
| 336 | |
| 337 //Only Decostops not futute stops | |
| 338 if(vpm_calc_what == DECOSTOPS) | |
| 902 | 339 { |
| 38 | 340 vpm_calc_status = tmp_calc_status; |
| 902 | 341 if(pSettings->vpm_tableMode) /* store the most conservative deco plan and stick to it. */ |
| 342 { | |
| 343 if((int16_t)(pDECOINFO->output_time_to_surface_seconds - vpmTable.output_time_to_surface_seconds) > 60) | |
| 344 { | |
| 345 memcpy(&vpmTable, pDECOINFO, sizeof(SDecoinfo)); | |
| 346 vpmTableActive = 1; | |
| 907 | 347 if(pVpm->deco_zone_reached) /* table should not change after deco zone was entered */ |
| 348 { | |
| 349 if(vpmTableState != VPM_TABLE_MISSED) | |
| 350 { | |
| 351 vpmTableState = VPM_TABLE_WARNING; | |
| 352 } | |
| 353 } | |
| 902 | 354 } |
| 355 else | |
| 356 { | |
| 357 if(vpmTable.output_time_to_surface_seconds > 0) | |
| 358 { | |
| 359 vpm_maintainTable(pINPUT, &vpmTable); | |
| 360 vpmTable.output_ceiling_meter = pDECOINFO->output_ceiling_meter; | |
| 361 memcpy(pDECOINFO, &vpmTable, sizeof(SDecoinfo)); | |
| 362 } | |
| 363 } | |
| 364 } | |
| 365 } | |
| 38 | 366 return vpm_calc_status; |
| 367 } | |
| 368 | |
| 369 void vpm_saturation_after_ascent(SLifeData* input) | |
| 370 { | |
| 371 int i = 0; | |
| 372 for (i = 0; i < 16; ++i) { | |
| 373 pInput->tissue_helium_bar[i] = helium_pressure[i] / 10; | |
| 374 pInput->tissue_nitrogen_bar[i] = nitrogen_pressure[i] / 10; | |
| 375 } | |
| 376 pInput->pressure_ambient_bar = pInput->pressure_surface_bar; | |
| 377 } | |
| 378 /* =============================================================================== */ | |
| 379 /* NOTE ABOUT PRESSURE UNITS USED IN CALCULATIONS: */ | |
| 380 /* It is the convention in decompression calculations to compute all gas */ | |
| 381 /* loadings, absolute pressures, partial pressures, etc., in the units of */ | |
| 382 /* depth pressure that you are diving - either feet of seawater (fsw) or */ | |
| 383 /* meters of seawater (msw). This program follows that convention with the */ | |
| 384 /* the exception that all VPM calculations are performed in SI units (by */ | |
| 385 /* necessity). Accordingly, there are several conversions back and forth */ | |
| 386 /* between the diving pressure units and the SI units. */ | |
| 387 /* =============================================================================== */ | |
| 388 /* =============================================================================== */ | |
| 389 /* FUNCTION SUBPROGRAM FOR GAS LOADING CALCULATIONS - ASCENT AND DESCENT */ | |
| 390 /* =============================================================================== */ | |
| 391 | |
| 392 | |
| 393 | |
| 394 /* =============================================================================== */ | |
| 395 /* SUBROUTINE GAS_LOADINGS_ASCENT_DESCENT */ | |
| 396 /* Purpose: This subprogram applies the Schreiner equation to update the */ | |
| 397 /* gas loadings (partial pressures of helium and nitrogen) in the half-time */ | |
| 398 /* compartments due to a linear ascent or descent segment at a constant rate. */ | |
| 399 /* =============================================================================== */ | |
| 400 | |
| 290 | 401 static int gas_loadings_ascent_descen(float* helium_pressure, |
| 38 | 402 float* nitrogen_pressure, |
| 403 float starting_depth, | |
| 404 float ending_depth, | |
| 405 float rate,_Bool check_gas_change) | |
| 406 { | |
| 407 short i; | |
| 408 float initial_inspired_n2_pressure, | |
| 409 initial_inspired_he_pressure, nitrogen_rate, | |
| 410 last_run_time, | |
| 411 starting_ambient_pressure, | |
| 412 ending_ambient_pressure; | |
| 413 float initial_helium_pressure[16]; | |
| 414 float initial_nitrogen_pressure[16]; | |
| 415 float helium_rate; | |
| 416 float fraction_helium_begin; | |
| 417 float fraction_helium_end; | |
| 418 float fraction_nitrogen_begin; | |
| 419 float fraction_nitrogen_end; | |
| 420 float ending_depth_tmp = ending_depth; | |
| 421 float segment_time_tmp = 0; | |
| 422 /* loop */ | |
| 423 /* =============================================================================== */ | |
| 424 /* CALCULATIONS */ | |
| 425 /* =============================================================================== */ | |
| 426 segment_time = (ending_depth_tmp - starting_depth) / rate; | |
| 427 last_run_time = run_time; | |
| 428 run_time = last_run_time + segment_time; | |
| 429 do { | |
| 430 ending_depth_tmp = ending_depth; | |
| 431 if (starting_depth > ending_depth && check_gas_change && number_of_changes > 1) | |
| 432 { | |
| 433 for (i = 1; i < number_of_changes; ++i) | |
| 434 { | |
| 435 if (depth_change[i] < starting_depth && depth_change[i] > ending_depth) | |
| 436 { | |
| 437 ending_depth_tmp = depth_change[i]; | |
| 438 break; | |
| 439 } | |
| 440 } | |
| 441 for (i = 1; i < number_of_changes; ++i) | |
| 442 { | |
| 443 if (depth_change[i] >= starting_depth) | |
| 444 { | |
| 445 mix_number = mix_change[i]; | |
| 446 } | |
| 447 } | |
| 448 } | |
| 449 segment_time_tmp = (ending_depth_tmp - starting_depth) / rate; | |
| 450 ending_ambient_pressure = ending_depth_tmp + barometric_pressure; | |
| 451 starting_ambient_pressure = starting_depth + barometric_pressure; | |
| 452 decom_get_inert_gases( starting_ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_begin, &fraction_helium_begin ); | |
| 453 decom_get_inert_gases( ending_ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_end, &fraction_helium_end ); | |
| 454 | |
| 455 initial_inspired_he_pressure = (starting_ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_helium_begin; | |
| 456 initial_inspired_n2_pressure = (starting_ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_nitrogen_begin; | |
| 457 //helium_rate = *rate * fraction_helium[mix_number - 1]; | |
| 458 helium_rate = ((ending_ambient_pressure - WATER_VAPOR_PRESSURE)* fraction_helium_end - initial_inspired_he_pressure)/segment_time_tmp; | |
| 459 //nitrogen_rate2 = *rate * fraction_nitrogen[mix_number - 1]; | |
| 460 nitrogen_rate = ((ending_ambient_pressure - WATER_VAPOR_PRESSURE)* fraction_nitrogen_end - initial_inspired_n2_pressure)/segment_time_tmp; | |
| 461 | |
| 462 | |
| 463 decom_oxygen_calculate_cns_stage_SchreinerStyle(segment_time_tmp,&pDiveSettings->decogaslist[mix_number],starting_ambient_pressure/10,ending_ambient_pressure/10,&gCNS_VPM); | |
| 464 //if(fabs(nitrogen_rate - nitrogen_rate2) > 0.000001) | |
| 465 //return -2; | |
| 466 for (i = 1; i <= 16; ++i) | |
| 467 { | |
| 468 initial_helium_pressure[i - 1] = helium_pressure[i - 1]; | |
| 469 initial_nitrogen_pressure[i - 1] = nitrogen_pressure[i - 1]; | |
| 470 helium_pressure[i - 1] = | |
| 471 schreiner_equation__2(&initial_inspired_he_pressure, | |
| 472 &helium_rate, | |
| 473 &segment_time, | |
| 474 &HELIUM_TIME_CONSTANT[i - 1], | |
| 475 &initial_helium_pressure[i - 1]); | |
| 476 nitrogen_pressure[i - 1] = | |
| 477 schreiner_equation__2(&initial_inspired_n2_pressure, | |
| 478 &nitrogen_rate, | |
| 479 &segment_time, | |
| 480 &NITROGEN_TIME_CONSTANT[i - 1], | |
| 481 &initial_nitrogen_pressure[i - 1]); | |
| 482 | |
| 483 //nextround??? | |
| 484 | |
| 485 } | |
| 486 starting_depth = ending_depth_tmp; | |
| 487 } while(ending_depth_tmp > ending_depth); | |
| 488 | |
| 489 return 0; | |
| 490 } /* gas_loadings_ascent_descen */ | |
| 491 | |
| 290 | 492 static float last_phase_volume_time[16]; |
| 493 static float n2_pressure_start_of_deco_zone[16]; | |
| 494 static float he_pressure_start_of_deco_zone[16]; | |
| 495 static float phase_volume_time[16]; | |
| 496 static float n2_pressure_start_of_ascent[16]; | |
| 497 static float he_pressure_start_of_ascent[16]; | |
| 498 static float run_time_start_of_deco_calc; | |
| 499 static float starting_depth; | |
| 500 static float last_run_time; | |
| 501 static float deco_phase_volume_time; | |
| 502 static float run_time_start_of_ascent; | |
| 503 static float rate; | |
| 504 static float step_size; | |
| 505 static _Bool vpm_violates_buehlmann; | |
| 38 | 506 |
| 290 | 507 static void vpm_calc_deco(void) |
| 38 | 508 { |
| 509 /* System generated locals */ | |
| 510 | |
| 511 //float deepest_possible_stop_depth; | |
| 512 // altitude_of_dive, | |
| 513 short i; | |
| 514 int j = 0; | |
| 515 | |
| 516 // float rounding_operation; | |
| 517 | |
| 518 /* =============================================================================== */ | |
| 519 /* INPUT PARAMETERS TO BE USED FOR STAGED DECOMPRESSION AND SAVE IN ARRAYS. */ | |
| 520 /* ASSIGN INITAL PARAMETERS TO BE USED AT START OF ASCENT */ | |
| 521 /* The user has the ability to change mix, ascent rate, and step size in any */ | |
| 522 /* combination at any depth during the ascent. */ | |
| 523 /* =============================================================================== */ | |
| 524 | |
| 525 run_time = ((float)pInput->dive_time_seconds )/ 60; | |
| 526 count_critical_volume_iteration = 0; | |
| 527 number_of_changes = 1; | |
| 528 | |
| 529 barometric_pressure = pInput->pressure_surface_bar * 10; | |
| 530 depth_change[0] =(pInput->pressure_ambient_bar - pInput->pressure_surface_bar)* 10; | |
| 531 mix_change[0] = 0; | |
| 532 rate_change[0 ] = -10;// neu 160215 hw, zuvor: -12; | |
| 533 step_size_change[0] = 3; | |
| 534 vpm_violates_buehlmann = false; | |
| 535 | |
| 536 for (i = 1; i < BUEHLMANN_STRUCT_MAX_GASES; i++) | |
| 537 { | |
| 538 depth_change[i] = 0; | |
| 539 mix_change[i] = 0; | |
| 540 } | |
| 541 j = 0; | |
| 542 | |
| 543 for (i = 1; i < BUEHLMANN_STRUCT_MAX_GASES; i++) | |
| 544 { | |
|
982
22d5b477c903
Code cleanup: Remove disabled option to switch deco calc on/off
Ideenmodellierer
parents:
973
diff
changeset
|
545 if(pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero >= depth_change[0] + 1) |
| 38 | 546 continue; |
| 547 | |
|
982
22d5b477c903
Code cleanup: Remove disabled option to switch deco calc on/off
Ideenmodellierer
parents:
973
diff
changeset
|
548 if(pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero <= 0) |
| 38 | 549 break; |
| 550 | |
| 551 j++; | |
| 552 number_of_changes ++; | |
| 553 depth_change[j] = pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero ; | |
| 554 mix_change[j] = i; | |
| 555 rate_change[j] = -10;// neu 160215 hw, zuvor: -12; | |
| 556 step_size_change[j] = 3; | |
| 557 } | |
| 558 | |
| 559 starting_depth = depth_change[0] ; | |
| 560 mix_number = mix_change[0] ; | |
| 561 rate = rate_change[0]; | |
| 562 step_size = step_size_change[0]; | |
| 563 | |
| 564 for (i = 0; i < 16; ++i) { | |
| 565 he_pressure_start_of_ascent[i ] = helium_pressure[i]; | |
| 566 n2_pressure_start_of_ascent[i] = nitrogen_pressure[i]; | |
| 567 } | |
| 568 run_time_start_of_ascent = run_time; | |
| 569 if(starting_depth <= depth_start_of_deco_zone && vpm_calc_what == DECOSTOPS) | |
| 570 { | |
| 571 pVpm->deco_zone_reached = true; | |
| 572 depth_start_of_deco_calc = starting_depth; | |
| 573 critical_volume_algorithm_off = true; | |
| 574 } | |
| 575 else | |
| 576 { | |
| 577 //if(deco_zone_reached) | |
| 578 //{ | |
| 579 pVpm->deco_zone_reached = false; | |
| 580 critical_volume_algorithm_off = false; | |
| 581 //max_first_stop_depth = 0; | |
| 582 //max_first_stop_depth_save = 0; | |
| 583 //} | |
| 584 /* =============================================================================== */ | |
| 585 /* BEGIN PROCESS OF ASCENT AND DECOMPRESSION */ | |
| 586 /* First, calculate the regeneration of critical radii that takes place over */ | |
| 587 /* the dive time. The regeneration time constant has a time scale of weeks */ | |
| 588 /* so this will have very little impact on dives of normal length, but will */ | |
| 589 /* have major impact for saturation dives. */ | |
| 590 /* =============================================================================== */ | |
| 591 | |
| 592 nuclear_regeneration(&run_time); | |
| 593 | |
| 594 /* =============================================================================== */ | |
| 595 /* CALCULATE INITIAL ALLOWABLE GRADIENTS FOR ASCENT */ | |
| 596 /* This is based on the maximum effective crushing pressure on critical radii */ | |
| 597 /* in each compartment achieved during the dive profile. */ | |
| 598 /* =============================================================================== */ | |
| 599 | |
| 600 calc_initial_allowable_gradient(); | |
| 601 | |
| 602 /* =============================================================================== */ | |
| 603 /* SAVE VARIABLES AT START OF ASCENT (END OF BOTTOM TIME) SINCE THESE WILL */ | |
| 604 /* BE USED LATER TO COMPUTE THE FINAL ASCENT PROFILE THAT IS WRITTEN TO THE */ | |
| 605 /* OUTPUT FILE. */ | |
| 606 /* The VPM uses an iterative process to compute decompression schedules so */ | |
| 607 /* there will be more than one pass through the decompression loop. */ | |
| 608 /* =============================================================================== */ | |
| 609 | |
| 610 /* =============================================================================== */ | |
| 611 /* CALCULATE THE DEPTH WHERE THE DECOMPRESSION ZONE BEGINS FOR THIS PROFILE */ | |
| 612 /* BASED ON THE INITIAL ASCENT PARAMETERS AND WRITE THE DEEPEST POSSIBLE */ | |
| 613 /* DECOMPRESSION STOP DEPTH TO THE OUTPUT FILE */ | |
| 614 /* Knowing where the decompression zone starts is very important. Below */ | |
| 615 /* that depth there is no possibility for bubble formation because there */ | |
| 616 /* will be no supersaturation gradients. Deco stops should never start */ | |
| 617 /* below the deco zone. The deepest possible stop deco stop depth is */ | |
| 618 /* defined as the next "standard" stop depth above the point where the */ | |
| 619 /* leading compartment enters the deco zone. Thus, the program will not */ | |
| 620 /* base this calculation on step sizes larger than 10 fsw or 3 msw. The */ | |
| 621 /* deepest possible stop depth is not used in the program, per se, rather */ | |
| 622 /* it is information to tell the diver where to start putting on the brakes */ | |
| 623 /* during ascent. This should be prominently displayed by any deco program. */ | |
| 624 /* =============================================================================== */ | |
| 625 | |
| 626 calc_start_of_deco_zone(&starting_depth, &rate, &depth_start_of_deco_zone); | |
| 627 /* =============================================================================== */ | |
| 628 /* TEMPORARILY ASCEND PROFILE TO THE START OF THE DECOMPRESSION ZONE, SAVE */ | |
| 629 /* VARIABLES AT THIS POINT, AND INITIALIZE VARIABLES FOR CRITICAL VOLUME LOOP */ | |
| 630 /* The iterative process of the VPM Critical Volume Algorithm will operate */ | |
| 631 /* only in the decompression zone since it deals with excess gas volume */ | |
| 632 /* released as a result of supersaturation gradients (not possible below the */ | |
| 633 /* decompression zone). */ | |
| 634 /* =============================================================================== */ | |
| 635 gas_loadings_ascent_descen(helium_pressure,nitrogen_pressure, starting_depth, depth_start_of_deco_zone, rate, true); | |
| 636 | |
| 637 run_time_start_of_deco_zone = run_time; | |
| 638 depth_start_of_deco_calc = depth_start_of_deco_zone; | |
| 639 | |
| 640 for (i = 0; i < 16; ++i) | |
| 641 { | |
| 642 pVpm->max_actual_gradient[i] = 0.; | |
| 643 } | |
| 644 } | |
| 645 | |
| 646 for (i = 0; i < 16; ++i) | |
| 647 { | |
| 648 surface_phase_volume_time[i] = 0.; | |
| 649 last_phase_volume_time[i] = 0.; | |
| 650 he_pressure_start_of_deco_zone[i] = helium_pressure[i]; | |
| 651 n2_pressure_start_of_deco_zone[i] = nitrogen_pressure[i]; | |
| 652 //pVpm->max_actual_gradient[i] = 0.; | |
| 653 } | |
| 654 run_time_start_of_deco_calc = run_time; | |
| 655 } | |
| 656 /* =============================================================================== */ | |
| 657 /* START OF CRITICAL VOLUME LOOP */ | |
| 658 /* This loop operates between Lines 50 and 100. If the Critical Volume */ | |
| 659 /* Algorithm is toggled "off" in the program settings, there will only be */ | |
| 660 /* one pass through this loop. Otherwise, there will be two or more passes */ | |
| 661 /* through this loop until the deco schedule is "converged" - that is when a */ | |
| 662 /* comparison between the phase volume time of the present iteration and the */ | |
| 663 /* last iteration is less than or equal to one minute. This implies that */ | |
| 664 /* the volume of released gas in the most recent iteration differs from the */ | |
| 665 /* "critical" volume limit by an acceptably small amount. The critical */ | |
| 666 /* volume limit is set by the Critical Volume Parameter Lambda in the program */ | |
| 667 /* settings (default setting is 7500 fsw-min with adjustability range from */ | |
| 668 /* from 6500 to 8300 fsw-min according to Bruce Wienke). */ | |
| 669 /* =============================================================================== */ | |
| 670 /* L50: */ | |
| 671 | |
| 290 | 672 static float deco_stop_depth; |
| 673 static int vpm_calc_critcal_volume(_Bool begin, | |
| 38 | 674 _Bool calc_nulltime) |
| 675 { /* loop will run continuous there is an exit stateme */ | |
| 676 | |
| 677 short i; | |
| 678 | |
| 679 float rounding_operation2; | |
| 680 //float ending_depth; | |
| 681 float deco_ceiling_depth; | |
| 682 | |
| 683 //float deco_time; | |
| 684 int count = 0; | |
| 685 _Bool first_stop; | |
| 686 int dp = 0; | |
| 687 float tissue_He_saturation[16]; | |
| 688 float tissue_N2_saturation[16]; | |
| 689 float vpm_buehlmann_safety_gradient = 1.0f - (((float)pDiveSettings->vpm_conservatism) / 40); | |
| 690 /* =============================================================================== */ | |
| 691 /* CALCULATE CURRENT DECO CEILING BASED ON ALLOWABLE SUPERSATURATION */ | |
| 692 /* GRADIENTS AND SET FIRST DECO STOP. CHECK TO MAKE SURE THAT SELECTED STEP */ | |
| 693 /* SIZE WILL NOT ROUND UP FIRST STOP TO A DEPTH THAT IS BELOW THE DECO ZONE. */ | |
| 694 /* =============================================================================== */ | |
| 695 if(begin) | |
| 696 { | |
| 697 if(depth_start_of_deco_calc < max_first_stop_depth ) | |
| 698 { | |
| 699 if(vpm_b) | |
| 700 { | |
| 701 BOYLES_LAW_COMPENSATION(&max_first_stop_depth, &depth_start_of_deco_calc, &step_size); | |
| 702 } | |
| 703 calc_deco_ceiling(&deco_ceiling_depth, false); | |
| 704 } | |
| 705 else | |
| 706 calc_deco_ceiling(&deco_ceiling_depth, true); | |
| 707 | |
| 708 | |
| 709 if (deco_ceiling_depth <= 0.0f) { | |
| 710 deco_stop_depth = 0.0f; | |
| 711 } else { | |
| 712 rounding_operation2 = deco_ceiling_depth / step_size + ( float)0.5f; | |
| 713 deco_stop_depth = r_nint(&rounding_operation2) * step_size; | |
| 714 } | |
| 715 | |
| 716 // buehlmann safety | |
| 717 if(buehlmannSafety) | |
| 718 { | |
| 719 for (i = 0; i < 16; i++) | |
| 720 { | |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
721 tissue_He_saturation[i] = helium_pressure[i] / 10.0; |
|
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
722 tissue_N2_saturation[i] = nitrogen_pressure[i] / 10.0; |
| 38 | 723 } |
| 724 | |
| 725 if(!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_stop_depth / 10.0f) + pInput->pressure_surface_bar)) | |
| 726 { | |
| 727 | |
| 728 vpm_violates_buehlmann = true; | |
| 729 do { | |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
730 deco_stop_depth += 3.0; |
| 38 | 731 } while (!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_stop_depth / 10.0f) + pInput->pressure_surface_bar)); |
| 732 } | |
| 733 } | |
| 734 | |
| 735 /* =============================================================================== */ | |
| 736 /* PERFORM A SEPARATE "PROJECTED ASCENT" OUTSIDE OF THE MAIN PROGRAM TO MAKE */ | |
| 737 /* SURE THAT AN INCREASE IN GAS LOADINGS DURING ASCENT TO THE FIRST STOP WILL */ | |
| 738 /* NOT CAUSE A VIOLATION OF THE DECO CEILING. IF SO, ADJUST THE FIRST STOP */ | |
| 739 /* DEEPER BASED ON STEP SIZE UNTIL A SAFE ASCENT CAN BE MADE. */ | |
| 740 /* Note: this situation is a possibility when ascending from extremely deep */ | |
| 741 /* dives or due to an unusual gas mix selection. */ | |
| 742 /* CHECK AGAIN TO MAKE SURE THAT ADJUSTED FIRST STOP WILL NOT BE BELOW THE */ | |
| 743 /* DECO ZONE. */ | |
| 744 /* =============================================================================== */ | |
| 745 if (deco_stop_depth < depth_start_of_deco_calc) | |
| 746 { | |
| 747 projected_ascent(&depth_start_of_deco_calc, &rate, &deco_stop_depth, &step_size); | |
| 748 } | |
| 749 | |
| 750 /*if (deco_stop_depth > depth_start_of_deco_zone) { | |
| 751 printf("\t\n"); | |
| 752 printf(fmt_905); | |
| 753 printf(fmt_900); | |
| 754 printf("\nPROGRAM TERMINATED\n"); | |
| 755 exit(1); | |
| 756 }*/ | |
| 757 | |
| 758 /* =============================================================================== */ | |
| 759 /* HANDLE THE SPECIAL CASE WHEN NO DECO STOPS ARE REQUIRED - ASCENT CAN BE */ | |
| 760 /* MADE DIRECTLY TO THE SURFACE */ | |
| 761 /* Write ascent data to output file and exit the Critical Volume Loop. */ | |
| 762 /* =============================================================================== */ | |
| 763 | |
| 764 if (deco_stop_depth == 0.0f) | |
| 765 { | |
| 766 if(calc_nulltime) | |
| 767 { | |
| 768 return CALC_END; | |
| 769 } | |
| 770 if(pVpm->deco_zone_reached) | |
| 771 { | |
| 772 for(dp = 0;dp < DECOINFO_STRUCT_MAX_STOPS;dp++) | |
| 773 { | |
| 774 pDecoInfo->output_stop_length_seconds[dp] = 0; | |
| 775 } | |
| 776 pDecoInfo->output_ndl_seconds = 0; | |
| 777 } | |
| 778 | |
| 292 | 779 return CALC_NDL; |
| 38 | 780 /* exit the critical volume l */ |
| 781 } | |
| 782 | |
| 783 /* =============================================================================== */ | |
| 784 /* ASSIGN VARIABLES FOR ASCENT FROM START OF DECO ZONE TO FIRST STOP. SAVE */ | |
| 785 /* FIRST STOP DEPTH FOR LATER USE WHEN COMPUTING THE FINAL ASCENT PROFILE */ | |
| 786 /* =============================================================================== */ | |
| 877 | 787 deco_stop_depth = fmaxf(deco_stop_depth,(float)pDiveSettings->last_stop_depth_bar * 10); |
| 38 | 788 starting_depth = depth_start_of_deco_calc; |
| 789 first_stop_depth = deco_stop_depth; | |
| 790 first_stop = true; | |
| 791 } | |
| 792 /* =============================================================================== */ | |
| 793 /* DECO STOP LOOP BLOCK WITHIN CRITICAL VOLUME LOOP */ | |
| 794 /* This loop computes a decompression schedule to the surface during each */ | |
| 795 /* iteration of the critical volume loop. No output is written from this */ | |
| 796 /* loop, rather it computes a schedule from which the in-water portion of the */ | |
| 797 /* total phase volume time (Deco_Phase_Volume_Time) can be extracted. Also, */ | |
| 798 /* the gas loadings computed at the end of this loop are used the subroutine */ | |
| 799 /* which computes the out-of-water portion of the total phase volume time */ | |
| 800 /* (Surface_Phase_Volume_Time) for that schedule. */ | |
| 801 | |
| 802 /* Note that exit is made from the loop after last ascent is made to a deco */ | |
| 803 /* stop depth that is less than or equal to zero. A final deco stop less */ | |
| 804 /* than zero can happen when the user makes an odd step size change during */ | |
| 805 /* ascent - such as specifying a 5 msw step size change at the 3 msw stop! */ | |
| 806 /* =============================================================================== */ | |
| 807 | |
| 808 while(true) /* loop will run continuous there is an break statement */ | |
| 809 { | |
| 810 if(starting_depth > deco_stop_depth ) | |
| 811 gas_loadings_ascent_descen(helium_pressure, nitrogen_pressure, starting_depth, deco_stop_depth, rate,first_stop); | |
| 812 | |
| 813 first_stop = false; | |
| 814 if (deco_stop_depth <= 0.0f) | |
| 815 { | |
| 816 break; | |
| 817 } | |
| 818 if (number_of_changes > 1) | |
| 819 { | |
| 820 int i1 = number_of_changes; | |
| 821 for (i = 2; i <= i1; ++i) { | |
| 822 if (depth_change[i - 1] >= deco_stop_depth) | |
| 823 { | |
| 824 mix_number = mix_change[i - 1]; | |
| 825 rate = rate_change[i - 1]; | |
| 826 step_size = step_size_change[i - 1]; | |
| 827 } | |
| 828 } | |
| 829 } | |
| 830 if(vpm_b) | |
| 831 { | |
| 832 float fist_stop_depth2 = fmaxf(first_stop_depth,max_first_stop_depth); | |
| 833 BOYLES_LAW_COMPENSATION(&fist_stop_depth2, &deco_stop_depth, &step_size); | |
| 834 } | |
| 835 decompression_stop(&deco_stop_depth, &step_size, false); | |
| 836 starting_depth = deco_stop_depth; | |
| 837 | |
| 877 | 838 if(deco_stop_depth == (float)pDiveSettings->last_stop_depth_bar * 10) |
| 38 | 839 deco_stop_depth = 0; |
| 840 else | |
| 841 { | |
| 842 deco_stop_depth = deco_stop_depth - step_size; | |
| 877 | 843 deco_stop_depth = fmaxf(deco_stop_depth,(float)pDiveSettings->last_stop_depth_bar * 10); |
| 38 | 844 } |
| 845 | |
| 846 count++; | |
| 847 //if(count > 14) | |
| 848 //return CALC_CRITICAL2; | |
| 849 /* L60: */ | |
| 850 } | |
| 851 | |
| 852 return vpm_check_converged(calc_nulltime); | |
| 853 } | |
| 854 /* =============================================================================== */ | |
| 855 /* COMPUTE TOTAL PHASE VOLUME TIME AND MAKE CRITICAL VOLUME COMPARISON */ | |
| 856 /* The deco phase volume time is computed from the run time. The surface */ | |
| 857 /* phase volume time is computed in a subroutine based on the surfacing gas */ | |
| 858 /* loadings from previous deco loop block. Next the total phase volume time */ | |
| 859 /* (in-water + surface) for each compartment is compared against the previous */ | |
| 860 /* total phase volume time. The schedule is converged when the difference is */ | |
| 861 /* less than or equal to 1 minute in any one of the 16 compartments. */ | |
| 862 | |
| 863 /* Note: the "phase volume time" is somewhat of a mathematical concept. */ | |
| 864 /* It is the time divided out of a total integration of supersaturation */ | |
| 865 /* gradient x time (in-water and surface). This integration is multiplied */ | |
| 866 /* by the excess bubble number to represent the amount of free-gas released */ | |
| 867 /* as a result of allowing a certain number of excess bubbles to form. */ | |
| 868 /* =============================================================================== */ | |
| 869 /* end of deco stop loop */ | |
| 870 | |
| 290 | 871 static int vpm_check_converged(_Bool calc_nulltime) |
| 38 | 872 { |
| 873 | |
| 874 short i; | |
| 875 float critical_volume_comparison; | |
| 876 float r1; | |
| 877 _Bool schedule_converged = false; | |
| 878 | |
| 879 | |
| 880 deco_phase_volume_time = run_time - run_time_start_of_deco_zone; | |
| 881 calc_surface_phase_volume_time(); | |
| 882 | |
| 883 for (i = 1; i <= 16; ++i) | |
| 884 { | |
| 885 phase_volume_time[i - 1] = | |
| 886 deco_phase_volume_time + surface_phase_volume_time[i - 1]; | |
| 887 critical_volume_comparison = (r1 = phase_volume_time[i - 1] - last_phase_volume_time[i - 1], fabs(r1)); | |
| 888 | |
| 889 if (critical_volume_comparison <= 1.0f) | |
| 890 { | |
| 891 schedule_converged = true; | |
| 892 } | |
| 893 } | |
| 894 | |
| 895 /* =============================================================================== */ | |
| 896 /* CRITICAL VOLUME DECISION TREE BETWEEN LINES 70 AND 99 */ | |
| 897 /* There are two options here. If the Critical Volume Agorithm setting is */ | |
| 898 /* "on" and the schedule is converged, or the Critical Volume Algorithm */ | |
| 899 /* setting was "off" in the first place, the program will re-assign variables */ | |
| 900 /* to their values at the start of ascent (end of bottom time) and process */ | |
| 901 /* a complete decompression schedule once again using all the same ascent */ | |
| 902 /* parameters and first stop depth. This decompression schedule will match */ | |
| 903 /* the last iteration of the Critical Volume Loop and the program will write */ | |
| 904 /* the final deco schedule to the output file. */ | |
| 905 | |
| 906 /* Note: if the Critical Volume Agorithm setting was "off", the final deco */ | |
| 907 /* schedule will be based on "Initial Allowable Supersaturation Gradients." */ | |
| 908 /* If it was "on", the final schedule will be based on "Adjusted Allowable */ | |
| 909 /* Supersaturation Gradients" (gradients that are "relaxed" as a result of */ | |
| 910 /* the Critical Volume Algorithm). */ | |
| 911 | |
| 912 /* If the Critical Volume Agorithm setting is "on" and the schedule is not */ | |
| 913 /* converged, the program will re-assign variables to their values at the */ | |
| 914 /* start of the deco zone and process another trial decompression schedule. */ | |
| 915 /* =============================================================================== */ | |
| 916 /* L70: */ | |
| 917 //Not more than 4 iteration allowed | |
| 918 count_critical_volume_iteration++; | |
| 919 if(count_critical_volume_iteration > 4) | |
| 920 { | |
| 921 //return CALC_FINAL_DECO; | |
| 922 if(calc_nulltime) | |
| 923 return CALC_FINAL_DECO; | |
| 924 else | |
| 925 return vpm_calc_final_deco(true); | |
| 926 } | |
| 927 if (schedule_converged || critical_volume_algorithm_off) | |
| 928 { | |
| 929 | |
| 930 //return CALC_FINAL_DECO; | |
| 931 if(calc_nulltime) | |
| 932 return CALC_FINAL_DECO; | |
| 933 else | |
| 934 return vpm_calc_final_deco(true); | |
| 935 /* final deco schedule */ | |
| 936 /* exit critical volume l */ | |
| 937 | |
| 938 /* =============================================================================== */ | |
| 939 /* IF SCHEDULE NOT CONVERGED, COMPUTE RELAXED ALLOWABLE SUPERSATURATION */ | |
| 940 /* GRADIENTS WITH VPM CRITICAL VOLUME ALGORITHM AND PROCESS ANOTHER */ | |
| 941 /* ITERATION OF THE CRITICAL VOLUME LOOP */ | |
| 942 /* =============================================================================== */ | |
| 943 | |
| 944 } else { | |
| 945 critical_volume(&deco_phase_volume_time); | |
| 946 deco_phase_volume_time = 0.; | |
| 947 run_time = run_time_start_of_deco_calc; | |
| 948 starting_depth = depth_start_of_deco_calc; | |
| 949 mix_number = mix_change[0]; | |
| 950 rate = rate_change[0]; | |
| 951 step_size = step_size_change[0]; | |
| 952 for (i = 1; i <= 16; ++i) | |
| 953 { | |
| 954 last_phase_volume_time[i - 1] = phase_volume_time[i - 1]; | |
| 955 helium_pressure[i - 1] = he_pressure_start_of_deco_zone[i - 1]; | |
| 956 nitrogen_pressure[i - 1] = n2_pressure_start_of_deco_zone[i - 1]; | |
| 957 } | |
| 958 if(calc_nulltime) | |
| 959 return CALC_CRITICAL; | |
| 960 else | |
| 961 return vpm_calc_critcal_volume(true, false); | |
| 962 } | |
| 963 /* end of critical volume decision */ | |
| 964 /* L100: */ | |
| 965 // }/* end of critical vol loop */ | |
| 966 } | |
| 967 | |
| 290 | 968 static void vpm_calc_deco_ceiling(void) |
| 38 | 969 { |
| 970 | |
| 971 short i; | |
| 972 // hw 1601209 float r1; | |
| 973 // hw 1601209 float stop_time; | |
| 974 // hw 1601209 int count = 0; | |
| 975 //static int dp_max; | |
| 976 //static float surfacetime; | |
| 977 // _Bool first_stop = false; | |
| 978 float tissue_He_saturation[16]; | |
| 979 float tissue_N2_saturation[16]; | |
| 877 | 980 float vpm_buehlmann_safety_gradient = 1.0f - (((float)pDiveSettings->vpm_conservatism) / 40); |
| 38 | 981 //max_first_stop_depth = fmaxf(first_stop_depth,max_first_stop_depth); |
| 982 | |
| 983 /** CALC DECO Ceiling ******************************************************************/ | |
| 984 /** Not when Future stops */ | |
| 985 if(vpm_calc_what == DECOSTOPS) | |
| 986 { | |
| 987 | |
| 988 for (i = 1; i <= 16; ++i) | |
| 989 { | |
| 990 helium_pressure[i - 1] = he_pressure_start_of_deco_zone[i - 1]; | |
| 991 nitrogen_pressure[i - 1] = n2_pressure_start_of_deco_zone[i - 1]; | |
| 992 } | |
| 993 run_time = run_time_start_of_ascent;// run_time_start_of_ascent; | |
| 994 starting_depth = depth_change[0]; | |
| 995 mix_number = mix_change[0]; | |
| 996 rate = rate_change[0]; | |
| 997 //gas_loadings_ascent_descen(helium_pressure,nitrogen_pressure, starting_depth, depth_start_of_deco_calc, rate, true); | |
| 998 | |
| 999 float deco_ceiling_depth = 0.0f; | |
| 1000 if(depth_start_of_deco_calc > max_deco_ceiling_depth) | |
| 1001 { | |
| 1002 calc_deco_ceiling(&deco_ceiling_depth, true); | |
| 1003 } | |
| 1004 if(buehlmannSafety) | |
| 1005 { | |
| 1006 for (i = 0; i < 16; i++) | |
| 1007 { | |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1008 tissue_He_saturation[i] = helium_pressure[i] / 10.0; |
|
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1009 tissue_N2_saturation[i] = nitrogen_pressure[i] / 10.0; |
| 38 | 1010 } |
| 1011 | |
| 1012 if(!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_ceiling_depth / 10.0f) + pInput->pressure_surface_bar)) | |
| 1013 { | |
| 1014 vpm_violates_buehlmann = true; | |
| 1015 do { | |
| 1016 deco_ceiling_depth += 0.1f; | |
| 1017 } while (!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_ceiling_depth / 10.0f) + pInput->pressure_surface_bar)); | |
| 1018 } | |
| 1019 } | |
| 1020 | |
| 1021 if (deco_ceiling_depth < depth_start_of_deco_calc) | |
| 1022 { | |
| 1023 projected_ascent(&depth_start_of_deco_calc, &rate, &deco_ceiling_depth, &step_size); | |
| 1024 } | |
| 1025 | |
| 1026 max_deco_ceiling_depth = fmaxf(max_deco_ceiling_depth,deco_ceiling_depth); | |
| 1027 | |
| 1028 if(depth_start_of_deco_calc > deco_ceiling_depth) | |
| 1029 { | |
| 1030 gas_loadings_ascent_descen(helium_pressure,nitrogen_pressure, depth_start_of_deco_calc,deco_ceiling_depth, rate, true); | |
| 1031 //surfacetime += segment_time; | |
| 1032 } | |
| 1033 | |
| 1034 if(vpm_b) | |
| 1035 { | |
| 1036 BOYLES_LAW_COMPENSATION(&max_deco_ceiling_depth, &deco_ceiling_depth, &step_size); | |
| 1037 } | |
| 1038 calc_deco_ceiling(&deco_ceiling_depth, false); | |
| 1039 | |
| 1040 // buehlmann safety | |
| 1041 if(vpm_violates_buehlmann) | |
| 1042 { | |
| 1043 for (i = 0; i < 16; i++) | |
| 1044 { | |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1045 tissue_He_saturation[i] = helium_pressure[i] / 10.0; |
|
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1046 tissue_N2_saturation[i] = nitrogen_pressure[i] / 10.0; |
| 38 | 1047 } |
| 1048 | |
| 1049 if(!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_ceiling_depth / 10.0f) + pInput->pressure_surface_bar)) | |
| 1050 { | |
| 1051 vpm_violates_buehlmann = true; | |
| 1052 do { | |
| 1053 deco_ceiling_depth += 0.1f; | |
| 1054 } while (!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_ceiling_depth / 10.0f) + pInput->pressure_surface_bar)); | |
| 1055 } | |
| 1056 } | |
| 1057 // output_ceiling_meter | |
| 1058 if(deco_ceiling_depth > first_stop_depth) | |
| 1059 deco_ceiling_depth = first_stop_depth; | |
| 1060 pDecoInfo->output_ceiling_meter = deco_ceiling_depth ; | |
| 1061 } | |
| 1062 else | |
| 1063 { | |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1064 pDecoInfo->output_ceiling_meter = 0.0; |
| 38 | 1065 } |
| 1066 | |
| 1067 // fix hw 160627 | |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1068 if(pDecoInfo->output_ceiling_meter < 0.0) |
|
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1069 pDecoInfo->output_ceiling_meter = 0.0; |
| 38 | 1070 |
| 1071 /*** End CALC ceiling ***************************************************/ | |
| 1072 } | |
| 1073 | |
| 1074 | |
| 1075 /* =============================================================================== */ | |
| 1076 /* DECO STOP LOOP BLOCK FOR FINAL DECOMPRESSION SCHEDULE */ | |
| 1077 /* =============================================================================== */ | |
| 1078 | |
| 290 | 1079 static int vpm_calc_final_deco(_Bool begin) |
| 38 | 1080 { |
| 1081 short i; | |
| 1082 float r1; | |
| 1083 float stop_time; | |
| 1084 int count = 0; | |
| 1085 static int dp_max; | |
| 1086 static float surfacetime; | |
| 1087 _Bool first_stop = false; | |
| 902 | 1088 float roundingValue = 0.0; |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1089 |
| 902 | 1090 uint16_t stop_time_seconds; |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1091 |
| 38 | 1092 max_first_stop_depth = fmaxf(first_stop_depth,max_first_stop_depth); |
| 1093 if(begin) | |
| 1094 { | |
| 1095 gCNS_VPM = 0; | |
| 1096 dp_max = 0; | |
| 1097 for (i = 1; i <= 16; ++i) | |
| 1098 { | |
| 1099 helium_pressure[i - 1] = | |
| 1100 he_pressure_start_of_ascent[i - 1]; | |
| 1101 nitrogen_pressure[i - 1] = | |
| 1102 n2_pressure_start_of_ascent[i - 1]; | |
| 1103 } | |
| 1104 run_time = run_time_start_of_ascent;// run_time_start_of_ascent; | |
| 1105 starting_depth = depth_change[0]; | |
| 1106 mix_number = mix_change[0]; | |
| 1107 rate = rate_change[0]; | |
| 1108 step_size = step_size_change[0]; | |
| 1109 deco_stop_depth = first_stop_depth; | |
| 1110 max_first_stop_depth = fmaxf(first_stop_depth,max_first_stop_depth); | |
| 1111 last_run_time = 0.; | |
| 1112 | |
| 1113 | |
| 1114 | |
| 1115 /* =============================================================================== */ | |
| 1116 /* DECO STOP LOOP BLOCK FOR FINAL DECOMPRESSION SCHEDULE */ | |
| 1117 /* =============================================================================== */ | |
| 1118 surfacetime = 0; | |
| 1119 first_stop = true; | |
| 1120 } | |
| 1121 | |
| 1122 while(true) /* loop will run continuous until there is an break statement */ | |
| 1123 { | |
| 1124 if(starting_depth > deco_stop_depth) | |
| 1125 { | |
| 1126 gas_loadings_ascent_descen(helium_pressure,nitrogen_pressure, starting_depth,deco_stop_depth, rate, first_stop); | |
| 1127 surfacetime += segment_time; | |
| 1128 } | |
| 1129 | |
| 1130 /* =============================================================================== */ | |
| 1131 /* DURING FINAL DECOMPRESSION SCHEDULE PROCESS, COMPUTE MAXIMUM ACTUAL */ | |
| 1132 /* SUPERSATURATION GRADIENT RESULTING IN EACH COMPARTMENT */ | |
| 1133 /* If there is a repetitive dive, this will be used later in the VPM */ | |
| 1134 /* Repetitive Algorithm to adjust the values for critical radii. */ | |
| 1135 /* =============================================================================== */ | |
| 1136 if(vpm_calc_what == DECOSTOPS) | |
| 1137 calc_max_actual_gradient(&deco_stop_depth); | |
| 1138 | |
| 1139 if (deco_stop_depth <= 0.0f) { | |
| 1140 break; | |
| 1141 } | |
| 1142 if (number_of_changes > 1) | |
| 1143 { | |
| 1144 int i1 = number_of_changes; | |
| 1145 for (i = 2; i <= i1; ++i) | |
| 1146 { | |
| 1147 if (depth_change[i - 1] >= deco_stop_depth) | |
| 1148 { | |
| 1149 mix_number = mix_change[i - 1]; | |
| 1150 rate = rate_change[i - 1]; | |
| 1151 step_size = step_size_change[i - 1]; | |
| 1152 } | |
| 1153 } | |
| 1154 } | |
| 1155 | |
| 1156 if(first_stop) | |
| 1157 { | |
| 1158 run_time_first_stop = run_time; | |
| 1159 first_stop = false; | |
| 1160 } | |
| 1161 if(vpm_b) | |
| 1162 { | |
| 1163 BOYLES_LAW_COMPENSATION(&max_first_stop_depth, &deco_stop_depth, &step_size); | |
| 1164 } | |
| 1165 decompression_stop(&deco_stop_depth, &step_size, true); | |
| 1166 | |
| 1167 /* =============================================================================== */ | |
| 1168 /* This next bit justs rounds up the stop time at the first stop to be in */ | |
| 1169 /* whole increments of the minimum stop time (to make for a nice deco table). */ | |
| 1170 /* =============================================================================== */ | |
| 1171 | |
| 1172 if (last_run_time == 0.0f) | |
| 1173 { | |
| 1174 r1 = segment_time / minimum_deco_stop_time + 0.5f; | |
| 1175 stop_time = r_int(&r1) * minimum_deco_stop_time; | |
| 1176 } else { | |
| 1177 stop_time = run_time - last_run_time; | |
| 1178 } | |
| 1179 stop_time = segment_time; | |
| 1180 surfacetime += stop_time; | |
| 1181 if((vpm_calc_what == DECOSTOPS) || (vpm_calc_what == BAILOUTSTOPS)) | |
| 1182 { | |
| 1183 int dp = 0; | |
| 1184 if(deco_stop_depth == (float)pDiveSettings->last_stop_depth_bar * 10) | |
| 1185 { | |
| 1186 dp = 0; | |
| 1187 } | |
| 1188 else | |
| 1189 { | |
| 902 | 1190 roundingValue = (deco_stop_depth - (pDiveSettings->input_second_to_last_stop_depth_bar * 10.0)) / step_size; |
| 1191 dp = 1 + r_nint(&roundingValue); | |
| 38 | 1192 } |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1193 |
|
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1194 //dp_max = (int)fmaxf(dp_max,dp); |
|
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1195 if(dp > dp_max) |
|
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1196 { |
|
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1197 dp_max = dp; |
|
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1198 } |
| 38 | 1199 if(dp < DECOINFO_STRUCT_MAX_STOPS) |
| 1200 { | |
| 902 | 1201 stop_time_seconds = (uint16_t)(fminf((999.9 * 60.0), (stop_time *60.0))); |
| 38 | 1202 // |
| 1203 | |
| 1204 //if(vpm_calc_what == DECOSTOPS) | |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1205 pDecoInfo->output_stop_length_seconds[dp] = stop_time_seconds; |
| 38 | 1206 //else |
| 1207 //decostop_bailout[dp] = (unsigned short)stop_time_seconds; | |
| 1208 } | |
| 1209 } | |
| 1210 | |
| 1211 | |
| 1212 /* =============================================================================== */ | |
| 1213 /* DURING FINAL DECOMPRESSION SCHEDULE, IF MINIMUM STOP TIME PARAMETER IS A */ | |
| 1214 /* WHOLE NUMBER (i.e. 1 minute) THEN WRITE DECO SCHEDULE USING short */ | |
| 1215 /* NUMBERS (looks nicer). OTHERWISE, USE DECIMAL NUMBERS. */ | |
| 1216 /* Note: per the request of a noted exploration diver(!), program now allows */ | |
| 1217 /* a minimum stop time of less than one minute so that total ascent time can */ | |
| 1218 /* be minimized on very long dives. In fact, with step size set at 1 fsw or */ | |
| 1219 /* 0.2 msw and minimum stop time set at 0.1 minute (6 seconds), a near */ | |
| 1220 /* continuous decompression schedule can be computed. */ | |
| 1221 /* =============================================================================== */ | |
| 1222 | |
| 1223 starting_depth = deco_stop_depth; | |
| 877 | 1224 if(deco_stop_depth == (float)pDiveSettings->last_stop_depth_bar * 10) |
| 1225 deco_stop_depth = 0; | |
| 38 | 1226 else |
| 1227 { | |
| 1228 deco_stop_depth = deco_stop_depth - step_size; | |
| 877 | 1229 deco_stop_depth = fmaxf(deco_stop_depth,(float)pDiveSettings->last_stop_depth_bar * 10); |
| 38 | 1230 } |
| 1231 | |
| 1232 last_run_time = run_time; | |
| 1233 count++; | |
| 1234 //if(count > 14) | |
| 1235 //return CALC_FINAL_DECO2; | |
| 1236 /* L80: */ | |
| 1237 } /* for final deco sche */ | |
| 1238 | |
| 1239 if( (vpm_calc_what == DECOSTOPS) || (vpm_calc_what == BAILOUTSTOPS)) | |
| 1240 { | |
| 1241 for(int dp = dp_max +1;dp < DECOINFO_STRUCT_MAX_STOPS;dp++) | |
| 1242 { | |
| 1243 //if(vpm_calc_what == DECOSTOPS) | |
| 1244 pDecoInfo->output_stop_length_seconds[dp] = 0; | |
| 1245 //else | |
| 1246 //decostop_bailout[dp] = 0; | |
| 1247 } | |
| 1248 } | |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1249 pDecoInfo->output_time_to_surface_seconds = (int)(surfacetime * 60.0); |
| 38 | 1250 pDecoInfo->output_ndl_seconds = 0; |
| 1251 | |
| 1252 vpm_calc_deco_ceiling(); | |
| 1253 /* end of deco stop lo */ | |
| 1254 return CALC_END; | |
| 1255 } | |
| 1256 | |
| 1257 /* =============================================================================== */ | |
| 1258 /* SUBROUTINE NUCLEAR_REGENERATION */ | |
| 1259 /* Purpose: This subprogram calculates the regeneration of VPM critical */ | |
| 1260 /* radii that takes place over the dive time. The regeneration time constant */ | |
| 1261 /* has a time scale of weeks so this will have very little impact on dives of */ | |
| 1262 /* normal length, but will have a major impact for saturation dives. */ | |
| 1263 /* =============================================================================== */ | |
| 1264 | |
| 290 | 1265 static int nuclear_regeneration(float *dive_time) |
| 38 | 1266 { |
| 1267 /* Local variables */ | |
| 1268 float crush_pressure_adjust_ratio_he, | |
| 1269 ending_radius_n2, | |
| 1270 ending_radius_he; | |
| 1271 short i; | |
| 1272 float crushing_pressure_pascals_n2, | |
| 1273 crushing_pressure_pascals_he, | |
| 1274 adj_crush_pressure_n2_pascals, | |
| 1275 adj_crush_pressure_he_pascals, | |
| 1276 crush_pressure_adjust_ratio_n2; | |
| 1277 | |
| 1278 /* loop */ | |
| 1279 /* =============================================================================== */ | |
| 1280 /* CALCULATIONS */ | |
| 1281 /* First convert the maximum crushing pressure obtained for each compartment */ | |
| 1282 /* to Pascals. Next, compute the ending radius for helium and nitrogen */ | |
| 1283 /* critical nuclei in each compartment. */ | |
| 1284 /* =============================================================================== */ | |
| 1285 | |
| 1286 for (i = 1; i <= 16; ++i) | |
| 1287 { | |
| 1288 crushing_pressure_pascals_he = | |
| 1289 pVpm->max_crushing_pressure_he[i - 1] / UNITS_FACTOR * 101325.0f; | |
| 1290 crushing_pressure_pascals_n2 = | |
| 1291 pVpm->max_crushing_pressure_n2[i - 1] / UNITS_FACTOR * 101325.0f; | |
| 1292 ending_radius_he = | |
| 1293 1.0f / (crushing_pressure_pascals_he / | |
| 1294 ((SKIN_COMPRESSION_GAMMAC - SURFACE_TENSION_GAMMA) * 2.0f) + | |
| 1295 1.0f / pVpm->adjusted_critical_radius_he[i - 1]); | |
| 1296 ending_radius_n2 = | |
| 1297 1.0f / (crushing_pressure_pascals_n2 / | |
| 1298 ((SKIN_COMPRESSION_GAMMAC - SURFACE_TENSION_GAMMA) * 2.0f) + | |
| 1299 1.0f / pVpm->adjusted_critical_radius_n2[i - 1]); | |
| 1300 | |
| 1301 /* =============================================================================== */ | |
| 1302 /* A "regenerated" radius for each nucleus is now calculated based on the */ | |
| 1303 /* regeneration time constant. This means that after application of */ | |
| 1304 /* crushing pressure and reduction in radius, a nucleus will slowly grow */ | |
| 1305 /* back to its original initial radius over a period of time. This */ | |
| 1306 /* phenomenon is probabilistic in nature and depends on absolute temperature. */ | |
| 1307 /* It is independent of crushing pressure. */ | |
| 1308 /* =============================================================================== */ | |
| 1309 | |
| 1310 regenerated_radius_he[i - 1] = | |
| 1311 pVpm->adjusted_critical_radius_he[i - 1] + | |
| 1312 (ending_radius_he - pVpm->adjusted_critical_radius_he[i - 1]) * | |
| 1313 expf(-(*dive_time) / REGENERATION_TIME_CONSTANT); | |
| 1314 regenerated_radius_n2[i - 1] = | |
| 1315 pVpm->adjusted_critical_radius_n2[i - 1] + | |
| 1316 (ending_radius_n2 - pVpm->adjusted_critical_radius_n2[i - 1]) * | |
| 1317 expf(-(*dive_time) / REGENERATION_TIME_CONSTANT); | |
| 1318 | |
| 1319 /* =============================================================================== */ | |
| 1320 /* In order to preserve reference back to the initial critical radii after */ | |
| 1321 /* regeneration, an "adjusted crushing pressure" for the nuclei in each */ | |
| 1322 /* compartment must be computed. In other words, this is the value of */ | |
| 1323 /* crushing pressure that would have reduced the original nucleus to the */ | |
| 1324 /* to the present radius had regeneration not taken place. The ratio */ | |
| 1325 /* for adjusting crushing pressure is obtained from algebraic manipulation */ | |
| 1326 /* of the standard VPM equations. The adjusted crushing pressure, in lieu */ | |
| 1327 /* of the original crushing pressure, is then applied in the VPM Critical */ | |
| 1328 /* Volume Algorithm and the VPM Repetitive Algorithm. */ | |
| 1329 /* =============================================================================== */ | |
| 1330 | |
| 1331 crush_pressure_adjust_ratio_he = | |
| 1332 ending_radius_he * (pVpm->adjusted_critical_radius_he[i - 1] - | |
| 1333 regenerated_radius_he[i - 1]) / | |
| 1334 (regenerated_radius_he[i - 1] * | |
| 1335 (pVpm->adjusted_critical_radius_he[i - 1] - | |
| 1336 ending_radius_he)); | |
| 1337 crush_pressure_adjust_ratio_n2 = | |
| 1338 ending_radius_n2 * (pVpm->adjusted_critical_radius_n2[i - 1] - | |
| 1339 regenerated_radius_n2[i - 1]) / | |
| 1340 (regenerated_radius_n2[i - 1] * | |
| 1341 (pVpm->adjusted_critical_radius_n2[i - 1] - | |
| 1342 ending_radius_n2)); | |
| 1343 adj_crush_pressure_he_pascals = | |
| 1344 crushing_pressure_pascals_he * crush_pressure_adjust_ratio_he; | |
| 1345 adj_crush_pressure_n2_pascals = | |
| 1346 crushing_pressure_pascals_n2 * crush_pressure_adjust_ratio_n2; | |
| 1347 pVpm->adjusted_crushing_pressure_he[i - 1] = | |
| 1348 adj_crush_pressure_he_pascals / 101325.0f * UNITS_FACTOR; | |
| 1349 pVpm->adjusted_crushing_pressure_n2[i - 1] = | |
| 1350 adj_crush_pressure_n2_pascals / 101325.0f * UNITS_FACTOR; | |
| 1351 } | |
| 1352 return 0; | |
| 1353 } /* nuclear_regeneration */ | |
| 1354 | |
| 1355 /* =============================================================================== */ | |
| 1356 /* SUBROUTINE CALC_INITIAL_ALLOWABLE_GRADIENT */ | |
| 1357 /* Purpose: This subprogram calculates the initial allowable gradients for */ | |
| 1358 /* helium and nitrogren in each compartment. These are the gradients that */ | |
| 1359 /* will be used to set the deco ceiling on the first pass through the deco */ | |
| 1360 /* loop. If the Critical Volume Algorithm is set to "off", then these */ | |
| 1361 /* gradients will determine the final deco schedule. Otherwise, if the */ | |
| 1362 /* Critical Volume Algorithm is set to "on", these gradients will be further */ | |
| 1363 /* "relaxed" by the Critical Volume Algorithm subroutine. The initial */ | |
| 1364 /* allowable gradients are referred to as "PssMin" in the papers by Yount */ | |
| 1365 /* and colleauges, i.e., the minimum supersaturation pressure gradients */ | |
| 1366 /* that will probe bubble formation in the VPM nuclei that started with the */ | |
| 1367 /* designated minimum initial radius (critical radius). */ | |
| 1368 | |
| 1369 /* The initial allowable gradients are computed directly from the */ | |
| 1370 /* "regenerated" radii after the Nuclear Regeneration subroutine. These */ | |
| 1371 /* gradients are tracked separately for helium and nitrogen. */ | |
| 1372 /* =============================================================================== */ | |
| 1373 | |
| 290 | 1374 static int calc_initial_allowable_gradient() |
| 38 | 1375 { |
| 1376 float initial_allowable_grad_n2_pa, | |
| 1377 initial_allowable_grad_he_pa; | |
| 1378 short i; | |
| 1379 | |
| 1380 /* loop */ | |
| 1381 /* =============================================================================== */ | |
| 1382 /* CALCULATIONS */ | |
| 1383 /* The initial allowable gradients are computed in Pascals and then converted */ | |
| 1384 /* to the diving pressure units. Two different sets of arrays are used to */ | |
| 1385 /* save the calculations - Initial Allowable Gradients and Allowable */ | |
| 1386 /* Gradients. The Allowable Gradients are assigned the values from Initial */ | |
| 1387 /* Allowable Gradients however the Allowable Gradients can be changed later */ | |
| 1388 /* by the Critical Volume subroutine. The values for the Initial Allowable */ | |
| 1389 /* Gradients are saved in a global array for later use by both the Critical */ | |
| 1390 /* Volume subroutine and the VPM Repetitive Algorithm subroutine. */ | |
| 1391 /* =============================================================================== */ | |
| 1392 | |
| 1393 for (i = 1; i <= 16; ++i) | |
| 1394 { | |
| 1395 initial_allowable_grad_n2_pa = | |
| 1396 SURFACE_TENSION_GAMMA * 2.0f * | |
| 1397 (SKIN_COMPRESSION_GAMMAC - SURFACE_TENSION_GAMMA) / | |
| 1398 (regenerated_radius_n2[i - 1] * SKIN_COMPRESSION_GAMMAC); | |
| 1399 | |
| 1400 initial_allowable_grad_he_pa = | |
| 1401 SURFACE_TENSION_GAMMA * 2.0f * | |
| 1402 (SKIN_COMPRESSION_GAMMAC - SURFACE_TENSION_GAMMA) / | |
| 1403 (regenerated_radius_he[i - 1] * SKIN_COMPRESSION_GAMMAC); | |
| 1404 | |
| 1405 pVpm->initial_allowable_gradient_n2[i - 1] = | |
| 1406 initial_allowable_grad_n2_pa / 101325.0f * UNITS_FACTOR; | |
| 1407 | |
| 1408 pVpm->initial_allowable_gradient_he[i - 1] = | |
| 1409 initial_allowable_grad_he_pa / 101325.0f * UNITS_FACTOR; | |
| 1410 | |
| 1411 allowable_gradient_he[i - 1] = | |
| 1412 pVpm->initial_allowable_gradient_he[i - 1]; | |
| 1413 | |
| 1414 allowable_gradient_n2[i - 1] = | |
| 1415 pVpm->initial_allowable_gradient_n2[i - 1]; | |
| 1416 } | |
| 1417 return 0; | |
| 1418 } /* calc_initial_allowable_gradient */ | |
| 1419 | |
| 1420 /* =============================================================================== */ | |
| 1421 /* SUBROUTINE CALC_DECO_CEILING */ | |
| 1422 /* Purpose: This subprogram calculates the deco ceiling (the safe ascent */ | |
| 1423 /* depth) in each compartment, based on the allowable gradients, and then */ | |
| 1424 /* finds the deepest deco ceiling across all compartments. This deepest */ | |
| 1425 /* value (Deco Ceiling Depth) is then used by the Decompression Stop */ | |
| 1426 /* subroutine to determine the actual deco schedule. */ | |
| 1427 /* =============================================================================== */ | |
| 1428 | |
| 290 | 1429 static int calc_deco_ceiling(float *deco_ceiling_depth,_Bool fallowable) |
| 38 | 1430 { |
| 1431 /* System generated locals */ | |
| 1432 float r1, r2; | |
| 1433 /* Local variables */ | |
| 1434 float weighted_allowable_gradient; | |
| 1435 short i; | |
| 1436 float compartment_deco_ceiling[16], | |
| 1437 gas_loading, | |
| 1438 tolerated_ambient_pressure; | |
| 1439 float gradient_he, gradient_n2; | |
| 1440 | |
| 1441 if(!vpm_b) | |
| 1442 fallowable = true; | |
| 1443 /* loop */ | |
| 1444 /* =============================================================================== */ | |
| 1445 /* CALCULATIONS */ | |
| 1446 /* Since there are two sets of allowable gradients being tracked, one for */ | |
| 1447 /* helium and one for nitrogen, a "weighted allowable gradient" must be */ | |
| 1448 /* computed each time based on the proportions of helium and nitrogen in */ | |
| 1449 /* each compartment. This proportioning follows the methodology of */ | |
| 1450 /* Buhlmann/Keller. If there is no helium and nitrogen in the compartment, */ | |
| 1451 /* such as after extended periods of oxygen breathing, then the minimum value */ | |
| 1452 /* across both gases will be used. It is important to note that if a */ | |
| 1453 /* compartment is empty of helium and nitrogen, then the weighted allowable */ | |
| 1454 /* gradient formula cannot be used since it will result in division by zero. */ | |
| 1455 /* =============================================================================== */ | |
| 1456 | |
| 1457 for (i = 1; i <= 16; ++i) | |
| 1458 { | |
| 1459 | |
| 1460 // abfrage raus und pointer stattdessen | |
| 1461 if(fallowable){ | |
| 1462 gradient_he = allowable_gradient_he[i-1]; | |
| 1463 gradient_n2 = allowable_gradient_n2[i-1]; | |
| 1464 } | |
| 1465 else{ | |
| 1466 gradient_he = deco_gradient_he[i-1]; | |
| 1467 gradient_n2 = deco_gradient_n2[i-1]; | |
| 1468 } | |
| 1469 | |
| 1470 gas_loading = helium_pressure[i - 1] + nitrogen_pressure[i - 1]; | |
| 1471 | |
| 1472 if (gas_loading > 0) | |
| 1473 { | |
| 1474 weighted_allowable_gradient = | |
| 1475 (gradient_he * helium_pressure[i - 1] + | |
| 1476 gradient_n2 * nitrogen_pressure[i - 1]) / | |
| 1477 (helium_pressure[i - 1] + nitrogen_pressure[i - 1]); | |
| 1478 | |
| 1479 tolerated_ambient_pressure = | |
| 1480 gas_loading + | |
| 1481 CONSTANT_PRESSURE_OTHER_GASES - | |
| 1482 weighted_allowable_gradient; | |
| 1483 } | |
| 1484 else | |
| 1485 { | |
| 1486 /* Computing MIN */ | |
| 1487 r1 = gradient_he; | |
| 1488 r2 = gradient_n2; | |
| 1489 weighted_allowable_gradient = fminf(r1,r2); | |
| 1490 | |
| 1491 tolerated_ambient_pressure = | |
| 1492 CONSTANT_PRESSURE_OTHER_GASES - weighted_allowable_gradient; | |
| 1493 } | |
| 1494 | |
| 1495 /* =============================================================================== */ | |
| 1496 /* The tolerated ambient pressure cannot be less than zero absolute, i.e., */ | |
| 1497 /* the vacuum of outer space! */ | |
| 1498 /* =============================================================================== */ | |
| 1499 | |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1500 if (tolerated_ambient_pressure < 0.0) { |
|
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1501 tolerated_ambient_pressure = 0.0; |
| 38 | 1502 } |
| 1503 compartment_deco_ceiling[i - 1] = | |
| 1504 tolerated_ambient_pressure - barometric_pressure; | |
| 1505 } | |
| 1506 | |
| 1507 /* =============================================================================== */ | |
| 1508 /* The Deco Ceiling Depth is computed in a loop after all of the individual */ | |
| 1509 /* compartment deco ceilings have been calculated. It is important that the */ | |
| 1510 /* Deco Ceiling Depth (max deco ceiling across all compartments) only be */ | |
| 1511 /* extracted from the compartment values and not be compared against some */ | |
| 1512 /* initialization value. For example, if MAX(Deco_Ceiling_Depth . .) was */ | |
| 1513 /* compared against zero, this could cause a program lockup because sometimes */ | |
| 1514 /* the Deco Ceiling Depth needs to be negative (but not less than zero */ | |
| 1515 /* absolute ambient pressure) in order to decompress to the last stop at zero */ | |
| 1516 /* depth. */ | |
| 1517 /* =============================================================================== */ | |
| 1518 | |
| 1519 *deco_ceiling_depth = compartment_deco_ceiling[0]; | |
| 1520 for (i = 2; i <= 16; ++i) | |
| 1521 { | |
| 1522 /* Computing MAX */ | |
| 1523 r1 = *deco_ceiling_depth; | |
| 1524 r2 = compartment_deco_ceiling[i - 1]; | |
| 1525 *deco_ceiling_depth = fmaxf(r1,r2); | |
| 1526 } | |
| 1527 return 0; | |
| 1528 } /* calc_deco_ceiling */ | |
| 1529 | |
| 1530 | |
| 1531 | |
| 1532 /* =============================================================================== */ | |
| 1533 /* SUBROUTINE CALC_MAX_ACTUAL_GRADIENT */ | |
| 1534 /* Purpose: This subprogram calculates the actual supersaturation gradient */ | |
| 1535 /* obtained in each compartment as a result of the ascent profile during */ | |
| 1536 /* decompression. Similar to the concept with crushing pressure, the */ | |
| 1537 /* supersaturation gradients are not cumulative over a multi-level, staged */ | |
| 1538 /* ascent. Rather, it will be the maximum value obtained in any one discrete */ | |
| 1539 /* step of the overall ascent. Thus, the program must compute and store the */ | |
| 1540 /* maximum actual gradient for each compartment that was obtained across all */ | |
| 1541 /* steps of the ascent profile. This subroutine is invoked on the last pass */ | |
| 1542 /* through the deco stop loop block when the final deco schedule is being */ | |
| 1543 /* generated. */ | |
| 1544 /* */ | |
| 1545 /* The max actual gradients are later used by the VPM Repetitive Algorithm to */ | |
| 1546 /* determine if adjustments to the critical radii are required. If the max */ | |
| 1547 /* actual gradient did not exceed the initial alllowable gradient, then no */ | |
| 1548 /* adjustment will be made. However, if the max actual gradient did exceed */ | |
| 1549 /* the intitial allowable gradient, such as permitted by the Critical Volume */ | |
| 1550 /* Algorithm, then the critical radius will be adjusted (made larger) on the */ | |
| 1551 /* repetitive dive to compensate for the bubbling that was allowed on the */ | |
| 1552 /* previous dive. The use of the max actual gradients is intended to prevent */ | |
| 1553 /* the repetitive algorithm from being overly conservative. */ | |
| 1554 /* =============================================================================== */ | |
| 1555 | |
| 290 | 1556 static int calc_max_actual_gradient(float *deco_stop_depth) |
| 38 | 1557 { |
| 1558 /* System generated locals */ | |
| 1559 float r1; | |
| 1560 | |
| 1561 /* Local variables */ | |
| 1562 short i; | |
| 1563 float compartment_gradient; | |
| 1564 | |
| 1565 /* loop */ | |
| 1566 /* =============================================================================== */ | |
| 1567 /* CALCULATIONS */ | |
| 1568 /* Note: negative supersaturation gradients are meaningless for this */ | |
| 1569 /* application, so the values must be equal to or greater than zero. */ | |
| 1570 /* =============================================================================== */ | |
| 1571 | |
| 1572 for (i = 1; i <= 16; ++i) | |
| 1573 { | |
| 1574 compartment_gradient = | |
| 1575 helium_pressure[i - 1] + | |
| 1576 nitrogen_pressure[i - 1] + | |
| 1577 CONSTANT_PRESSURE_OTHER_GASES - | |
| 1578 (*deco_stop_depth + barometric_pressure); | |
| 1579 if (compartment_gradient <= 0.0f) { | |
| 1580 compartment_gradient = 0.0f; | |
| 1581 } | |
| 1582 /* Computing MAX */ | |
| 1583 r1 = pVpm->max_actual_gradient[i - 1]; | |
| 1584 pVpm->max_actual_gradient[i - 1] = fmaxf(r1, compartment_gradient); | |
| 1585 } | |
| 1586 return 0; | |
| 1587 } /* calc_max_actual_gradient */ | |
| 1588 | |
| 1589 /* =============================================================================== */ | |
| 1590 /* SUBROUTINE CALC_SURFACE_PHASE_VOLUME_TIME */ | |
| 1591 /* Purpose: This subprogram computes the surface portion of the total phase */ | |
| 1592 /* volume time. This is the time factored out of the integration of */ | |
| 1593 /* supersaturation gradient x time over the surface interval. The VPM */ | |
| 1594 /* considers the gradients that allow bubbles to form or to drive bubble */ | |
| 1595 /* growth both in the water and on the surface after the dive. */ | |
| 1596 | |
| 1597 /* This subroutine is a new development to the VPM algorithm in that it */ | |
| 1598 /* computes the time course of supersaturation gradients on the surface */ | |
| 1599 /* when both helium and nitrogen are present. Refer to separate write-up */ | |
| 1600 /* for a more detailed explanation of this algorithm. */ | |
| 1601 /* =============================================================================== */ | |
| 1602 | |
| 290 | 1603 static int calc_surface_phase_volume_time() |
| 38 | 1604 { |
| 1605 /* Local variables */ | |
| 1606 float decay_time_to_zero_gradient; | |
| 1607 short i; | |
| 1608 float integral_gradient_x_time, | |
| 1609 surface_inspired_n2_pressure; | |
| 1610 | |
| 1611 /* loop */ | |
| 1612 /* =============================================================================== */ | |
| 1613 /* CALCULATIONS */ | |
| 1614 /* =============================================================================== */ | |
| 1615 | |
| 1616 surface_inspired_n2_pressure = | |
| 1617 (barometric_pressure - WATER_VAPOR_PRESSURE) * 0.79f; | |
| 1618 for (i = 1; i <= 16; ++i) | |
| 1619 { | |
| 1620 if (nitrogen_pressure[i - 1] > surface_inspired_n2_pressure) | |
| 1621 { | |
| 1622 surface_phase_volume_time[i - 1] = | |
| 1623 (helium_pressure[i - 1] / HELIUM_TIME_CONSTANT[i - 1] + | |
| 1624 (nitrogen_pressure[i - 1] - surface_inspired_n2_pressure) / | |
| 1625 NITROGEN_TIME_CONSTANT[i - 1]) / | |
| 1626 (helium_pressure[i - 1] + nitrogen_pressure[i - 1] - | |
| 1627 surface_inspired_n2_pressure); | |
| 1628 } else if (nitrogen_pressure[i - 1] <= surface_inspired_n2_pressure && | |
| 1629 helium_pressure[i - 1] + nitrogen_pressure[i - 1] >= surface_inspired_n2_pressure) | |
| 1630 { | |
| 1631 decay_time_to_zero_gradient = | |
| 1632 1.0f / (NITROGEN_TIME_CONSTANT[i - 1] - HELIUM_TIME_CONSTANT[i - 1]) * | |
| 1633 log((surface_inspired_n2_pressure - nitrogen_pressure[i - 1]) / | |
| 1634 helium_pressure[i - 1]); | |
| 1635 integral_gradient_x_time = | |
| 1636 helium_pressure[i - 1] / | |
| 1637 HELIUM_TIME_CONSTANT[i - 1] * | |
| 1638 (1.0f - expf(-HELIUM_TIME_CONSTANT[i - 1] * | |
| 1639 decay_time_to_zero_gradient)) + | |
| 1640 (nitrogen_pressure[i - 1] - surface_inspired_n2_pressure) / | |
| 1641 NITROGEN_TIME_CONSTANT[i - 1] * | |
| 1642 (1.0f - expf(-NITROGEN_TIME_CONSTANT[i - 1] * | |
| 1643 decay_time_to_zero_gradient)); | |
| 1644 surface_phase_volume_time[i - 1] = | |
| 1645 integral_gradient_x_time / | |
| 1646 (helium_pressure[i - 1] + | |
| 1647 nitrogen_pressure[i - 1] - | |
| 1648 surface_inspired_n2_pressure); | |
| 1649 } else { | |
| 1650 surface_phase_volume_time[i - 1] = 0.0f; | |
| 1651 } | |
| 1652 } | |
| 1653 return 0; | |
| 1654 } /* calc_surface_phase_volume_time */ | |
| 1655 | |
| 1656 /* =============================================================================== */ | |
| 1657 /* SUBROUTINE CRITICAL_VOLUME */ | |
| 1658 /* Purpose: This subprogram applies the VPM Critical Volume Algorithm. This */ | |
| 1659 /* algorithm will compute "relaxed" gradients for helium and nitrogen based */ | |
| 1660 /* on the setting of the Critical Volume Parameter Lambda. */ | |
| 1661 /* =============================================================================== */ | |
| 1662 | |
| 290 | 1663 static int critical_volume(float *deco_phase_volume_time) |
| 38 | 1664 { |
| 1665 /* System generated locals */ | |
| 1666 float r1; | |
| 1667 | |
| 1668 /* Local variables */ | |
| 1669 float initial_allowable_grad_n2_pa, | |
| 1670 initial_allowable_grad_he_pa, | |
| 1671 parameter_lambda_pascals, b, | |
| 1672 c; | |
| 1673 short i; | |
| 1674 float new_allowable_grad_n2_pascals, | |
| 1675 phase_volume_time[16], | |
| 1676 new_allowable_grad_he_pascals, | |
| 1677 adj_crush_pressure_n2_pascals, | |
| 1678 adj_crush_pressure_he_pascals; | |
| 1679 | |
| 1680 /* loop */ | |
| 1681 /* =============================================================================== */ | |
| 1682 /* CALCULATIONS */ | |
| 1683 /* Note: Since the Critical Volume Parameter Lambda was defined in units of */ | |
| 1684 /* fsw-min in the original papers by Yount and colleauges, the same */ | |
| 1685 /* convention is retained here. Although Lambda is adjustable only in units */ | |
| 1686 /* of fsw-min in the program settings (range from 6500 to 8300 with default */ | |
| 1687 /* 7500), it will convert to the proper value in Pascals-min in this */ | |
| 1688 /* subroutine regardless of which diving pressure units are being used in */ | |
| 1689 /* the main program - feet of seawater (fsw) or meters of seawater (msw). */ | |
| 1690 /* The allowable gradient is computed using the quadratic formula (refer to */ | |
| 1691 /* separate write-up posted on the Deco List web site). */ | |
| 1692 /* =============================================================================== */ | |
| 1693 | |
| 1694 /** | |
| 1695 ****************************************************************************** | |
| 1696 * @brief critical_volume comment by hw | |
| 1697 * @version V0.0.1 | |
| 1698 * @date 19-April-2014 | |
| 1699 * @retval global: allowable_gradient_he[i], allowable_gradient_n2[i] | |
| 1700 ****************************************************************************** | |
| 1701 */ | |
| 1702 | |
| 1703 parameter_lambda_pascals = | |
| 1704 CRIT_VOLUME_PARAMETER_LAMBDA / 33.0f * 101325.0f; | |
| 1705 for (i = 1; i <= 16; ++i) | |
| 1706 { | |
| 1707 phase_volume_time[i - 1] = | |
| 1708 *deco_phase_volume_time + surface_phase_volume_time[i - 1]; | |
| 1709 } | |
| 1710 for (i = 1; i <= 16; ++i) | |
| 1711 { | |
| 1712 | |
| 1713 adj_crush_pressure_he_pascals = | |
| 1714 pVpm->adjusted_crushing_pressure_he[i - 1] / UNITS_FACTOR * 101325.0f; | |
| 1715 | |
| 1716 initial_allowable_grad_he_pa = | |
| 1717 pVpm->initial_allowable_gradient_he[i - 1] / UNITS_FACTOR * 101325.0f; | |
| 1718 | |
| 1719 b = initial_allowable_grad_he_pa + parameter_lambda_pascals * | |
| 1720 SURFACE_TENSION_GAMMA / ( | |
| 1721 SKIN_COMPRESSION_GAMMAC * phase_volume_time[i - 1]); | |
| 1722 | |
| 1723 c = SURFACE_TENSION_GAMMA * ( | |
| 1724 SURFACE_TENSION_GAMMA * ( | |
| 1725 parameter_lambda_pascals * adj_crush_pressure_he_pascals)) / | |
| 1726 (SKIN_COMPRESSION_GAMMAC * | |
| 1727 (SKIN_COMPRESSION_GAMMAC * phase_volume_time[i - 1])); | |
| 1728 /* Computing 2nd power */ | |
| 1729 | |
| 1730 r1 = b; | |
| 1731 | |
| 1732 new_allowable_grad_he_pascals = | |
| 1733 (b + sqrtf(r1 * r1 - c * 4.0f)) / 2.0f; | |
| 1734 | |
| 1735 /* modify global variable */ | |
| 1736 allowable_gradient_he[i - 1] = | |
| 1737 new_allowable_grad_he_pascals / 101325.0f * UNITS_FACTOR; | |
| 1738 } | |
| 1739 | |
| 1740 for (i = 1; i <= 16; ++i) | |
| 1741 { | |
| 1742 adj_crush_pressure_n2_pascals = | |
| 1743 pVpm->adjusted_crushing_pressure_n2[i - 1] / UNITS_FACTOR * 101325.0f; | |
| 1744 | |
| 1745 initial_allowable_grad_n2_pa = | |
| 1746 pVpm->initial_allowable_gradient_n2[i - 1] / UNITS_FACTOR * 101325.0f; | |
| 1747 | |
| 1748 b = initial_allowable_grad_n2_pa + parameter_lambda_pascals * | |
| 1749 SURFACE_TENSION_GAMMA / ( | |
| 1750 SKIN_COMPRESSION_GAMMAC * phase_volume_time[i - 1]); | |
| 1751 | |
| 1752 c = SURFACE_TENSION_GAMMA * | |
| 1753 (SURFACE_TENSION_GAMMA * | |
| 1754 (parameter_lambda_pascals * adj_crush_pressure_n2_pascals)) / | |
| 1755 (SKIN_COMPRESSION_GAMMAC * | |
| 1756 (SKIN_COMPRESSION_GAMMAC * phase_volume_time[i - 1])); | |
| 1757 /* Computing 2nd power */ | |
| 1758 | |
| 1759 r1 = b; | |
| 1760 | |
| 1761 new_allowable_grad_n2_pascals = | |
| 1762 (b + sqrtf(r1 * r1 - c * 4.0f)) / 2.0f; | |
| 1763 | |
| 1764 /* modify global variable */ | |
| 1765 allowable_gradient_n2[i - 1] = | |
| 1766 new_allowable_grad_n2_pascals / 101325.0f * UNITS_FACTOR; | |
| 1767 } | |
| 1768 return 0; | |
| 1769 } /* critical_volume */ | |
| 1770 | |
| 1771 /* =============================================================================== */ | |
| 1772 /* SUBROUTINE CALC_START_OF_DECO_ZONE */ | |
| 1773 /* Purpose: This subroutine uses the Bisection Method to find the depth at */ | |
| 1774 /* which the leading compartment just enters the decompression zone. */ | |
| 1775 /* Source: "Numerical Recipes in Fortran 77", Cambridge University Press, */ | |
| 1776 /* 1992. */ | |
| 1777 /* =============================================================================== */ | |
| 1778 | |
| 290 | 1779 static int calc_start_of_deco_zone(float *starting_depth, |
| 38 | 1780 float *rate, |
| 1781 float *depth_start_of_deco_zone) | |
| 1782 { | |
| 1783 /* Local variables */ | |
| 1784 float last_diff_change, | |
| 1785 initial_helium_pressure, | |
| 1786 mid_range_nitrogen_pressure; | |
| 1787 short i, j; | |
| 1788 float initial_inspired_n2_pressure, | |
| 1789 cpt_depth_start_of_deco_zone, | |
| 1790 low_bound, | |
| 1791 initial_inspired_he_pressure, | |
| 1792 high_bound_nitrogen_pressure, | |
| 1793 nitrogen_rate, | |
| 1794 function_at_mid_range, | |
| 1795 function_at_low_bound, | |
| 1796 high_bound, | |
| 1797 mid_range_helium_pressure, | |
| 1798 mid_range_time, | |
| 1799 starting_ambient_pressure, | |
| 1800 initial_nitrogen_pressure, | |
| 1801 function_at_high_bound; | |
| 1802 | |
| 1803 float time_to_start_of_deco_zone, | |
| 1804 high_bound_helium_pressure, | |
| 1805 helium_rate, | |
| 1806 differential_change; | |
| 1807 float fraction_helium_begin; | |
| 1808 float fraction_helium_end; | |
| 1809 float fraction_nitrogen_begin; | |
| 1810 float fraction_nitrogen_end; | |
| 1811 float ending_ambient_pressure; | |
| 1812 float time_test; | |
| 1813 | |
| 1814 | |
| 1815 /* loop */ | |
| 1816 /* =============================================================================== */ | |
| 1817 /* CALCULATIONS */ | |
| 1818 /* First initialize some variables */ | |
| 1819 /* =============================================================================== */ | |
| 1820 | |
| 1821 *depth_start_of_deco_zone = 0.0f; | |
| 1822 starting_ambient_pressure = *starting_depth + barometric_pressure; | |
| 1823 | |
| 1824 //>>>>>>>>>>>>>>>>>>>> | |
| 1825 //Test depth to calculate helium_rate and nitrogen_rate | |
| 1826 ending_ambient_pressure = starting_ambient_pressure/2; | |
| 1827 | |
| 1828 time_test = (ending_ambient_pressure - starting_ambient_pressure) / *rate; | |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1829 decom_get_inert_gases(starting_ambient_pressure / 10.0, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_begin, &fraction_helium_begin ); |
|
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1830 decom_get_inert_gases(ending_ambient_pressure / 10.0, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_end, &fraction_helium_end ); |
| 38 | 1831 initial_inspired_he_pressure = (starting_ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_helium_begin; |
| 1832 initial_inspired_n2_pressure = (starting_ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_nitrogen_begin; | |
| 1833 helium_rate = ((ending_ambient_pressure - WATER_VAPOR_PRESSURE)* fraction_helium_end - initial_inspired_he_pressure)/time_test; | |
| 1834 nitrogen_rate = ((ending_ambient_pressure - WATER_VAPOR_PRESSURE)* fraction_nitrogen_end - initial_inspired_n2_pressure)/time_test; | |
| 1835 //>>>>>>>>>>>>>>>>>>>>> | |
| 1836 /*initial_inspired_he_pressure = | |
| 1837 (starting_ambient_pressure - water_vapor_pressure) * | |
| 1838 fraction_helium[mix_number - 1]; | |
| 1839 initial_inspired_n2_pressure = | |
| 1840 (starting_ambient_pressure - water_vapor_pressure) * | |
| 1841 fraction_nitrogen[mix_number - 1]; | |
| 1842 helium_rate = *rate * fraction_helium[mix_number - 1]; | |
| 1843 nitrogen_rate = *rate * fraction_nitrogen[mix_number - 1];*/ | |
| 1844 | |
| 1845 /* =============================================================================== */ | |
| 1846 /* ESTABLISH THE BOUNDS FOR THE ROOT SEARCH USING THE BISECTION METHOD */ | |
| 1847 /* AND CHECK TO MAKE SURE THAT THE ROOT WILL BE WITHIN BOUNDS. PROCESS */ | |
| 1848 /* EACH COMPARTMENT INDIVIDUALLY AND FIND THE MAXIMUM DEPTH ACROSS ALL */ | |
| 1849 /* COMPARTMENTS (LEADING COMPARTMENT) */ | |
| 1850 /* In this case, we are solving for time - the time when the gas tension in */ | |
| 1851 /* the compartment will be equal to ambient pressure. The low bound for time */ | |
| 1852 /* is set at zero and the high bound is set at the time it would take to */ | |
| 1853 /* ascend to zero ambient pressure (absolute). Since the ascent rate is */ | |
| 1854 /* negative, a multiplier of -1.0 is used to make the time positive. The */ | |
| 1855 /* desired point when gas tension equals ambient pressure is found at a time */ | |
| 1856 /* somewhere between these endpoints. The algorithm checks to make sure that */ | |
| 1857 /* the solution lies in between these bounds by first computing the low bound */ | |
| 1858 /* and high bound function values. */ | |
| 1859 /* =============================================================================== */ | |
| 1860 | |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1861 low_bound = 0.0; |
| 38 | 1862 high_bound = starting_ambient_pressure / *rate * -1.0f; |
| 1863 for (i = 1; i <= 16; ++i) | |
| 1864 { | |
| 1865 initial_helium_pressure = helium_pressure[i - 1]; | |
| 1866 initial_nitrogen_pressure = nitrogen_pressure[i - 1]; | |
| 1867 function_at_low_bound = | |
| 1868 initial_helium_pressure + | |
| 1869 initial_nitrogen_pressure + | |
| 1870 CONSTANT_PRESSURE_OTHER_GASES - | |
| 1871 starting_ambient_pressure; | |
| 1872 high_bound_helium_pressure = | |
| 1873 schreiner_equation__2(&initial_inspired_he_pressure, | |
| 1874 &helium_rate, | |
| 1875 &high_bound, | |
| 1876 &HELIUM_TIME_CONSTANT[i - 1], | |
| 1877 &initial_helium_pressure); | |
| 1878 high_bound_nitrogen_pressure = | |
| 1879 schreiner_equation__2(&initial_inspired_n2_pressure, | |
| 1880 &nitrogen_rate, | |
| 1881 &high_bound, | |
| 1882 &NITROGEN_TIME_CONSTANT[i - 1], | |
| 1883 &initial_nitrogen_pressure); | |
| 1884 function_at_high_bound = high_bound_helium_pressure + | |
| 1885 high_bound_nitrogen_pressure + | |
| 1886 CONSTANT_PRESSURE_OTHER_GASES; | |
| 1887 if (function_at_high_bound * function_at_low_bound >= 0.0f) | |
| 1888 { | |
| 1889 printf("\nERROR! ROOT IS NOT WITHIN BRACKETS"); | |
| 1890 } | |
| 1891 | |
| 1892 /* =============================================================================== */ | |
| 1893 /* APPLY THE BISECTION METHOD IN SEVERAL ITERATIONS UNTIL A SOLUTION WITH */ | |
| 1894 /* THE DESIRED ACCURACY IS FOUND */ | |
| 1895 /* Note: the program allows for up to 100 iterations. Normally an exit will */ | |
| 1896 /* be made from the loop well before that number. If, for some reason, the */ | |
| 1897 /* program exceeds 100 iterations, there will be a pause to alert the user. */ | |
| 1898 /* =============================================================================== */ | |
| 1899 | |
| 1900 if (function_at_low_bound < 0.0f) | |
| 1901 { | |
| 1902 time_to_start_of_deco_zone = low_bound; | |
| 1903 differential_change = high_bound - low_bound; | |
| 1904 } else { | |
| 1905 time_to_start_of_deco_zone = high_bound; | |
| 1906 differential_change = low_bound - high_bound; | |
| 1907 } | |
| 1908 for (j = 1; j <= 100; ++j) | |
| 1909 { | |
| 1910 last_diff_change = differential_change; | |
| 1911 differential_change = last_diff_change * 0.5f; | |
| 1912 mid_range_time = | |
| 1913 time_to_start_of_deco_zone + | |
| 1914 differential_change; | |
| 1915 mid_range_helium_pressure = | |
| 1916 schreiner_equation__2(&initial_inspired_he_pressure, | |
| 1917 &helium_rate, | |
| 1918 &mid_range_time, | |
| 1919 &HELIUM_TIME_CONSTANT[i - 1], | |
| 1920 &initial_helium_pressure); | |
| 1921 mid_range_nitrogen_pressure = | |
| 1922 schreiner_equation__2(&initial_inspired_n2_pressure, | |
| 1923 &nitrogen_rate, | |
| 1924 &mid_range_time, | |
| 1925 &NITROGEN_TIME_CONSTANT[i - 1], | |
| 1926 &initial_nitrogen_pressure); | |
| 1927 function_at_mid_range = | |
| 1928 mid_range_helium_pressure + | |
| 1929 mid_range_nitrogen_pressure + | |
| 1930 CONSTANT_PRESSURE_OTHER_GASES - | |
| 1931 (starting_ambient_pressure + *rate * mid_range_time); | |
| 1932 if (function_at_mid_range <= 0.0f) { | |
| 1933 time_to_start_of_deco_zone = mid_range_time; | |
| 1934 } | |
| 1935 if( fabs(differential_change) < 0.001f | |
| 1936 || function_at_mid_range == 0.0f) | |
| 1937 { | |
| 1938 goto L170; | |
| 1939 } | |
| 1940 /* L150: */ | |
| 1941 } | |
| 1942 printf("\nERROR! ROOT SEARCH EXCEEDED MAXIMUM ITERATIONS"); | |
| 1943 //pause(); | |
| 1944 | |
| 1945 /* =============================================================================== */ | |
| 1946 /* When a solution with the desired accuracy is found, the program jumps out */ | |
| 1947 /* of the loop to Line 170 and assigns the solution value for the individual */ | |
| 1948 /* compartment. */ | |
| 1949 /* =============================================================================== */ | |
| 1950 | |
| 1951 L170: | |
| 1952 cpt_depth_start_of_deco_zone = | |
| 1953 starting_ambient_pressure + | |
| 1954 *rate * time_to_start_of_deco_zone - | |
| 1955 barometric_pressure; | |
| 1956 | |
| 1957 /* =============================================================================== */ | |
| 1958 /* The overall solution will be the compartment with the maximum depth where */ | |
| 1959 /* gas tension equals ambient pressure (leading compartment). */ | |
| 1960 /* =============================================================================== */ | |
| 1961 | |
| 1962 *depth_start_of_deco_zone = | |
| 1963 fmaxf(*depth_start_of_deco_zone, cpt_depth_start_of_deco_zone); | |
| 1964 /* L200: */ | |
| 1965 } | |
| 1966 return 0; | |
| 1967 } /* calc_start_of_deco_zone */ | |
| 1968 | |
| 1969 /* =============================================================================== */ | |
| 1970 /* SUBROUTINE PROJECTED_ASCENT */ | |
| 1971 /* Purpose: This subprogram performs a simulated ascent outside of the main */ | |
| 1972 /* program to ensure that a deco ceiling will not be violated due to unusual */ | |
| 1973 /* gas loading during ascent (on-gassing). If the deco ceiling is violated, */ | |
| 1974 /* the stop depth will be adjusted deeper by the step size until a safe */ | |
| 1975 /* ascent can be made. */ | |
| 1976 /* =============================================================================== */ | |
| 1977 | |
| 290 | 1978 static int projected_ascent(float *starting_depth, |
| 38 | 1979 float *rate, |
| 1980 float *deco_stop_depth, | |
| 1981 float *step_size) | |
| 1982 { | |
| 1983 /* Local variables */ | |
| 1984 float weighted_allowable_gradient, | |
| 1985 ending_ambient_pressure, | |
| 1986 temp_gas_loading[16]; | |
| 1987 int i; | |
| 1988 float allowable_gas_loading[16]; | |
| 1989 float temp_nitrogen_pressure[16]; | |
| 1990 float temp_helium_pressure[16]; | |
| 1991 float run_time_save = 0; | |
| 1992 | |
| 1993 /* loop */ | |
| 1994 /* =============================================================================== */ | |
| 1995 /* CALCULATIONS */ | |
| 1996 /* =============================================================================== */ | |
| 1997 | |
| 1998 | |
| 1999 L665: | |
| 2000 ending_ambient_pressure = *deco_stop_depth + barometric_pressure; | |
| 2001 for (i = 1; i <= 16; ++i) { | |
| 2002 temp_helium_pressure[i - 1] = helium_pressure[i - 1]; | |
| 2003 temp_nitrogen_pressure[i - 1] = nitrogen_pressure[i - 1]; | |
| 2004 } | |
| 2005 run_time_save = run_time; | |
| 2006 gas_loadings_ascent_descen(temp_helium_pressure, temp_nitrogen_pressure, *starting_depth,*deco_stop_depth,*rate,true); | |
| 2007 run_time = run_time_save; | |
| 2008 | |
| 2009 for (i = 1; i <= 16; ++i) | |
| 2010 { | |
| 2011 temp_gas_loading[i - 1] = | |
| 2012 temp_helium_pressure[i - 1] + | |
| 2013 temp_nitrogen_pressure[i - 1]; | |
| 2014 if (temp_gas_loading[i - 1] > 0.0f) | |
| 2015 { | |
| 2016 weighted_allowable_gradient = | |
| 2017 (allowable_gradient_he[i - 1] * | |
| 2018 temp_helium_pressure[i - 1] + | |
| 2019 allowable_gradient_n2[i - 1] * | |
| 2020 temp_nitrogen_pressure[i - 1]) / temp_gas_loading[i - 1]; | |
| 2021 } else { | |
| 2022 /* Computing MIN */ | |
| 2023 weighted_allowable_gradient = fminf(allowable_gradient_he[i - 1],allowable_gradient_n2[i - 1]); | |
| 2024 } | |
| 2025 allowable_gas_loading[i - 1] = | |
| 2026 ending_ambient_pressure + | |
| 2027 weighted_allowable_gradient - | |
| 2028 CONSTANT_PRESSURE_OTHER_GASES; | |
| 2029 /* L670: */ | |
| 2030 } | |
| 2031 for (i = 1; i <= 16; ++i) { | |
| 2032 if (temp_gas_loading[i - 1] > allowable_gas_loading[i - 1]) { | |
| 2033 *deco_stop_depth += *step_size; | |
| 2034 goto L665; | |
| 2035 } | |
| 2036 /* L671: */ | |
| 2037 } | |
| 2038 return 0; | |
| 2039 } /* projected_ascent */ | |
| 2040 | |
| 2041 /* =============================================================================== */ | |
| 2042 /* SUBROUTINE DECOMPRESSION_STOP */ | |
| 2043 /* Purpose: This subprogram calculates the required time at each */ | |
| 2044 /* decompression stop. */ | |
| 2045 /* =============================================================================== */ | |
| 2046 | |
| 290 | 2047 static void decompression_stop(float *deco_stop_depth, |
| 38 | 2048 float *step_size, |
| 2049 _Bool final_deco_calculation) | |
| 2050 { | |
| 2051 /* Local variables */ | |
| 2052 float inspired_nitrogen_pressure; | |
| 2053 // short last_segment_number; | |
| 2054 // float weighted_allowable_gradient; | |
| 2055 float initial_helium_pressure[16]; | |
| 2056 /* by hw */ | |
|
51
8f8ea3a32e82
Resolved warnings pointing to possible invalid memory access
Ideenmodellierer
parents:
38
diff
changeset
|
2057 float initial_CNS = gCNS_VPM; |
| 38 | 2058 |
| 2059 //static float time_counter; | |
| 2060 short i; | |
| 2061 float ambient_pressure; | |
| 2062 float inspired_helium_pressure, | |
| 2063 next_stop; | |
| 2064 //last_run_time, | |
| 2065 //temp_segment_time; | |
| 2066 | |
| 2067 float deco_ceiling_depth, | |
| 2068 initial_nitrogen_pressure[16]; | |
| 2069 //round_up_operation; | |
| 2070 float fraction_helium_begin; | |
| 2071 float fraction_nitrogen_begin; | |
| 2072 int count = 0; | |
| 2073 _Bool buehlmann_wait = false; | |
| 2074 float tissue_He_saturation[16]; | |
| 2075 float tissue_N2_saturation[16]; | |
| 877 | 2076 float vpm_buehlmann_safety_gradient = 1.0f - (((float)pDiveSettings->vpm_conservatism) / 40); |
| 38 | 2077 /* loop */ |
| 2078 /* =============================================================================== */ | |
| 2079 /* CALCULATIONS */ | |
| 2080 /* =============================================================================== */ | |
| 2081 | |
| 2082 segment_time = 0; | |
| 2083 // temp_segment_time = segment_time; | |
| 2084 ambient_pressure = *deco_stop_depth + barometric_pressure; | |
| 2085 //ending_ambient_pressure = ambient_pressure; | |
| 2086 decom_get_inert_gases(ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_begin, &fraction_helium_begin ); | |
| 2087 | |
| 877 | 2088 if(*deco_stop_depth == (float)(pDiveSettings->last_stop_depth_bar * 10)) |
| 38 | 2089 next_stop = 0; |
| 2090 else | |
| 2091 { | |
| 2092 next_stop = *deco_stop_depth - *step_size; | |
| 877 | 2093 next_stop = fmaxf(next_stop,(float)pDiveSettings->last_stop_depth_bar * 10); |
| 38 | 2094 } |
| 2095 | |
| 2096 inspired_helium_pressure = | |
| 2097 (ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_helium_begin; | |
| 2098 inspired_nitrogen_pressure = | |
| 2099 (ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_nitrogen_begin; | |
| 2100 | |
| 2101 /* =============================================================================== */ | |
| 2102 /* Check to make sure that program won't lock up if unable to decompress */ | |
| 2103 /* to the next stop. If so, write error message and terminate program. */ | |
| 2104 /* =============================================================================== */ | |
| 2105 | |
| 2106 //deco_ceiling_depth = next_stop +1; //deco_ceiling_depth = next_stop + 1; | |
| 2107 if(!vpm_violates_buehlmann) | |
| 149 | 2108 { |
| 38 | 2109 calc_deco_ceiling(&deco_ceiling_depth, false); //weg, weil auf jeden Fall schleife für safety und so konservativer |
| 149 | 2110 } |
| 38 | 2111 else |
| 149 | 2112 { |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
2113 deco_ceiling_depth = next_stop + 1.0; |
| 149 | 2114 } |
| 38 | 2115 if(deco_ceiling_depth > next_stop) |
| 2116 { | |
| 2117 while (deco_ceiling_depth > next_stop) | |
| 2118 { | |
| 2119 | |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
2120 segment_time += 60.0; |
|
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
2121 if(segment_time >= 999.0 ) |
| 38 | 2122 { |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
2123 segment_time = 999.0 ; |
| 38 | 2124 run_time += segment_time; |
| 2125 return; | |
| 2126 } | |
| 2127 //goto L700; | |
| 2128 initial_CNS = gCNS_VPM; | |
| 2129 decom_oxygen_calculate_cns_exposure(60*60,&pDiveSettings->decogaslist[mix_number],ambient_pressure/10,&gCNS_VPM); | |
| 2130 for (i = 0; i < 16; i++) | |
| 2131 { | |
| 2132 initial_helium_pressure[i] = helium_pressure[i]; | |
| 2133 initial_nitrogen_pressure[i] = nitrogen_pressure[i]; | |
| 2134 helium_pressure[i] += (inspired_helium_pressure - helium_pressure[i]) * float_buehlmann_He_factor_expositon_one_hour[i]; | |
| 2135 nitrogen_pressure[i] += (inspired_nitrogen_pressure - nitrogen_pressure[i]) * float_buehlmann_N2_factor_expositon_one_hour[i]; | |
| 2136 } | |
| 2137 calc_deco_ceiling(&deco_ceiling_depth, false); | |
| 2138 } | |
| 2139 if(deco_ceiling_depth < next_stop) | |
| 2140 { | |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
2141 segment_time -= 60.0; |
| 38 | 2142 gCNS_VPM = initial_CNS; |
| 2143 for (i = 0; i < 16; i++) | |
| 2144 { | |
| 2145 helium_pressure[i] = initial_helium_pressure[i]; | |
| 2146 nitrogen_pressure[i] = initial_nitrogen_pressure[i]; | |
| 2147 } | |
| 2148 deco_ceiling_depth = next_stop +1; | |
| 2149 } | |
| 2150 count = 0; | |
| 2151 while (deco_ceiling_depth > next_stop && count < 13) | |
| 2152 { | |
| 2153 count++; | |
| 2154 segment_time += 5; | |
| 2155 //goto L700; | |
| 2156 initial_CNS = gCNS_VPM; | |
| 2157 decom_oxygen_calculate_cns_exposure(60*5,&pDiveSettings->decogaslist[mix_number],ambient_pressure/10,&gCNS_VPM); | |
| 2158 for (i = 0; i < 16; i++) | |
| 2159 { | |
| 2160 initial_helium_pressure[i] = helium_pressure[i]; | |
| 2161 initial_nitrogen_pressure[i] = nitrogen_pressure[i]; | |
| 2162 helium_pressure[i] += (inspired_helium_pressure - helium_pressure[i]) * float_buehlmann_He_factor_expositon_five_minutes[i]; | |
| 2163 nitrogen_pressure[i] += (inspired_nitrogen_pressure - nitrogen_pressure[i]) * float_buehlmann_N2_factor_expositon_five_minutes[i]; | |
| 2164 } | |
| 2165 calc_deco_ceiling(&deco_ceiling_depth, false); | |
| 2166 } | |
| 2167 if(deco_ceiling_depth < next_stop) | |
| 2168 { | |
| 2169 segment_time -= 5; | |
| 2170 gCNS_VPM = initial_CNS; | |
| 2171 for (i = 0; i < 16; i++) { | |
| 2172 helium_pressure[i] = initial_helium_pressure[i]; | |
| 2173 nitrogen_pressure[i] = initial_nitrogen_pressure[i]; | |
| 2174 } | |
| 2175 deco_ceiling_depth = next_stop +1; | |
| 2176 } | |
| 2177 buehlmann_wait = false; | |
| 2178 while (buehlmann_wait || (deco_ceiling_depth > next_stop)) | |
| 2179 { | |
| 2180 //time_counter = temp_segment_time; | |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
2181 segment_time += 1.0; |
| 38 | 2182 |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
2183 if(segment_time >= 999.0 ) |
| 38 | 2184 { |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
2185 segment_time = 999.0 ; |
| 38 | 2186 run_time += segment_time; |
| 2187 return; | |
| 2188 } | |
| 2189 //goto L700; | |
| 2190 initial_CNS = gCNS_VPM; | |
| 877 | 2191 decom_oxygen_calculate_cns_exposure(60*1,&pDiveSettings->decogaslist[mix_number],ambient_pressure/10,&gCNS_VPM); |
| 38 | 2192 for (i = 0; i < 16; i++) |
| 2193 { | |
| 2194 initial_helium_pressure[i] = helium_pressure[i]; | |
| 2195 initial_nitrogen_pressure[i] = nitrogen_pressure[i]; | |
| 2196 helium_pressure[i] += (inspired_helium_pressure - helium_pressure[i]) * float_buehlmann_He_factor_expositon_one_minute[i]; | |
| 2197 nitrogen_pressure[i] += (inspired_nitrogen_pressure - nitrogen_pressure[i]) * float_buehlmann_N2_factor_expositon_one_minute[i]; | |
| 2198 } | |
| 2199 if(!buehlmann_wait) | |
| 2200 calc_deco_ceiling(&deco_ceiling_depth, false); | |
| 2201 | |
| 2202 if(buehlmannSafety && final_deco_calculation && !(deco_ceiling_depth > next_stop)) | |
| 2203 { | |
| 2204 for (i = 0; i < 16; i++) | |
| 2205 { | |
| 2206 tissue_He_saturation[i] = helium_pressure[i] / 10; | |
| 2207 tissue_N2_saturation[i] = nitrogen_pressure[i] / 10; | |
| 2208 } | |
| 2209 if( (fabsf(nitrogen_pressure[15] - inspired_nitrogen_pressure) < 0.00001f) && (fabsf(helium_pressure[15] - inspired_helium_pressure) < 0.00001f) | |
| 2210 && (fabsf(nitrogen_pressure[0] - inspired_nitrogen_pressure) < 0.00001f) && (fabsf(helium_pressure[0] - inspired_helium_pressure) < 0.00001f)) | |
| 2211 { | |
| 2212 buehlmann_wait_exceeded = true; | |
| 2213 break; | |
| 2214 } | |
| 2215 | |
| 2216 if(decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (next_stop / 10.0f) + pInput->pressure_surface_bar)) | |
| 2217 break; | |
| 2218 | |
| 2219 buehlmann_wait = true; | |
| 2220 } | |
| 2221 } | |
| 2222 if(buehlmann_wait) | |
| 149 | 2223 { |
| 38 | 2224 vpm_violates_buehlmann = true; |
| 149 | 2225 } |
| 2226 if(!buehlmann_wait) | |
| 38 | 2227 { |
| 2228 if(deco_ceiling_depth < next_stop) | |
| 2229 { | |
| 2230 segment_time -= 1; | |
| 2231 gCNS_VPM = initial_CNS; | |
| 2232 for (i = 0; i < 16; i++) { | |
| 2233 helium_pressure[i] = initial_helium_pressure[i]; | |
| 2234 nitrogen_pressure[i] = initial_nitrogen_pressure[i]; | |
| 2235 } | |
| 2236 deco_ceiling_depth = next_stop +1; | |
| 2237 } | |
| 2238 while (deco_ceiling_depth > next_stop) | |
| 2239 { | |
| 2240 //time_counter = temp_segment_time; | |
| 2241 segment_time += (float) 1.0f / 3.0f; | |
| 2242 //goto L700; | |
| 2243 initial_CNS = gCNS_VPM; | |
| 2244 decom_oxygen_calculate_cns_exposure(20,&pDiveSettings->decogaslist[mix_number],ambient_pressure/10,&gCNS_VPM); | |
| 2245 for (i = 0; i < 16; i++) | |
| 2246 { | |
| 2247 helium_pressure[i] += (inspired_helium_pressure - helium_pressure[i]) * float_buehlmann_He_factor_expositon_20_seconds[i]; | |
| 2248 nitrogen_pressure[i] += (inspired_nitrogen_pressure - nitrogen_pressure[i]) * float_buehlmann_N2_factor_expositon_20_seconds[i]; | |
| 2249 } | |
| 2250 calc_deco_ceiling(&deco_ceiling_depth, false); | |
| 2251 } | |
| 2252 } | |
| 2253 } | |
| 2254 | |
| 2255 /*float pressure_save =dive_data.pressure; | |
| 2256 dive_data.pressure = ambient_pressure/10; | |
| 2257 tissues_exposure_stage(st_deco_test,(int)(segment_time * 60), &dive_data, &gaslist); | |
| 2258 dive_data.pressure = pressure_save;*/ | |
| 2259 run_time += segment_time; | |
| 2260 return; | |
| 2261 } /* decompression_stop */ | |
| 2262 | |
| 2263 /* =============================================================================== */ | |
| 2264 // SUROUTINE BOYLES_LAW_COMPENSATION | |
| 2265 // Purpose: This subprogram calculates the reduction in allowable gradients | |
| 2266 // with decreasing ambient pressure during the decompression profile based | |
| 2267 // on Boyle's Law considerations. | |
| 2268 //=============================================================================== | |
| 290 | 2269 static void BOYLES_LAW_COMPENSATION (float* First_Stop_Depth, |
| 38 | 2270 float* Deco_Stop_Depth, |
| 2271 float* Step_Size) | |
| 2272 { | |
| 2273 short i; | |
| 2274 | |
| 2275 float Next_Stop; | |
| 2276 float Ambient_Pressure_First_Stop, Ambient_Pressure_Next_Stop; | |
| 2277 float Amb_Press_First_Stop_Pascals, Amb_Press_Next_Stop_Pascals; | |
| 2278 float A, B, C, Low_Bound, High_Bound, Ending_Radius; | |
| 2279 float Deco_Gradient_Pascals; | |
| 2280 float Allow_Grad_First_Stop_He_Pa, Radius_First_Stop_He; | |
| 2281 float Allow_Grad_First_Stop_N2_Pa, Radius_First_Stop_N2; | |
| 2282 | |
| 2283 //=============================================================================== | |
| 2284 // LO//AL ARRAYS | |
| 2285 //=============================================================================== | |
| 2286 // float Radius1_He[16], Radius2_He[16]; | |
| 2287 // float Radius1_N2[16], Radius2_N2[16]; | |
| 2288 float root_factor; | |
| 2289 | |
| 2290 //=============================================================================== | |
| 2291 // CALCULATIONS | |
| 2292 //=============================================================================== | |
| 2293 Next_Stop = *Deco_Stop_Depth - *Step_Size; | |
| 2294 | |
| 2295 Ambient_Pressure_First_Stop = *First_Stop_Depth + | |
| 2296 barometric_pressure; | |
| 2297 | |
| 2298 Ambient_Pressure_Next_Stop = Next_Stop + barometric_pressure; | |
| 2299 | |
| 2300 Amb_Press_First_Stop_Pascals = (Ambient_Pressure_First_Stop/UNITS_FACTOR) * 101325.0f; | |
| 2301 | |
| 2302 Amb_Press_Next_Stop_Pascals = | |
| 2303 (Ambient_Pressure_Next_Stop/UNITS_FACTOR) * 101325.0f; | |
| 2304 root_factor = powf(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals,1.0f / 3.0f); | |
| 2305 | |
| 2306 for( i = 0; i < 16;i++) | |
| 2307 { | |
| 2308 Allow_Grad_First_Stop_He_Pa = | |
| 2309 (allowable_gradient_he[i]/UNITS_FACTOR) * 101325.0f; | |
| 2310 | |
| 2311 Radius_First_Stop_He = (2.0f * SURFACE_TENSION_GAMMA) / | |
| 2312 Allow_Grad_First_Stop_He_Pa; | |
| 2313 | |
| 2314 // Radius1_He[i] = Radius_First_Stop_He; | |
| 2315 A = Amb_Press_Next_Stop_Pascals; | |
| 2316 B = -2.0f * SURFACE_TENSION_GAMMA; | |
| 2317 C = (Amb_Press_First_Stop_Pascals + (2.0f * SURFACE_TENSION_GAMMA)/ | |
| 2318 Radius_First_Stop_He)* Radius_First_Stop_He* | |
| 2319 (Radius_First_Stop_He*(Radius_First_Stop_He)); | |
| 2320 Low_Bound = Radius_First_Stop_He; | |
| 2321 High_Bound = Radius_First_Stop_He * root_factor; | |
| 2322 //*pow(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals,1.0/3.0); | |
| 2323 //*(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals)**(1.0/3.0); | |
| 2324 | |
| 2325 radius_root_finder(&A,&B,&C, &Low_Bound, &High_Bound, | |
| 2326 &Ending_Radius); | |
| 2327 | |
| 2328 // Radius2_He[i] = Ending_Radius; | |
| 2329 Deco_Gradient_Pascals = (2.0f * SURFACE_TENSION_GAMMA) / | |
| 2330 Ending_Radius; | |
| 2331 | |
| 2332 deco_gradient_he[i] = (Deco_Gradient_Pascals / 101325.0f)* | |
| 2333 UNITS_FACTOR; | |
| 2334 | |
| 2335 } | |
| 2336 | |
| 2337 for( i = 0; i < 16;i++) | |
| 2338 { | |
| 2339 Allow_Grad_First_Stop_N2_Pa = | |
| 2340 (allowable_gradient_n2[i]/UNITS_FACTOR) * 101325.0f; | |
| 2341 | |
| 2342 Radius_First_Stop_N2 = (2.0f * SURFACE_TENSION_GAMMA) / | |
| 2343 Allow_Grad_First_Stop_N2_Pa; | |
| 2344 | |
| 2345 // Radius1_N2[i] = Radius_First_Stop_N2; | |
| 2346 A = Amb_Press_Next_Stop_Pascals; | |
| 2347 B = -2.0f * SURFACE_TENSION_GAMMA; | |
| 2348 C = (Amb_Press_First_Stop_Pascals + (2.0f * SURFACE_TENSION_GAMMA)/ | |
| 2349 Radius_First_Stop_N2)* Radius_First_Stop_N2* | |
| 2350 (Radius_First_Stop_N2*(Radius_First_Stop_N2)); | |
| 2351 Low_Bound = Radius_First_Stop_N2; | |
| 2352 High_Bound = Radius_First_Stop_N2* root_factor;//pow(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals,1.0/3.0); | |
| 2353 | |
| 2354 //High_Bound = Radius_First_Stop_N2*exp(log(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals)/3); | |
| 2355 radius_root_finder(&A,&B,&C, &Low_Bound, &High_Bound, | |
| 2356 &Ending_Radius); | |
| 2357 | |
| 2358 // Radius2_N2[i] = Ending_Radius; | |
| 2359 Deco_Gradient_Pascals = (2.0f * SURFACE_TENSION_GAMMA) / | |
| 2360 Ending_Radius; | |
| 2361 | |
| 2362 deco_gradient_n2[i] = (Deco_Gradient_Pascals / 101325.0f)* | |
| 2363 UNITS_FACTOR; | |
| 2364 } | |
| 2365 } | |
| 2366 | |
| 2367 /* =============================================================================== */ | |
| 292 | 2368 // vpm_calc_ndl |
| 2369 // Purpose: This function computes NDL (time where no decostops are needed) | |
| 38 | 2370 //=============================================================================== |
|
291
24ff72e627f4
Deco Models: limit NDL to 240 minutes
Jan Mulder <jlmulder@xs4all.nl>
parents:
290
diff
changeset
|
2371 #define MAX_NDL 240 |
|
24ff72e627f4
Deco Models: limit NDL to 240 minutes
Jan Mulder <jlmulder@xs4all.nl>
parents:
290
diff
changeset
|
2372 |
| 292 | 2373 static int vpm_calc_ndl(void) |
| 38 | 2374 { |
| 2375 static float future_helium_pressure[16]; | |
| 2376 static float future_nitrogen_pressure[16]; | |
| 2377 static int temp_segment_time; | |
| 2378 static int mix_number; | |
| 2379 static float inspired_helium_pressure; | |
| 2380 static float inspired_nitrogen_pressure; | |
| 2381 | |
| 2382 float previous_helium_pressure[16]; | |
| 2383 float previous_nitrogen_pressure[16]; | |
| 2384 float ambient_pressure; | |
| 2385 float fraction_helium_begin; | |
| 2386 float fraction_nitrogen_begin; | |
| 2387 int i = 0; | |
| 2388 int count = 0; | |
| 2389 int status = CALC_END; | |
|
291
24ff72e627f4
Deco Models: limit NDL to 240 minutes
Jan Mulder <jlmulder@xs4all.nl>
parents:
290
diff
changeset
|
2390 |
| 38 | 2391 for(i = 0; i < 16;i++) |
| 2392 { | |
|
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
2393 future_helium_pressure[i] = pInput->tissue_helium_bar[i] * 10.0;//tissue_He_saturation[st_dive][i] * 10; |
|
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
2394 future_nitrogen_pressure[i] = pInput->tissue_nitrogen_bar[i] * 10.0; |
| 38 | 2395 } |
| 2396 temp_segment_time = 0; | |
| 2397 | |
| 2398 mix_number = 0; | |
| 877 | 2399 ambient_pressure = pInput->pressure_ambient_bar * 10; |
| 2400 decom_get_inert_gases( ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]) , &fraction_nitrogen_begin, &fraction_helium_begin ); | |
| 38 | 2401 inspired_helium_pressure =(ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_helium_begin; |
| 2402 inspired_nitrogen_pressure =(ambient_pressure - WATER_VAPOR_PRESSURE) *fraction_nitrogen_begin; | |
| 2403 | |
| 2404 status = CALC_END; | |
| 2405 while (status == CALC_END) | |
| 2406 { | |
| 2407 count++; | |
| 2408 temp_segment_time += 60; | |
|
291
24ff72e627f4
Deco Models: limit NDL to 240 minutes
Jan Mulder <jlmulder@xs4all.nl>
parents:
290
diff
changeset
|
2409 if(temp_segment_time >= MAX_NDL) |
| 38 | 2410 { |
| 2411 pDecoInfo->output_ndl_seconds = temp_segment_time * 60; | |
| 292 | 2412 return CALC_NDL; |
| 38 | 2413 } |
| 2414 run_time += 60; | |
| 2415 //goto L700; | |
| 2416 for (i = 1; i <= 16; ++i) { | |
| 2417 previous_helium_pressure[i-1] = future_helium_pressure[i - 1]; | |
| 2418 previous_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1]; | |
| 2419 future_helium_pressure[i - 1] = future_helium_pressure[i - 1] + (inspired_helium_pressure - future_helium_pressure[i - 1]) * float_buehlmann_He_factor_expositon_one_hour[i-1]; | |
| 2420 future_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1] + (inspired_nitrogen_pressure - future_nitrogen_pressure[i - 1]) * float_buehlmann_N2_factor_expositon_one_hour[i-1]; | |
| 2421 helium_pressure[i - 1] = future_helium_pressure[i - 1]; | |
| 2422 nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1]; | |
| 2423 } | |
| 2424 vpm_calc_deco(); | |
| 2425 while((status = vpm_calc_critcal_volume(true,true)) == CALC_CRITICAL); | |
| 2426 | |
| 2427 } | |
| 2428 | |
| 2429 temp_segment_time -= 60; | |
| 2430 run_time -= 60; | |
| 2431 for (i = 1; i <= 16; ++i) | |
| 2432 { | |
| 2433 future_helium_pressure[i - 1] = previous_helium_pressure[i-1]; | |
| 2434 future_nitrogen_pressure[i - 1] = previous_nitrogen_pressure[i - 1]; | |
| 2435 } | |
| 2436 | |
| 2437 status = CALC_END; | |
| 2438 if(temp_segment_time < 60) | |
| 2439 nullzeit_unter60 = true; | |
| 2440 | |
| 2441 while (status == CALC_END) | |
| 2442 { | |
| 2443 temp_segment_time += 5; | |
|
291
24ff72e627f4
Deco Models: limit NDL to 240 minutes
Jan Mulder <jlmulder@xs4all.nl>
parents:
290
diff
changeset
|
2444 if(temp_segment_time >= MAX_NDL) |
| 38 | 2445 { |
| 2446 pDecoInfo->output_ndl_seconds = temp_segment_time * 60; | |
| 292 | 2447 return CALC_NDL; |
| 38 | 2448 } |
| 2449 if(nullzeit_unter60 && temp_segment_time > 60) | |
| 2450 { | |
| 2451 nullzeit_unter60 = false; | |
| 292 | 2452 return CALC_NDL; |
| 38 | 2453 } |
| 2454 run_time += 5; | |
| 2455 //goto L700; | |
| 2456 for (i = 1; i <= 16; ++i) { | |
| 2457 previous_helium_pressure[i-1] = future_helium_pressure[i - 1]; | |
| 2458 previous_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1]; | |
| 2459 future_helium_pressure[i - 1] = future_helium_pressure[i - 1] + (inspired_helium_pressure - future_helium_pressure[i - 1]) * float_buehlmann_He_factor_expositon_five_minutes[i-1]; | |
| 2460 future_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1] + (inspired_nitrogen_pressure - future_nitrogen_pressure[i - 1]) * float_buehlmann_N2_factor_expositon_five_minutes[i-1]; | |
| 2461 helium_pressure[i - 1] = future_helium_pressure[i - 1]; | |
| 2462 nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1]; | |
| 2463 } | |
| 2464 vpm_calc_deco(); | |
| 2465 while((status =vpm_calc_critcal_volume(true,true)) == CALC_CRITICAL); | |
| 2466 } | |
| 2467 temp_segment_time -= 5; | |
| 2468 run_time -= 5; | |
| 2469 for (i = 1; i <= 16; ++i) { | |
| 2470 future_helium_pressure[i - 1] = previous_helium_pressure[i-1]; | |
| 2471 future_nitrogen_pressure[i - 1] = previous_nitrogen_pressure[i - 1]; | |
| 2472 } | |
| 2473 status = CALC_END; | |
|
291
24ff72e627f4
Deco Models: limit NDL to 240 minutes
Jan Mulder <jlmulder@xs4all.nl>
parents:
290
diff
changeset
|
2474 |
| 38 | 2475 if(temp_segment_time <= 20) |
| 2476 { | |
| 2477 while (status == CALC_END) | |
| 2478 { | |
| 2479 temp_segment_time += minimum_deco_stop_time; | |
| 2480 run_time += minimum_deco_stop_time; | |
| 2481 //goto L700; | |
| 2482 for (i = 1; i <= 16; ++i) { | |
| 2483 future_helium_pressure[i - 1] = future_helium_pressure[i - 1] + (inspired_helium_pressure - future_helium_pressure[i - 1]) * float_buehlmann_He_factor_expositon_one_minute[i-1]; | |
| 2484 future_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1] + (inspired_nitrogen_pressure - future_nitrogen_pressure[i - 1]) * float_buehlmann_N2_factor_expositon_one_minute[i-1]; | |
| 2485 helium_pressure[i - 1] = future_helium_pressure[i - 1]; | |
| 2486 nitrogen_pressure[i - 1] =future_nitrogen_pressure[i - 1]; | |
| 2487 | |
| 2488 } | |
| 2489 vpm_calc_deco(); | |
| 2490 while((status =vpm_calc_critcal_volume(true,true)) == CALC_CRITICAL); | |
| 2491 | |
| 2492 } | |
| 2493 } | |
| 2494 else | |
| 2495 temp_segment_time += 5; | |
| 2496 pDecoInfo->output_ndl_seconds = temp_segment_time * 60; | |
| 2497 if(temp_segment_time > 1) | |
| 292 | 2498 return CALC_NDL; |
| 38 | 2499 else |
| 2500 return CALC_BEGIN; | |
| 2501 } | |
| 902 | 2502 |
| 2503 void vpm_table_init() | |
| 2504 { | |
| 2505 vpmTable.output_time_to_surface_seconds = 0; | |
| 907 | 2506 vpmTableState = VPM_TABLE_INIT; |
| 2507 } | |
| 2508 uint8_t vpm_get_decozone(void) | |
| 2509 { | |
| 2510 return((uint8_t)pVpm->depth_start_of_deco_zone_save); | |
| 2511 } | |
| 2512 SvpmTableState vpm_get_TableState(void) | |
| 2513 { | |
| 2514 return vpmTableState; | |
| 902 | 2515 } |
| 2516 |
