Mercurial > public > ostc4
annotate Discovery/Src/vpm.c @ 907:46a21ff3f5ab Evo_2_23
Adaptation custom view deco plan for VPM:
The VPM deco plan now shows the start of deco zone as well as the state of the deco table state. In case the table defined when reaching the deco zone is updated then the header line will change to yellow to indicate this. In case a deco stop is missed the head line will change to red.
author | ideenmodellierer |
---|---|
date | Sun, 13 Oct 2024 18:13:35 +0200 |
parents | d4622533271d |
children |
rev | line source |
---|---|
38 | 1 /////////////////////////////////////////////////////////////////////////////// |
2 /// -*- coding: UTF-8 -*- | |
3 /// | |
4 /// \file Discovery/Src/vpm.c | |
5 /// \brief critical_volume comment by hw | |
6 /// \author Heinrichs Weikamp, Erik C. Baker | |
7 /// \date 19-April-2014 | |
8 /// | |
9 /// \details | |
10 /// | |
11 /// $Id$ | |
12 /////////////////////////////////////////////////////////////////////////////// | |
13 /// \par Copyright (c) 2014-2018 Heinrichs Weikamp gmbh | |
14 /// | |
15 /// This program is free software: you can redistribute it and/or modify | |
16 /// it under the terms of the GNU General Public License as published by | |
17 /// the Free Software Foundation, either version 3 of the License, or | |
18 /// (at your option) any later version. | |
19 /// | |
20 /// This program is distributed in the hope that it will be useful, | |
21 /// but WITHOUT ANY WARRANTY; without even the implied warranty of | |
22 /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
23 /// GNU General Public License for more details. | |
24 /// | |
25 /// You should have received a copy of the GNU General Public License | |
26 /// along with this program. If not, see <http://www.gnu.org/licenses/>. | |
27 ////////////////////////////////////////////////////////////////////////////// | |
28 /// \par Varying Permeability Model (VPM) Decompression Program in c (converted from FORTRAN) | |
29 /// | |
30 /// Author: Erik C. Baker | |
31 /// | |
32 /// "DISTRIBUTE FREELY - CREDIT THE AUTHORS" | |
33 /// | |
34 /// This program extends the 1986 VPM algorithm (Yount & Hoffman) to include | |
35 /// mixed gas, repetitive, and altitude diving. Developments to the algorithm | |
36 /// were made by David E. Yount, Eric B. Maiken, and Erik C. Baker over a | |
37 /// period from 1999 to 2001. This work is dedicated in remembrance of | |
38 /// Professor David E. Yount who passed away on April 27, 2000. | |
39 /// | |
40 /// Notes: | |
41 /// 1. This program uses the sixteen (16) half-time compartments of the | |
42 /// Buhlmann ZH-L16 model. The optional Compartment 1b is used here with | |
43 /// half-times of 1.88 minutes for helium and 5.0 minutes for nitrogen. | |
44 /// | |
45 /// 2. This program uses various DEC, IBM, and Microsoft extensions which | |
46 /// may not be supported by all FORTRAN compilers. Comments are made with | |
47 /// a capital "C" in the first column or an exclamation point "!" placed | |
48 /// in a line after code. An asterisk "*" in column 6 is a continuation | |
49 /// of the previous line. All code, except for line numbers, starts in | |
50 /// column 7. | |
51 /// | |
52 /// 3. Comments and suggestions for improvements are welcome. Please | |
53 /// respond by e-mail to: EBaker@se.aeieng.com | |
54 /// | |
55 /// Acknowledgment: Thanks to Kurt Spaugh for recommendations on how to clean | |
56 /// up the code. | |
57 /// =============================================================================== | |
58 /// Converted to vpmdeco.c using f2c; R.McGinnis (CABER Swe) 5/01 | |
59 /// =============================================================================== | |
60 /// | |
61 /// ************************ Heirichs Weipkamp ************************************** | |
62 /// | |
63 /// The original Yount & Baker code has been adjusted for real life calculation. | |
64 /// | |
65 /// 1) The original main function has been split in several functions | |
66 /// | |
67 /// 2) When the deco zone is reached (while ascending) the gradient factors are kept fix | |
68 /// and critical volume algorithm is switched of. maxfirststopdepth is kept fix | |
69 /// to make shure Boeyls Law algorithm works correctly | |
70 /// | |
71 /// 4) gas_loadings_ascent_descend heeds all gaschanges and CCR support has been added | |
72 /// | |
73 | |
74 #include <stdio.h> | |
75 #include <stdlib.h> | |
76 #include <string.h> | |
77 #include <math.h> | |
78 #include <time.h> | |
79 | |
80 #include "vpm.h" | |
81 #include "decom.h" | |
82 | |
83 #define GAS_N2 0 | |
84 #define GAS_HE 1 | |
85 | |
290 | 86 static const _Bool buehlmannSafety = true; |
38 | 87 /* Common Block Declarations */ |
88 | |
89 extern const float SURFACE_TENSION_GAMMA; //!Adj. Range: 0.015 to 0.065 N/m | |
90 extern const float SKIN_COMPRESSION_GAMMAC; //!Adj. Range: 0.160 to 0.290 N/m | |
91 extern const float UNITS_FACTOR; | |
92 extern const float WATER_VAPOR_PRESSURE; // (Schreiner value) based on respiratory quotien | |
93 extern const float CRIT_VOLUME_PARAMETER_LAMBDA; //!Adj. Range: 6500 to 8300 fsw-min | |
290 | 94 //extern const float GRADIENT_ONSET_OF_IMPERM_ATM; //!Adj. Range: 5.0 to 10.0 atm |
38 | 95 extern const float REGENERATION_TIME_CONSTANT; //!Adj. Range: 10080 to 51840 min |
290 | 96 //extern const float PRESSURE_OTHER_GASES_MMHG; //!Constant value for PO2 up to 2 atm |
38 | 97 extern const float CONSTANT_PRESSURE_OTHER_GASES; // PRESSURE_OTHER_GASES_MMHG / 760. * UNITS_FACTOR; |
98 | |
99 extern const float HELIUM_TIME_CONSTANT[]; | |
100 extern const float NITROGEN_TIME_CONSTANT[]; | |
101 | |
290 | 102 static float minimum_deco_stop_time; |
103 static float run_time, run_time_first_stop; | |
104 static float segment_time; | |
105 static short mix_number; | |
106 static float barometric_pressure; | |
107 static _Bool altitude_dive_algorithm_off; | |
108 static _Bool units_equal_fsw, units_equal_msw; | |
38 | 109 |
110 /* by hw 11.06.2015 to allow */ | |
290 | 111 static float gCNS_VPM; |
38 | 112 |
290 | 113 static float helium_pressure[16], nitrogen_pressure[16]; |
114 static float surface_phase_volume_time[16]; | |
115 static float regenerated_radius_he[16], regenerated_radius_n2[16]; | |
116 static float allowable_gradient_he[16], allowable_gradient_n2[16]; | |
38 | 117 |
118 //_Bool deco_zone_reached; | |
290 | 119 static _Bool critical_volume_algorithm_off; |
120 static float max_first_stop_depth; | |
121 static float max_deco_ceiling_depth; | |
38 | 122 //Boylslaw compensation |
290 | 123 static float deco_gradient_he[16]; |
124 static float deco_gradient_n2[16]; | |
125 static int vpm_calc_what; | |
126 static int count_critical_volume_iteration; | |
127 static short number_of_changes; | |
128 static float depth_change[11]; | |
129 static float step_size_change[11]; | |
130 static float rate_change[11]; | |
131 static short mix_change[11]; | |
38 | 132 |
290 | 133 static const _Bool vpm_b = true; |
38 | 134 |
907 | 135 static SvpmTableState vpmTableState = VPM_TABLE_INIT; |
902 | 136 static SDecoinfo vpmTable; |
137 | |
38 | 138 extern const float float_buehlmann_N2_factor_expositon_20_seconds[]; |
139 extern const float float_buehlmann_He_factor_expositon_20_seconds[]; | |
140 extern const float float_buehlmann_N2_factor_expositon_one_minute[]; | |
141 extern const float float_buehlmann_He_factor_expositon_one_minute[]; | |
142 extern const float float_buehlmann_N2_factor_expositon_five_minutes[]; | |
143 extern const float float_buehlmann_He_factor_expositon_five_minutes[]; | |
144 extern const float float_buehlmann_N2_factor_expositon_one_hour[]; | |
145 extern const float float_buehlmann_He_factor_expositon_one_hour[]; | |
146 | |
290 | 147 static float depth_start_of_deco_calc; |
148 static float depth_start_of_deco_zone; | |
149 static float first_stop_depth; | |
150 static float run_time_start_of_deco_zone; | |
38 | 151 |
290 | 152 static float r_nint(float *x); |
153 static float r_int(float *x); | |
154 static _Bool nullzeit_unter60; | |
155 static int vpm_calc_status; | |
156 static _Bool buehlmann_wait_exceeded = false; | |
38 | 157 |
290 | 158 static SLifeData* pInput = NULL; |
159 static SVpm* pVpm = NULL; | |
160 static SDecoinfo* pDecoInfo = NULL; | |
161 static SDiveSettings* pDiveSettings = NULL; | |
162 | |
163 static float r_nint(float *x) | |
38 | 164 { |
165 return( (*x)>=0 ? | |
166 floorf(*x + 0.5f) : -floorf(0.5f - *x) ); | |
167 } | |
168 | |
290 | 169 static float r_int(float *x) |
38 | 170 { |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
171 return( (*x>0.0) ? floorf(*x) : -floorf(- *x) ); |
38 | 172 } |
173 | |
174 /** private functions | |
175 */ | |
290 | 176 extern int radius_root_finder (float *a, float *b, float *c,float *low_bound, float *high_bound, float *ending_radius); |
38 | 177 |
290 | 178 static int nuclear_regeneration(float *dive_time);// clock_(); |
179 static int calc_deco_ceiling(float *deco_ceiling_depth,_Bool fallowablw); | |
180 static int critical_volume(float *deco_phase_volume_time); ; | |
181 static int calc_start_of_deco_zone(float *starting_depth, float *rate, float *depth_start_of_deco_zone); | |
182 static int calc_initial_allowable_gradient(void); | |
183 static void decompression_stop(float *deco_stop_depth, float *step_size, _Bool final_deco_calculation); | |
184 static int gas_loadings_ascent_descen(float* helium_pressure, float* nitrogen_pressure, float starting_depth,float ending_depth, float rate,_Bool check_gas_change); | |
185 static int calc_surface_phase_volume_time(void); | |
186 static int calc_max_actual_gradient(float *deco_stop_depth); | |
187 static int projected_ascent(float *starting_depth, float *rate, float *deco_stop_depth, float *step_size); | |
188 static void vpm_calc_deco(void); | |
189 static int vpm_calc_critcal_volume(_Bool begin,_Bool calc_nulltime); | |
190 static int vpm_check_converged(_Bool calc_nulltime); | |
191 static int vpm_calc_final_deco(_Bool begin); | |
192 static void BOYLES_LAW_COMPENSATION (float* First_Stop_Depth,float * Deco_Stop_Depth,float* Step_Size); | |
292 | 193 static int vpm_calc_ndl(void); |
290 | 194 static void vpm_init_1(void); |
195 static void vpm_calc_deco_ceiling(void); | |
38 | 196 |
907 | 197 uint8_t vpm_get_decozone(void); |
198 | |
290 | 199 static void vpm_init_1(void) |
38 | 200 { |
201 units_equal_msw = true; | |
202 units_equal_fsw = false; | |
203 altitude_dive_algorithm_off= true; //!Options: ON or OFF | |
204 minimum_deco_stop_time=1.0; //!Options: float positive number | |
205 critical_volume_algorithm_off= false; //!Options: ON or OFF | |
206 run_time = 0.; | |
207 //barometric_pressure = dive_data.surface * 10; | |
208 | |
209 //mix_number = dive_data.selected_gas + 1; | |
210 | |
211 max_first_stop_depth = 0; | |
212 max_deco_ceiling_depth = 0; | |
213 //deco_zone_reached = false; | |
214 depth_start_of_deco_calc = 0; | |
215 depth_start_of_deco_zone = 0; | |
216 first_stop_depth = 0; | |
217 run_time_start_of_deco_zone = 0; | |
218 | |
219 gCNS_VPM = 0; | |
220 } | |
221 | |
222 float vpm_get_CNS(void) | |
223 { | |
224 return gCNS_VPM; | |
225 } | |
226 | |
902 | 227 |
228 void vpm_maintainTable(SLifeData* pLifeData,SDecoinfo* pDecoInfo) | |
229 { | |
230 static uint32_t lastDiveSecond = 0; | |
231 uint8_t actual_deco_stop = 0; | |
232 int8_t index = 0; | |
233 uint8_t decreaseStopTime = 1; | |
234 | |
235 if(lastDiveSecond < pLifeData->dive_time_seconds) | |
236 { | |
237 lastDiveSecond = pLifeData->dive_time_seconds; | |
238 actual_deco_stop = decom_get_actual_deco_stop((SDiveState*)stateUsed); | |
239 | |
240 pDecoInfo->output_time_to_surface_seconds = 0; | |
241 for(index = DECOINFO_STRUCT_MAX_STOPS -1 ;index >= 0; index--) | |
242 { | |
243 if(pDecoInfo->output_stop_length_seconds[index] > 0) | |
244 { | |
245 if(decreaseStopTime) | |
246 { | |
907 | 247 if((pLifeData->depth_meter > (float)(actual_deco_stop - 1.5)) |
902 | 248 && (pLifeData->depth_meter < (float)actual_deco_stop + 1.5)) |
249 { | |
250 pDecoInfo->output_stop_length_seconds[index]--; | |
251 decreaseStopTime = 0; | |
252 } | |
907 | 253 else if (pLifeData->depth_meter < (float)(actual_deco_stop - 1.5)) /* missed deco stop */ |
254 { | |
255 vpmTableState = VPM_TABLE_MISSED; | |
256 pDecoInfo->output_stop_length_seconds[index] = 0; | |
257 decreaseStopTime = 0; | |
258 } | |
902 | 259 } |
260 pDecoInfo->output_time_to_surface_seconds += pDecoInfo->output_stop_length_seconds[index]; | |
261 } | |
262 } | |
263 pDecoInfo->output_time_to_surface_seconds += pLifeData->depth_meter / 10.0 * 60.0; | |
264 } | |
265 else if(lastDiveSecond > pLifeData->dive_time_seconds) | |
266 { | |
267 lastDiveSecond = pLifeData->dive_time_seconds; | |
268 } | |
269 } | |
270 | |
38 | 271 int vpm_calc(SLifeData* pINPUT, |
272 SDiveSettings* pSettings, | |
273 SVpm* pVPM, | |
274 SDecoinfo* | |
275 pDECOINFO, | |
276 int calc_what) | |
277 { | |
902 | 278 static uint8_t vpmTableActive = 0; |
279 | |
38 | 280 vpm_init_1(); |
281 //decom_CreateGasChangeList(pSettings, pINPUT); | |
282 vpm_calc_what = calc_what; | |
283 /**clear decoInfo*/ | |
902 | 284 |
285 if((vpmTableActive) && (vpm_calc_what == DECOSTOPS)) | |
286 { | |
287 memcpy(&vpmTable, pDECOINFO, sizeof(SDecoinfo)); /* save changes done by e.g. the simulator */ | |
288 } | |
38 | 289 pDECOINFO->output_time_to_surface_seconds = 0; |
290 pDECOINFO->output_ndl_seconds = 0; | |
291 pDECOINFO->output_ceiling_meter = 0; | |
247
3949781096d4
feature: Relative GF to Saturation renames
Jan Mulder <jlmulder@xs4all.nl>
parents:
149
diff
changeset
|
292 pDECOINFO->super_saturation = 0; |
38 | 293 uint8_t tmp_calc_status; |
294 for(int i=0;i<DECOINFO_STRUCT_MAX_STOPS;i++) | |
295 { | |
296 pDECOINFO->output_stop_length_seconds[i] = 0; | |
297 } | |
298 | |
305
305f251cc981
bugfix, consistency: show deco/NDL really after 1 minute divetime
Jan Mulder <jlmulder@xs4all.nl>
parents:
293
diff
changeset
|
299 if(pINPUT->dive_time_seconds_without_surface_time < 60) |
38 | 300 { |
292 | 301 vpm_calc_status = CALC_NDL; |
38 | 302 return vpm_calc_status; |
303 } | |
304 pVpm = pVPM; | |
305 pInput = pINPUT; | |
306 pDecoInfo = pDECOINFO; | |
307 pDiveSettings = pSettings; | |
308 | |
292 | 309 if(vpm_calc_status == CALC_NDL) |
38 | 310 { |
292 | 311 tmp_calc_status = vpm_calc_ndl(); |
38 | 312 } |
313 else | |
314 { | |
315 tmp_calc_status = CALC_BEGIN; | |
316 } | |
317 //Normal Deco calculation | |
292 | 318 if(tmp_calc_status != CALC_NDL) |
38 | 319 { |
320 max_first_stop_depth = pVpm->max_first_stop_depth_save; | |
321 run_time_start_of_deco_zone = pVpm->run_time_start_of_deco_zone_save; | |
322 depth_start_of_deco_zone = pVpm->depth_start_of_deco_zone_save; | |
323 for (int i = 0; i < 16; ++i) { | |
324 helium_pressure[i] = pInput->tissue_helium_bar[i] * 10; | |
325 nitrogen_pressure[i] = pInput->tissue_nitrogen_bar[i] * 10; | |
326 } | |
327 vpm_calc_deco(); | |
328 tmp_calc_status = vpm_calc_critcal_volume(true,false); | |
329 if(vpm_calc_what == DECOSTOPS) | |
330 { | |
331 pVpm->max_first_stop_depth_save = max_first_stop_depth; | |
332 pVpm->run_time_start_of_deco_zone_save = run_time_start_of_deco_zone; | |
333 pVpm->depth_start_of_deco_zone_save = depth_start_of_deco_zone; | |
334 } | |
335 } | |
336 | |
337 //Only Decostops not futute stops | |
338 if(vpm_calc_what == DECOSTOPS) | |
902 | 339 { |
38 | 340 vpm_calc_status = tmp_calc_status; |
902 | 341 if(pSettings->vpm_tableMode) /* store the most conservative deco plan and stick to it. */ |
342 { | |
343 if((int16_t)(pDECOINFO->output_time_to_surface_seconds - vpmTable.output_time_to_surface_seconds) > 60) | |
344 { | |
345 memcpy(&vpmTable, pDECOINFO, sizeof(SDecoinfo)); | |
346 vpmTableActive = 1; | |
907 | 347 if(pVpm->deco_zone_reached) /* table should not change after deco zone was entered */ |
348 { | |
349 if(vpmTableState != VPM_TABLE_MISSED) | |
350 { | |
351 vpmTableState = VPM_TABLE_WARNING; | |
352 } | |
353 } | |
902 | 354 } |
355 else | |
356 { | |
357 if(vpmTable.output_time_to_surface_seconds > 0) | |
358 { | |
359 vpm_maintainTable(pINPUT, &vpmTable); | |
360 vpmTable.output_ceiling_meter = pDECOINFO->output_ceiling_meter; | |
361 memcpy(pDECOINFO, &vpmTable, sizeof(SDecoinfo)); | |
362 } | |
363 } | |
364 } | |
365 } | |
38 | 366 return vpm_calc_status; |
367 } | |
368 | |
369 void vpm_saturation_after_ascent(SLifeData* input) | |
370 { | |
371 int i = 0; | |
372 for (i = 0; i < 16; ++i) { | |
373 pInput->tissue_helium_bar[i] = helium_pressure[i] / 10; | |
374 pInput->tissue_nitrogen_bar[i] = nitrogen_pressure[i] / 10; | |
375 } | |
376 pInput->pressure_ambient_bar = pInput->pressure_surface_bar; | |
377 } | |
378 /* =============================================================================== */ | |
379 /* NOTE ABOUT PRESSURE UNITS USED IN CALCULATIONS: */ | |
380 /* It is the convention in decompression calculations to compute all gas */ | |
381 /* loadings, absolute pressures, partial pressures, etc., in the units of */ | |
382 /* depth pressure that you are diving - either feet of seawater (fsw) or */ | |
383 /* meters of seawater (msw). This program follows that convention with the */ | |
384 /* the exception that all VPM calculations are performed in SI units (by */ | |
385 /* necessity). Accordingly, there are several conversions back and forth */ | |
386 /* between the diving pressure units and the SI units. */ | |
387 /* =============================================================================== */ | |
388 /* =============================================================================== */ | |
389 /* FUNCTION SUBPROGRAM FOR GAS LOADING CALCULATIONS - ASCENT AND DESCENT */ | |
390 /* =============================================================================== */ | |
391 | |
392 | |
393 | |
394 /* =============================================================================== */ | |
395 /* SUBROUTINE GAS_LOADINGS_ASCENT_DESCENT */ | |
396 /* Purpose: This subprogram applies the Schreiner equation to update the */ | |
397 /* gas loadings (partial pressures of helium and nitrogen) in the half-time */ | |
398 /* compartments due to a linear ascent or descent segment at a constant rate. */ | |
399 /* =============================================================================== */ | |
400 | |
290 | 401 static int gas_loadings_ascent_descen(float* helium_pressure, |
38 | 402 float* nitrogen_pressure, |
403 float starting_depth, | |
404 float ending_depth, | |
405 float rate,_Bool check_gas_change) | |
406 { | |
407 short i; | |
408 float initial_inspired_n2_pressure, | |
409 initial_inspired_he_pressure, nitrogen_rate, | |
410 last_run_time, | |
411 starting_ambient_pressure, | |
412 ending_ambient_pressure; | |
413 float initial_helium_pressure[16]; | |
414 float initial_nitrogen_pressure[16]; | |
415 float helium_rate; | |
416 float fraction_helium_begin; | |
417 float fraction_helium_end; | |
418 float fraction_nitrogen_begin; | |
419 float fraction_nitrogen_end; | |
420 float ending_depth_tmp = ending_depth; | |
421 float segment_time_tmp = 0; | |
422 /* loop */ | |
423 /* =============================================================================== */ | |
424 /* CALCULATIONS */ | |
425 /* =============================================================================== */ | |
426 segment_time = (ending_depth_tmp - starting_depth) / rate; | |
427 last_run_time = run_time; | |
428 run_time = last_run_time + segment_time; | |
429 do { | |
430 ending_depth_tmp = ending_depth; | |
431 if (starting_depth > ending_depth && check_gas_change && number_of_changes > 1) | |
432 { | |
433 for (i = 1; i < number_of_changes; ++i) | |
434 { | |
435 if (depth_change[i] < starting_depth && depth_change[i] > ending_depth) | |
436 { | |
437 ending_depth_tmp = depth_change[i]; | |
438 break; | |
439 } | |
440 } | |
441 for (i = 1; i < number_of_changes; ++i) | |
442 { | |
443 if (depth_change[i] >= starting_depth) | |
444 { | |
445 mix_number = mix_change[i]; | |
446 } | |
447 } | |
448 } | |
449 segment_time_tmp = (ending_depth_tmp - starting_depth) / rate; | |
450 ending_ambient_pressure = ending_depth_tmp + barometric_pressure; | |
451 starting_ambient_pressure = starting_depth + barometric_pressure; | |
452 decom_get_inert_gases( starting_ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_begin, &fraction_helium_begin ); | |
453 decom_get_inert_gases( ending_ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_end, &fraction_helium_end ); | |
454 | |
455 initial_inspired_he_pressure = (starting_ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_helium_begin; | |
456 initial_inspired_n2_pressure = (starting_ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_nitrogen_begin; | |
457 //helium_rate = *rate * fraction_helium[mix_number - 1]; | |
458 helium_rate = ((ending_ambient_pressure - WATER_VAPOR_PRESSURE)* fraction_helium_end - initial_inspired_he_pressure)/segment_time_tmp; | |
459 //nitrogen_rate2 = *rate * fraction_nitrogen[mix_number - 1]; | |
460 nitrogen_rate = ((ending_ambient_pressure - WATER_VAPOR_PRESSURE)* fraction_nitrogen_end - initial_inspired_n2_pressure)/segment_time_tmp; | |
461 | |
462 | |
463 decom_oxygen_calculate_cns_stage_SchreinerStyle(segment_time_tmp,&pDiveSettings->decogaslist[mix_number],starting_ambient_pressure/10,ending_ambient_pressure/10,&gCNS_VPM); | |
464 //if(fabs(nitrogen_rate - nitrogen_rate2) > 0.000001) | |
465 //return -2; | |
466 for (i = 1; i <= 16; ++i) | |
467 { | |
468 initial_helium_pressure[i - 1] = helium_pressure[i - 1]; | |
469 initial_nitrogen_pressure[i - 1] = nitrogen_pressure[i - 1]; | |
470 helium_pressure[i - 1] = | |
471 schreiner_equation__2(&initial_inspired_he_pressure, | |
472 &helium_rate, | |
473 &segment_time, | |
474 &HELIUM_TIME_CONSTANT[i - 1], | |
475 &initial_helium_pressure[i - 1]); | |
476 nitrogen_pressure[i - 1] = | |
477 schreiner_equation__2(&initial_inspired_n2_pressure, | |
478 &nitrogen_rate, | |
479 &segment_time, | |
480 &NITROGEN_TIME_CONSTANT[i - 1], | |
481 &initial_nitrogen_pressure[i - 1]); | |
482 | |
483 //nextround??? | |
484 | |
485 } | |
486 starting_depth = ending_depth_tmp; | |
487 } while(ending_depth_tmp > ending_depth); | |
488 | |
489 return 0; | |
490 } /* gas_loadings_ascent_descen */ | |
491 | |
290 | 492 static float last_phase_volume_time[16]; |
493 static float n2_pressure_start_of_deco_zone[16]; | |
494 static float he_pressure_start_of_deco_zone[16]; | |
495 static float phase_volume_time[16]; | |
496 static float n2_pressure_start_of_ascent[16]; | |
497 static float he_pressure_start_of_ascent[16]; | |
498 static float run_time_start_of_deco_calc; | |
499 static float starting_depth; | |
500 static float last_run_time; | |
501 static float deco_phase_volume_time; | |
502 static float run_time_start_of_ascent; | |
503 static float rate; | |
504 static float step_size; | |
505 static _Bool vpm_violates_buehlmann; | |
38 | 506 |
290 | 507 static void vpm_calc_deco(void) |
38 | 508 { |
509 /* System generated locals */ | |
510 | |
511 //float deepest_possible_stop_depth; | |
512 // altitude_of_dive, | |
513 short i; | |
514 int j = 0; | |
515 | |
516 // float rounding_operation; | |
517 | |
518 /* =============================================================================== */ | |
519 /* INPUT PARAMETERS TO BE USED FOR STAGED DECOMPRESSION AND SAVE IN ARRAYS. */ | |
520 /* ASSIGN INITAL PARAMETERS TO BE USED AT START OF ASCENT */ | |
521 /* The user has the ability to change mix, ascent rate, and step size in any */ | |
522 /* combination at any depth during the ascent. */ | |
523 /* =============================================================================== */ | |
524 | |
525 run_time = ((float)pInput->dive_time_seconds )/ 60; | |
526 count_critical_volume_iteration = 0; | |
527 number_of_changes = 1; | |
528 | |
529 barometric_pressure = pInput->pressure_surface_bar * 10; | |
530 depth_change[0] =(pInput->pressure_ambient_bar - pInput->pressure_surface_bar)* 10; | |
531 mix_change[0] = 0; | |
532 rate_change[0 ] = -10;// neu 160215 hw, zuvor: -12; | |
533 step_size_change[0] = 3; | |
534 vpm_violates_buehlmann = false; | |
535 | |
536 for (i = 1; i < BUEHLMANN_STRUCT_MAX_GASES; i++) | |
537 { | |
538 depth_change[i] = 0; | |
539 mix_change[i] = 0; | |
540 } | |
541 j = 0; | |
542 | |
543 for (i = 1; i < BUEHLMANN_STRUCT_MAX_GASES; i++) | |
544 { | |
830
b7d93ff6b3b2
Added selection if an active gas shall be used for deco calculation or not:
Ideenmodellierer
parents:
305
diff
changeset
|
545 if((pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero >= depth_change[0] + 1) |
b7d93ff6b3b2
Added selection if an active gas shall be used for deco calculation or not:
Ideenmodellierer
parents:
305
diff
changeset
|
546 && (pDiveSettings->gas[pDiveSettings->decogaslist[i].GasIdInSettings].note.ub.decocalc)) |
38 | 547 continue; |
548 | |
830
b7d93ff6b3b2
Added selection if an active gas shall be used for deco calculation or not:
Ideenmodellierer
parents:
305
diff
changeset
|
549 if((pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero <= 0) |
b7d93ff6b3b2
Added selection if an active gas shall be used for deco calculation or not:
Ideenmodellierer
parents:
305
diff
changeset
|
550 || (pDiveSettings->gas[pDiveSettings->decogaslist[i].GasIdInSettings].note.ub.decocalc == 0)) |
38 | 551 break; |
552 | |
553 j++; | |
554 number_of_changes ++; | |
555 depth_change[j] = pDiveSettings->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero ; | |
556 mix_change[j] = i; | |
557 rate_change[j] = -10;// neu 160215 hw, zuvor: -12; | |
558 step_size_change[j] = 3; | |
559 } | |
560 | |
561 starting_depth = depth_change[0] ; | |
562 mix_number = mix_change[0] ; | |
563 rate = rate_change[0]; | |
564 step_size = step_size_change[0]; | |
565 | |
566 for (i = 0; i < 16; ++i) { | |
567 he_pressure_start_of_ascent[i ] = helium_pressure[i]; | |
568 n2_pressure_start_of_ascent[i] = nitrogen_pressure[i]; | |
569 } | |
570 run_time_start_of_ascent = run_time; | |
571 if(starting_depth <= depth_start_of_deco_zone && vpm_calc_what == DECOSTOPS) | |
572 { | |
573 pVpm->deco_zone_reached = true; | |
574 depth_start_of_deco_calc = starting_depth; | |
575 critical_volume_algorithm_off = true; | |
576 } | |
577 else | |
578 { | |
579 //if(deco_zone_reached) | |
580 //{ | |
581 pVpm->deco_zone_reached = false; | |
582 critical_volume_algorithm_off = false; | |
583 //max_first_stop_depth = 0; | |
584 //max_first_stop_depth_save = 0; | |
585 //} | |
586 /* =============================================================================== */ | |
587 /* BEGIN PROCESS OF ASCENT AND DECOMPRESSION */ | |
588 /* First, calculate the regeneration of critical radii that takes place over */ | |
589 /* the dive time. The regeneration time constant has a time scale of weeks */ | |
590 /* so this will have very little impact on dives of normal length, but will */ | |
591 /* have major impact for saturation dives. */ | |
592 /* =============================================================================== */ | |
593 | |
594 nuclear_regeneration(&run_time); | |
595 | |
596 /* =============================================================================== */ | |
597 /* CALCULATE INITIAL ALLOWABLE GRADIENTS FOR ASCENT */ | |
598 /* This is based on the maximum effective crushing pressure on critical radii */ | |
599 /* in each compartment achieved during the dive profile. */ | |
600 /* =============================================================================== */ | |
601 | |
602 calc_initial_allowable_gradient(); | |
603 | |
604 /* =============================================================================== */ | |
605 /* SAVE VARIABLES AT START OF ASCENT (END OF BOTTOM TIME) SINCE THESE WILL */ | |
606 /* BE USED LATER TO COMPUTE THE FINAL ASCENT PROFILE THAT IS WRITTEN TO THE */ | |
607 /* OUTPUT FILE. */ | |
608 /* The VPM uses an iterative process to compute decompression schedules so */ | |
609 /* there will be more than one pass through the decompression loop. */ | |
610 /* =============================================================================== */ | |
611 | |
612 /* =============================================================================== */ | |
613 /* CALCULATE THE DEPTH WHERE THE DECOMPRESSION ZONE BEGINS FOR THIS PROFILE */ | |
614 /* BASED ON THE INITIAL ASCENT PARAMETERS AND WRITE THE DEEPEST POSSIBLE */ | |
615 /* DECOMPRESSION STOP DEPTH TO THE OUTPUT FILE */ | |
616 /* Knowing where the decompression zone starts is very important. Below */ | |
617 /* that depth there is no possibility for bubble formation because there */ | |
618 /* will be no supersaturation gradients. Deco stops should never start */ | |
619 /* below the deco zone. The deepest possible stop deco stop depth is */ | |
620 /* defined as the next "standard" stop depth above the point where the */ | |
621 /* leading compartment enters the deco zone. Thus, the program will not */ | |
622 /* base this calculation on step sizes larger than 10 fsw or 3 msw. The */ | |
623 /* deepest possible stop depth is not used in the program, per se, rather */ | |
624 /* it is information to tell the diver where to start putting on the brakes */ | |
625 /* during ascent. This should be prominently displayed by any deco program. */ | |
626 /* =============================================================================== */ | |
627 | |
628 calc_start_of_deco_zone(&starting_depth, &rate, &depth_start_of_deco_zone); | |
629 /* =============================================================================== */ | |
630 /* TEMPORARILY ASCEND PROFILE TO THE START OF THE DECOMPRESSION ZONE, SAVE */ | |
631 /* VARIABLES AT THIS POINT, AND INITIALIZE VARIABLES FOR CRITICAL VOLUME LOOP */ | |
632 /* The iterative process of the VPM Critical Volume Algorithm will operate */ | |
633 /* only in the decompression zone since it deals with excess gas volume */ | |
634 /* released as a result of supersaturation gradients (not possible below the */ | |
635 /* decompression zone). */ | |
636 /* =============================================================================== */ | |
637 gas_loadings_ascent_descen(helium_pressure,nitrogen_pressure, starting_depth, depth_start_of_deco_zone, rate, true); | |
638 | |
639 run_time_start_of_deco_zone = run_time; | |
640 depth_start_of_deco_calc = depth_start_of_deco_zone; | |
641 | |
642 for (i = 0; i < 16; ++i) | |
643 { | |
644 pVpm->max_actual_gradient[i] = 0.; | |
645 } | |
646 } | |
647 | |
648 for (i = 0; i < 16; ++i) | |
649 { | |
650 surface_phase_volume_time[i] = 0.; | |
651 last_phase_volume_time[i] = 0.; | |
652 he_pressure_start_of_deco_zone[i] = helium_pressure[i]; | |
653 n2_pressure_start_of_deco_zone[i] = nitrogen_pressure[i]; | |
654 //pVpm->max_actual_gradient[i] = 0.; | |
655 } | |
656 run_time_start_of_deco_calc = run_time; | |
657 } | |
658 /* =============================================================================== */ | |
659 /* START OF CRITICAL VOLUME LOOP */ | |
660 /* This loop operates between Lines 50 and 100. If the Critical Volume */ | |
661 /* Algorithm is toggled "off" in the program settings, there will only be */ | |
662 /* one pass through this loop. Otherwise, there will be two or more passes */ | |
663 /* through this loop until the deco schedule is "converged" - that is when a */ | |
664 /* comparison between the phase volume time of the present iteration and the */ | |
665 /* last iteration is less than or equal to one minute. This implies that */ | |
666 /* the volume of released gas in the most recent iteration differs from the */ | |
667 /* "critical" volume limit by an acceptably small amount. The critical */ | |
668 /* volume limit is set by the Critical Volume Parameter Lambda in the program */ | |
669 /* settings (default setting is 7500 fsw-min with adjustability range from */ | |
670 /* from 6500 to 8300 fsw-min according to Bruce Wienke). */ | |
671 /* =============================================================================== */ | |
672 /* L50: */ | |
673 | |
290 | 674 static float deco_stop_depth; |
675 static int vpm_calc_critcal_volume(_Bool begin, | |
38 | 676 _Bool calc_nulltime) |
677 { /* loop will run continuous there is an exit stateme */ | |
678 | |
679 short i; | |
680 | |
681 float rounding_operation2; | |
682 //float ending_depth; | |
683 float deco_ceiling_depth; | |
684 | |
685 //float deco_time; | |
686 int count = 0; | |
687 _Bool first_stop; | |
688 int dp = 0; | |
689 float tissue_He_saturation[16]; | |
690 float tissue_N2_saturation[16]; | |
691 float vpm_buehlmann_safety_gradient = 1.0f - (((float)pDiveSettings->vpm_conservatism) / 40); | |
692 /* =============================================================================== */ | |
693 /* CALCULATE CURRENT DECO CEILING BASED ON ALLOWABLE SUPERSATURATION */ | |
694 /* GRADIENTS AND SET FIRST DECO STOP. CHECK TO MAKE SURE THAT SELECTED STEP */ | |
695 /* SIZE WILL NOT ROUND UP FIRST STOP TO A DEPTH THAT IS BELOW THE DECO ZONE. */ | |
696 /* =============================================================================== */ | |
697 if(begin) | |
698 { | |
699 if(depth_start_of_deco_calc < max_first_stop_depth ) | |
700 { | |
701 if(vpm_b) | |
702 { | |
703 BOYLES_LAW_COMPENSATION(&max_first_stop_depth, &depth_start_of_deco_calc, &step_size); | |
704 } | |
705 calc_deco_ceiling(&deco_ceiling_depth, false); | |
706 } | |
707 else | |
708 calc_deco_ceiling(&deco_ceiling_depth, true); | |
709 | |
710 | |
711 if (deco_ceiling_depth <= 0.0f) { | |
712 deco_stop_depth = 0.0f; | |
713 } else { | |
714 rounding_operation2 = deco_ceiling_depth / step_size + ( float)0.5f; | |
715 deco_stop_depth = r_nint(&rounding_operation2) * step_size; | |
716 } | |
717 | |
718 // buehlmann safety | |
719 if(buehlmannSafety) | |
720 { | |
721 for (i = 0; i < 16; i++) | |
722 { | |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
723 tissue_He_saturation[i] = helium_pressure[i] / 10.0; |
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
724 tissue_N2_saturation[i] = nitrogen_pressure[i] / 10.0; |
38 | 725 } |
726 | |
727 if(!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_stop_depth / 10.0f) + pInput->pressure_surface_bar)) | |
728 { | |
729 | |
730 vpm_violates_buehlmann = true; | |
731 do { | |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
732 deco_stop_depth += 3.0; |
38 | 733 } while (!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_stop_depth / 10.0f) + pInput->pressure_surface_bar)); |
734 } | |
735 } | |
736 | |
737 /* =============================================================================== */ | |
738 /* PERFORM A SEPARATE "PROJECTED ASCENT" OUTSIDE OF THE MAIN PROGRAM TO MAKE */ | |
739 /* SURE THAT AN INCREASE IN GAS LOADINGS DURING ASCENT TO THE FIRST STOP WILL */ | |
740 /* NOT CAUSE A VIOLATION OF THE DECO CEILING. IF SO, ADJUST THE FIRST STOP */ | |
741 /* DEEPER BASED ON STEP SIZE UNTIL A SAFE ASCENT CAN BE MADE. */ | |
742 /* Note: this situation is a possibility when ascending from extremely deep */ | |
743 /* dives or due to an unusual gas mix selection. */ | |
744 /* CHECK AGAIN TO MAKE SURE THAT ADJUSTED FIRST STOP WILL NOT BE BELOW THE */ | |
745 /* DECO ZONE. */ | |
746 /* =============================================================================== */ | |
747 if (deco_stop_depth < depth_start_of_deco_calc) | |
748 { | |
749 projected_ascent(&depth_start_of_deco_calc, &rate, &deco_stop_depth, &step_size); | |
750 } | |
751 | |
752 /*if (deco_stop_depth > depth_start_of_deco_zone) { | |
753 printf("\t\n"); | |
754 printf(fmt_905); | |
755 printf(fmt_900); | |
756 printf("\nPROGRAM TERMINATED\n"); | |
757 exit(1); | |
758 }*/ | |
759 | |
760 /* =============================================================================== */ | |
761 /* HANDLE THE SPECIAL CASE WHEN NO DECO STOPS ARE REQUIRED - ASCENT CAN BE */ | |
762 /* MADE DIRECTLY TO THE SURFACE */ | |
763 /* Write ascent data to output file and exit the Critical Volume Loop. */ | |
764 /* =============================================================================== */ | |
765 | |
766 if (deco_stop_depth == 0.0f) | |
767 { | |
768 if(calc_nulltime) | |
769 { | |
770 return CALC_END; | |
771 } | |
772 if(pVpm->deco_zone_reached) | |
773 { | |
774 for(dp = 0;dp < DECOINFO_STRUCT_MAX_STOPS;dp++) | |
775 { | |
776 pDecoInfo->output_stop_length_seconds[dp] = 0; | |
777 } | |
778 pDecoInfo->output_ndl_seconds = 0; | |
779 } | |
780 | |
292 | 781 return CALC_NDL; |
38 | 782 /* exit the critical volume l */ |
783 } | |
784 | |
785 /* =============================================================================== */ | |
786 /* ASSIGN VARIABLES FOR ASCENT FROM START OF DECO ZONE TO FIRST STOP. SAVE */ | |
787 /* FIRST STOP DEPTH FOR LATER USE WHEN COMPUTING THE FINAL ASCENT PROFILE */ | |
788 /* =============================================================================== */ | |
877 | 789 deco_stop_depth = fmaxf(deco_stop_depth,(float)pDiveSettings->last_stop_depth_bar * 10); |
38 | 790 starting_depth = depth_start_of_deco_calc; |
791 first_stop_depth = deco_stop_depth; | |
792 first_stop = true; | |
793 } | |
794 /* =============================================================================== */ | |
795 /* DECO STOP LOOP BLOCK WITHIN CRITICAL VOLUME LOOP */ | |
796 /* This loop computes a decompression schedule to the surface during each */ | |
797 /* iteration of the critical volume loop. No output is written from this */ | |
798 /* loop, rather it computes a schedule from which the in-water portion of the */ | |
799 /* total phase volume time (Deco_Phase_Volume_Time) can be extracted. Also, */ | |
800 /* the gas loadings computed at the end of this loop are used the subroutine */ | |
801 /* which computes the out-of-water portion of the total phase volume time */ | |
802 /* (Surface_Phase_Volume_Time) for that schedule. */ | |
803 | |
804 /* Note that exit is made from the loop after last ascent is made to a deco */ | |
805 /* stop depth that is less than or equal to zero. A final deco stop less */ | |
806 /* than zero can happen when the user makes an odd step size change during */ | |
807 /* ascent - such as specifying a 5 msw step size change at the 3 msw stop! */ | |
808 /* =============================================================================== */ | |
809 | |
810 while(true) /* loop will run continuous there is an break statement */ | |
811 { | |
812 if(starting_depth > deco_stop_depth ) | |
813 gas_loadings_ascent_descen(helium_pressure, nitrogen_pressure, starting_depth, deco_stop_depth, rate,first_stop); | |
814 | |
815 first_stop = false; | |
816 if (deco_stop_depth <= 0.0f) | |
817 { | |
818 break; | |
819 } | |
820 if (number_of_changes > 1) | |
821 { | |
822 int i1 = number_of_changes; | |
823 for (i = 2; i <= i1; ++i) { | |
824 if (depth_change[i - 1] >= deco_stop_depth) | |
825 { | |
826 mix_number = mix_change[i - 1]; | |
827 rate = rate_change[i - 1]; | |
828 step_size = step_size_change[i - 1]; | |
829 } | |
830 } | |
831 } | |
832 if(vpm_b) | |
833 { | |
834 float fist_stop_depth2 = fmaxf(first_stop_depth,max_first_stop_depth); | |
835 BOYLES_LAW_COMPENSATION(&fist_stop_depth2, &deco_stop_depth, &step_size); | |
836 } | |
837 decompression_stop(&deco_stop_depth, &step_size, false); | |
838 starting_depth = deco_stop_depth; | |
839 | |
877 | 840 if(deco_stop_depth == (float)pDiveSettings->last_stop_depth_bar * 10) |
38 | 841 deco_stop_depth = 0; |
842 else | |
843 { | |
844 deco_stop_depth = deco_stop_depth - step_size; | |
877 | 845 deco_stop_depth = fmaxf(deco_stop_depth,(float)pDiveSettings->last_stop_depth_bar * 10); |
38 | 846 } |
847 | |
848 count++; | |
849 //if(count > 14) | |
850 //return CALC_CRITICAL2; | |
851 /* L60: */ | |
852 } | |
853 | |
854 return vpm_check_converged(calc_nulltime); | |
855 } | |
856 /* =============================================================================== */ | |
857 /* COMPUTE TOTAL PHASE VOLUME TIME AND MAKE CRITICAL VOLUME COMPARISON */ | |
858 /* The deco phase volume time is computed from the run time. The surface */ | |
859 /* phase volume time is computed in a subroutine based on the surfacing gas */ | |
860 /* loadings from previous deco loop block. Next the total phase volume time */ | |
861 /* (in-water + surface) for each compartment is compared against the previous */ | |
862 /* total phase volume time. The schedule is converged when the difference is */ | |
863 /* less than or equal to 1 minute in any one of the 16 compartments. */ | |
864 | |
865 /* Note: the "phase volume time" is somewhat of a mathematical concept. */ | |
866 /* It is the time divided out of a total integration of supersaturation */ | |
867 /* gradient x time (in-water and surface). This integration is multiplied */ | |
868 /* by the excess bubble number to represent the amount of free-gas released */ | |
869 /* as a result of allowing a certain number of excess bubbles to form. */ | |
870 /* =============================================================================== */ | |
871 /* end of deco stop loop */ | |
872 | |
290 | 873 static int vpm_check_converged(_Bool calc_nulltime) |
38 | 874 { |
875 | |
876 short i; | |
877 float critical_volume_comparison; | |
878 float r1; | |
879 _Bool schedule_converged = false; | |
880 | |
881 | |
882 deco_phase_volume_time = run_time - run_time_start_of_deco_zone; | |
883 calc_surface_phase_volume_time(); | |
884 | |
885 for (i = 1; i <= 16; ++i) | |
886 { | |
887 phase_volume_time[i - 1] = | |
888 deco_phase_volume_time + surface_phase_volume_time[i - 1]; | |
889 critical_volume_comparison = (r1 = phase_volume_time[i - 1] - last_phase_volume_time[i - 1], fabs(r1)); | |
890 | |
891 if (critical_volume_comparison <= 1.0f) | |
892 { | |
893 schedule_converged = true; | |
894 } | |
895 } | |
896 | |
897 /* =============================================================================== */ | |
898 /* CRITICAL VOLUME DECISION TREE BETWEEN LINES 70 AND 99 */ | |
899 /* There are two options here. If the Critical Volume Agorithm setting is */ | |
900 /* "on" and the schedule is converged, or the Critical Volume Algorithm */ | |
901 /* setting was "off" in the first place, the program will re-assign variables */ | |
902 /* to their values at the start of ascent (end of bottom time) and process */ | |
903 /* a complete decompression schedule once again using all the same ascent */ | |
904 /* parameters and first stop depth. This decompression schedule will match */ | |
905 /* the last iteration of the Critical Volume Loop and the program will write */ | |
906 /* the final deco schedule to the output file. */ | |
907 | |
908 /* Note: if the Critical Volume Agorithm setting was "off", the final deco */ | |
909 /* schedule will be based on "Initial Allowable Supersaturation Gradients." */ | |
910 /* If it was "on", the final schedule will be based on "Adjusted Allowable */ | |
911 /* Supersaturation Gradients" (gradients that are "relaxed" as a result of */ | |
912 /* the Critical Volume Algorithm). */ | |
913 | |
914 /* If the Critical Volume Agorithm setting is "on" and the schedule is not */ | |
915 /* converged, the program will re-assign variables to their values at the */ | |
916 /* start of the deco zone and process another trial decompression schedule. */ | |
917 /* =============================================================================== */ | |
918 /* L70: */ | |
919 //Not more than 4 iteration allowed | |
920 count_critical_volume_iteration++; | |
921 if(count_critical_volume_iteration > 4) | |
922 { | |
923 //return CALC_FINAL_DECO; | |
924 if(calc_nulltime) | |
925 return CALC_FINAL_DECO; | |
926 else | |
927 return vpm_calc_final_deco(true); | |
928 } | |
929 if (schedule_converged || critical_volume_algorithm_off) | |
930 { | |
931 | |
932 //return CALC_FINAL_DECO; | |
933 if(calc_nulltime) | |
934 return CALC_FINAL_DECO; | |
935 else | |
936 return vpm_calc_final_deco(true); | |
937 /* final deco schedule */ | |
938 /* exit critical volume l */ | |
939 | |
940 /* =============================================================================== */ | |
941 /* IF SCHEDULE NOT CONVERGED, COMPUTE RELAXED ALLOWABLE SUPERSATURATION */ | |
942 /* GRADIENTS WITH VPM CRITICAL VOLUME ALGORITHM AND PROCESS ANOTHER */ | |
943 /* ITERATION OF THE CRITICAL VOLUME LOOP */ | |
944 /* =============================================================================== */ | |
945 | |
946 } else { | |
947 critical_volume(&deco_phase_volume_time); | |
948 deco_phase_volume_time = 0.; | |
949 run_time = run_time_start_of_deco_calc; | |
950 starting_depth = depth_start_of_deco_calc; | |
951 mix_number = mix_change[0]; | |
952 rate = rate_change[0]; | |
953 step_size = step_size_change[0]; | |
954 for (i = 1; i <= 16; ++i) | |
955 { | |
956 last_phase_volume_time[i - 1] = phase_volume_time[i - 1]; | |
957 helium_pressure[i - 1] = he_pressure_start_of_deco_zone[i - 1]; | |
958 nitrogen_pressure[i - 1] = n2_pressure_start_of_deco_zone[i - 1]; | |
959 } | |
960 if(calc_nulltime) | |
961 return CALC_CRITICAL; | |
962 else | |
963 return vpm_calc_critcal_volume(true, false); | |
964 } | |
965 /* end of critical volume decision */ | |
966 /* L100: */ | |
967 // }/* end of critical vol loop */ | |
968 } | |
969 | |
290 | 970 static void vpm_calc_deco_ceiling(void) |
38 | 971 { |
972 | |
973 short i; | |
974 // hw 1601209 float r1; | |
975 // hw 1601209 float stop_time; | |
976 // hw 1601209 int count = 0; | |
977 //static int dp_max; | |
978 //static float surfacetime; | |
979 // _Bool first_stop = false; | |
980 float tissue_He_saturation[16]; | |
981 float tissue_N2_saturation[16]; | |
877 | 982 float vpm_buehlmann_safety_gradient = 1.0f - (((float)pDiveSettings->vpm_conservatism) / 40); |
38 | 983 //max_first_stop_depth = fmaxf(first_stop_depth,max_first_stop_depth); |
984 | |
985 /** CALC DECO Ceiling ******************************************************************/ | |
986 /** Not when Future stops */ | |
987 if(vpm_calc_what == DECOSTOPS) | |
988 { | |
989 | |
990 for (i = 1; i <= 16; ++i) | |
991 { | |
992 helium_pressure[i - 1] = he_pressure_start_of_deco_zone[i - 1]; | |
993 nitrogen_pressure[i - 1] = n2_pressure_start_of_deco_zone[i - 1]; | |
994 } | |
995 run_time = run_time_start_of_ascent;// run_time_start_of_ascent; | |
996 starting_depth = depth_change[0]; | |
997 mix_number = mix_change[0]; | |
998 rate = rate_change[0]; | |
999 //gas_loadings_ascent_descen(helium_pressure,nitrogen_pressure, starting_depth, depth_start_of_deco_calc, rate, true); | |
1000 | |
1001 float deco_ceiling_depth = 0.0f; | |
1002 if(depth_start_of_deco_calc > max_deco_ceiling_depth) | |
1003 { | |
1004 calc_deco_ceiling(&deco_ceiling_depth, true); | |
1005 } | |
1006 if(buehlmannSafety) | |
1007 { | |
1008 for (i = 0; i < 16; i++) | |
1009 { | |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1010 tissue_He_saturation[i] = helium_pressure[i] / 10.0; |
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1011 tissue_N2_saturation[i] = nitrogen_pressure[i] / 10.0; |
38 | 1012 } |
1013 | |
1014 if(!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_ceiling_depth / 10.0f) + pInput->pressure_surface_bar)) | |
1015 { | |
1016 vpm_violates_buehlmann = true; | |
1017 do { | |
1018 deco_ceiling_depth += 0.1f; | |
1019 } while (!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_ceiling_depth / 10.0f) + pInput->pressure_surface_bar)); | |
1020 } | |
1021 } | |
1022 | |
1023 if (deco_ceiling_depth < depth_start_of_deco_calc) | |
1024 { | |
1025 projected_ascent(&depth_start_of_deco_calc, &rate, &deco_ceiling_depth, &step_size); | |
1026 } | |
1027 | |
1028 max_deco_ceiling_depth = fmaxf(max_deco_ceiling_depth,deco_ceiling_depth); | |
1029 | |
1030 if(depth_start_of_deco_calc > deco_ceiling_depth) | |
1031 { | |
1032 gas_loadings_ascent_descen(helium_pressure,nitrogen_pressure, depth_start_of_deco_calc,deco_ceiling_depth, rate, true); | |
1033 //surfacetime += segment_time; | |
1034 } | |
1035 | |
1036 if(vpm_b) | |
1037 { | |
1038 BOYLES_LAW_COMPENSATION(&max_deco_ceiling_depth, &deco_ceiling_depth, &step_size); | |
1039 } | |
1040 calc_deco_ceiling(&deco_ceiling_depth, false); | |
1041 | |
1042 // buehlmann safety | |
1043 if(vpm_violates_buehlmann) | |
1044 { | |
1045 for (i = 0; i < 16; i++) | |
1046 { | |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1047 tissue_He_saturation[i] = helium_pressure[i] / 10.0; |
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1048 tissue_N2_saturation[i] = nitrogen_pressure[i] / 10.0; |
38 | 1049 } |
1050 | |
1051 if(!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_ceiling_depth / 10.0f) + pInput->pressure_surface_bar)) | |
1052 { | |
1053 vpm_violates_buehlmann = true; | |
1054 do { | |
1055 deco_ceiling_depth += 0.1f; | |
1056 } while (!decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (deco_ceiling_depth / 10.0f) + pInput->pressure_surface_bar)); | |
1057 } | |
1058 } | |
1059 // output_ceiling_meter | |
1060 if(deco_ceiling_depth > first_stop_depth) | |
1061 deco_ceiling_depth = first_stop_depth; | |
1062 pDecoInfo->output_ceiling_meter = deco_ceiling_depth ; | |
1063 } | |
1064 else | |
1065 { | |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1066 pDecoInfo->output_ceiling_meter = 0.0; |
38 | 1067 } |
1068 | |
1069 // fix hw 160627 | |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1070 if(pDecoInfo->output_ceiling_meter < 0.0) |
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1071 pDecoInfo->output_ceiling_meter = 0.0; |
38 | 1072 |
1073 /*** End CALC ceiling ***************************************************/ | |
1074 } | |
1075 | |
1076 | |
1077 /* =============================================================================== */ | |
1078 /* DECO STOP LOOP BLOCK FOR FINAL DECOMPRESSION SCHEDULE */ | |
1079 /* =============================================================================== */ | |
1080 | |
290 | 1081 static int vpm_calc_final_deco(_Bool begin) |
38 | 1082 { |
1083 short i; | |
1084 float r1; | |
1085 float stop_time; | |
1086 int count = 0; | |
1087 static int dp_max; | |
1088 static float surfacetime; | |
1089 _Bool first_stop = false; | |
902 | 1090 float roundingValue = 0.0; |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1091 |
902 | 1092 uint16_t stop_time_seconds; |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1093 |
38 | 1094 max_first_stop_depth = fmaxf(first_stop_depth,max_first_stop_depth); |
1095 if(begin) | |
1096 { | |
1097 gCNS_VPM = 0; | |
1098 dp_max = 0; | |
1099 for (i = 1; i <= 16; ++i) | |
1100 { | |
1101 helium_pressure[i - 1] = | |
1102 he_pressure_start_of_ascent[i - 1]; | |
1103 nitrogen_pressure[i - 1] = | |
1104 n2_pressure_start_of_ascent[i - 1]; | |
1105 } | |
1106 run_time = run_time_start_of_ascent;// run_time_start_of_ascent; | |
1107 starting_depth = depth_change[0]; | |
1108 mix_number = mix_change[0]; | |
1109 rate = rate_change[0]; | |
1110 step_size = step_size_change[0]; | |
1111 deco_stop_depth = first_stop_depth; | |
1112 max_first_stop_depth = fmaxf(first_stop_depth,max_first_stop_depth); | |
1113 last_run_time = 0.; | |
1114 | |
1115 | |
1116 | |
1117 /* =============================================================================== */ | |
1118 /* DECO STOP LOOP BLOCK FOR FINAL DECOMPRESSION SCHEDULE */ | |
1119 /* =============================================================================== */ | |
1120 surfacetime = 0; | |
1121 first_stop = true; | |
1122 } | |
1123 | |
1124 while(true) /* loop will run continuous until there is an break statement */ | |
1125 { | |
1126 if(starting_depth > deco_stop_depth) | |
1127 { | |
1128 gas_loadings_ascent_descen(helium_pressure,nitrogen_pressure, starting_depth,deco_stop_depth, rate, first_stop); | |
1129 surfacetime += segment_time; | |
1130 } | |
1131 | |
1132 /* =============================================================================== */ | |
1133 /* DURING FINAL DECOMPRESSION SCHEDULE PROCESS, COMPUTE MAXIMUM ACTUAL */ | |
1134 /* SUPERSATURATION GRADIENT RESULTING IN EACH COMPARTMENT */ | |
1135 /* If there is a repetitive dive, this will be used later in the VPM */ | |
1136 /* Repetitive Algorithm to adjust the values for critical radii. */ | |
1137 /* =============================================================================== */ | |
1138 if(vpm_calc_what == DECOSTOPS) | |
1139 calc_max_actual_gradient(&deco_stop_depth); | |
1140 | |
1141 if (deco_stop_depth <= 0.0f) { | |
1142 break; | |
1143 } | |
1144 if (number_of_changes > 1) | |
1145 { | |
1146 int i1 = number_of_changes; | |
1147 for (i = 2; i <= i1; ++i) | |
1148 { | |
1149 if (depth_change[i - 1] >= deco_stop_depth) | |
1150 { | |
1151 mix_number = mix_change[i - 1]; | |
1152 rate = rate_change[i - 1]; | |
1153 step_size = step_size_change[i - 1]; | |
1154 } | |
1155 } | |
1156 } | |
1157 | |
1158 if(first_stop) | |
1159 { | |
1160 run_time_first_stop = run_time; | |
1161 first_stop = false; | |
1162 } | |
1163 if(vpm_b) | |
1164 { | |
1165 BOYLES_LAW_COMPENSATION(&max_first_stop_depth, &deco_stop_depth, &step_size); | |
1166 } | |
1167 decompression_stop(&deco_stop_depth, &step_size, true); | |
1168 | |
1169 /* =============================================================================== */ | |
1170 /* This next bit justs rounds up the stop time at the first stop to be in */ | |
1171 /* whole increments of the minimum stop time (to make for a nice deco table). */ | |
1172 /* =============================================================================== */ | |
1173 | |
1174 if (last_run_time == 0.0f) | |
1175 { | |
1176 r1 = segment_time / minimum_deco_stop_time + 0.5f; | |
1177 stop_time = r_int(&r1) * minimum_deco_stop_time; | |
1178 } else { | |
1179 stop_time = run_time - last_run_time; | |
1180 } | |
1181 stop_time = segment_time; | |
1182 surfacetime += stop_time; | |
1183 if((vpm_calc_what == DECOSTOPS) || (vpm_calc_what == BAILOUTSTOPS)) | |
1184 { | |
1185 int dp = 0; | |
1186 if(deco_stop_depth == (float)pDiveSettings->last_stop_depth_bar * 10) | |
1187 { | |
1188 dp = 0; | |
1189 } | |
1190 else | |
1191 { | |
902 | 1192 roundingValue = (deco_stop_depth - (pDiveSettings->input_second_to_last_stop_depth_bar * 10.0)) / step_size; |
1193 dp = 1 + r_nint(&roundingValue); | |
38 | 1194 } |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1195 |
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1196 //dp_max = (int)fmaxf(dp_max,dp); |
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1197 if(dp > dp_max) |
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1198 { |
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1199 dp_max = dp; |
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1200 } |
38 | 1201 if(dp < DECOINFO_STRUCT_MAX_STOPS) |
1202 { | |
902 | 1203 stop_time_seconds = (uint16_t)(fminf((999.9 * 60.0), (stop_time *60.0))); |
38 | 1204 // |
1205 | |
1206 //if(vpm_calc_what == DECOSTOPS) | |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1207 pDecoInfo->output_stop_length_seconds[dp] = stop_time_seconds; |
38 | 1208 //else |
1209 //decostop_bailout[dp] = (unsigned short)stop_time_seconds; | |
1210 } | |
1211 } | |
1212 | |
1213 | |
1214 /* =============================================================================== */ | |
1215 /* DURING FINAL DECOMPRESSION SCHEDULE, IF MINIMUM STOP TIME PARAMETER IS A */ | |
1216 /* WHOLE NUMBER (i.e. 1 minute) THEN WRITE DECO SCHEDULE USING short */ | |
1217 /* NUMBERS (looks nicer). OTHERWISE, USE DECIMAL NUMBERS. */ | |
1218 /* Note: per the request of a noted exploration diver(!), program now allows */ | |
1219 /* a minimum stop time of less than one minute so that total ascent time can */ | |
1220 /* be minimized on very long dives. In fact, with step size set at 1 fsw or */ | |
1221 /* 0.2 msw and minimum stop time set at 0.1 minute (6 seconds), a near */ | |
1222 /* continuous decompression schedule can be computed. */ | |
1223 /* =============================================================================== */ | |
1224 | |
1225 starting_depth = deco_stop_depth; | |
877 | 1226 if(deco_stop_depth == (float)pDiveSettings->last_stop_depth_bar * 10) |
1227 deco_stop_depth = 0; | |
38 | 1228 else |
1229 { | |
1230 deco_stop_depth = deco_stop_depth - step_size; | |
877 | 1231 deco_stop_depth = fmaxf(deco_stop_depth,(float)pDiveSettings->last_stop_depth_bar * 10); |
38 | 1232 } |
1233 | |
1234 last_run_time = run_time; | |
1235 count++; | |
1236 //if(count > 14) | |
1237 //return CALC_FINAL_DECO2; | |
1238 /* L80: */ | |
1239 } /* for final deco sche */ | |
1240 | |
1241 if( (vpm_calc_what == DECOSTOPS) || (vpm_calc_what == BAILOUTSTOPS)) | |
1242 { | |
1243 for(int dp = dp_max +1;dp < DECOINFO_STRUCT_MAX_STOPS;dp++) | |
1244 { | |
1245 //if(vpm_calc_what == DECOSTOPS) | |
1246 pDecoInfo->output_stop_length_seconds[dp] = 0; | |
1247 //else | |
1248 //decostop_bailout[dp] = 0; | |
1249 } | |
1250 } | |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1251 pDecoInfo->output_time_to_surface_seconds = (int)(surfacetime * 60.0); |
38 | 1252 pDecoInfo->output_ndl_seconds = 0; |
1253 | |
1254 vpm_calc_deco_ceiling(); | |
1255 /* end of deco stop lo */ | |
1256 return CALC_END; | |
1257 } | |
1258 | |
1259 /* =============================================================================== */ | |
1260 /* SUBROUTINE NUCLEAR_REGENERATION */ | |
1261 /* Purpose: This subprogram calculates the regeneration of VPM critical */ | |
1262 /* radii that takes place over the dive time. The regeneration time constant */ | |
1263 /* has a time scale of weeks so this will have very little impact on dives of */ | |
1264 /* normal length, but will have a major impact for saturation dives. */ | |
1265 /* =============================================================================== */ | |
1266 | |
290 | 1267 static int nuclear_regeneration(float *dive_time) |
38 | 1268 { |
1269 /* Local variables */ | |
1270 float crush_pressure_adjust_ratio_he, | |
1271 ending_radius_n2, | |
1272 ending_radius_he; | |
1273 short i; | |
1274 float crushing_pressure_pascals_n2, | |
1275 crushing_pressure_pascals_he, | |
1276 adj_crush_pressure_n2_pascals, | |
1277 adj_crush_pressure_he_pascals, | |
1278 crush_pressure_adjust_ratio_n2; | |
1279 | |
1280 /* loop */ | |
1281 /* =============================================================================== */ | |
1282 /* CALCULATIONS */ | |
1283 /* First convert the maximum crushing pressure obtained for each compartment */ | |
1284 /* to Pascals. Next, compute the ending radius for helium and nitrogen */ | |
1285 /* critical nuclei in each compartment. */ | |
1286 /* =============================================================================== */ | |
1287 | |
1288 for (i = 1; i <= 16; ++i) | |
1289 { | |
1290 crushing_pressure_pascals_he = | |
1291 pVpm->max_crushing_pressure_he[i - 1] / UNITS_FACTOR * 101325.0f; | |
1292 crushing_pressure_pascals_n2 = | |
1293 pVpm->max_crushing_pressure_n2[i - 1] / UNITS_FACTOR * 101325.0f; | |
1294 ending_radius_he = | |
1295 1.0f / (crushing_pressure_pascals_he / | |
1296 ((SKIN_COMPRESSION_GAMMAC - SURFACE_TENSION_GAMMA) * 2.0f) + | |
1297 1.0f / pVpm->adjusted_critical_radius_he[i - 1]); | |
1298 ending_radius_n2 = | |
1299 1.0f / (crushing_pressure_pascals_n2 / | |
1300 ((SKIN_COMPRESSION_GAMMAC - SURFACE_TENSION_GAMMA) * 2.0f) + | |
1301 1.0f / pVpm->adjusted_critical_radius_n2[i - 1]); | |
1302 | |
1303 /* =============================================================================== */ | |
1304 /* A "regenerated" radius for each nucleus is now calculated based on the */ | |
1305 /* regeneration time constant. This means that after application of */ | |
1306 /* crushing pressure and reduction in radius, a nucleus will slowly grow */ | |
1307 /* back to its original initial radius over a period of time. This */ | |
1308 /* phenomenon is probabilistic in nature and depends on absolute temperature. */ | |
1309 /* It is independent of crushing pressure. */ | |
1310 /* =============================================================================== */ | |
1311 | |
1312 regenerated_radius_he[i - 1] = | |
1313 pVpm->adjusted_critical_radius_he[i - 1] + | |
1314 (ending_radius_he - pVpm->adjusted_critical_radius_he[i - 1]) * | |
1315 expf(-(*dive_time) / REGENERATION_TIME_CONSTANT); | |
1316 regenerated_radius_n2[i - 1] = | |
1317 pVpm->adjusted_critical_radius_n2[i - 1] + | |
1318 (ending_radius_n2 - pVpm->adjusted_critical_radius_n2[i - 1]) * | |
1319 expf(-(*dive_time) / REGENERATION_TIME_CONSTANT); | |
1320 | |
1321 /* =============================================================================== */ | |
1322 /* In order to preserve reference back to the initial critical radii after */ | |
1323 /* regeneration, an "adjusted crushing pressure" for the nuclei in each */ | |
1324 /* compartment must be computed. In other words, this is the value of */ | |
1325 /* crushing pressure that would have reduced the original nucleus to the */ | |
1326 /* to the present radius had regeneration not taken place. The ratio */ | |
1327 /* for adjusting crushing pressure is obtained from algebraic manipulation */ | |
1328 /* of the standard VPM equations. The adjusted crushing pressure, in lieu */ | |
1329 /* of the original crushing pressure, is then applied in the VPM Critical */ | |
1330 /* Volume Algorithm and the VPM Repetitive Algorithm. */ | |
1331 /* =============================================================================== */ | |
1332 | |
1333 crush_pressure_adjust_ratio_he = | |
1334 ending_radius_he * (pVpm->adjusted_critical_radius_he[i - 1] - | |
1335 regenerated_radius_he[i - 1]) / | |
1336 (regenerated_radius_he[i - 1] * | |
1337 (pVpm->adjusted_critical_radius_he[i - 1] - | |
1338 ending_radius_he)); | |
1339 crush_pressure_adjust_ratio_n2 = | |
1340 ending_radius_n2 * (pVpm->adjusted_critical_radius_n2[i - 1] - | |
1341 regenerated_radius_n2[i - 1]) / | |
1342 (regenerated_radius_n2[i - 1] * | |
1343 (pVpm->adjusted_critical_radius_n2[i - 1] - | |
1344 ending_radius_n2)); | |
1345 adj_crush_pressure_he_pascals = | |
1346 crushing_pressure_pascals_he * crush_pressure_adjust_ratio_he; | |
1347 adj_crush_pressure_n2_pascals = | |
1348 crushing_pressure_pascals_n2 * crush_pressure_adjust_ratio_n2; | |
1349 pVpm->adjusted_crushing_pressure_he[i - 1] = | |
1350 adj_crush_pressure_he_pascals / 101325.0f * UNITS_FACTOR; | |
1351 pVpm->adjusted_crushing_pressure_n2[i - 1] = | |
1352 adj_crush_pressure_n2_pascals / 101325.0f * UNITS_FACTOR; | |
1353 } | |
1354 return 0; | |
1355 } /* nuclear_regeneration */ | |
1356 | |
1357 /* =============================================================================== */ | |
1358 /* SUBROUTINE CALC_INITIAL_ALLOWABLE_GRADIENT */ | |
1359 /* Purpose: This subprogram calculates the initial allowable gradients for */ | |
1360 /* helium and nitrogren in each compartment. These are the gradients that */ | |
1361 /* will be used to set the deco ceiling on the first pass through the deco */ | |
1362 /* loop. If the Critical Volume Algorithm is set to "off", then these */ | |
1363 /* gradients will determine the final deco schedule. Otherwise, if the */ | |
1364 /* Critical Volume Algorithm is set to "on", these gradients will be further */ | |
1365 /* "relaxed" by the Critical Volume Algorithm subroutine. The initial */ | |
1366 /* allowable gradients are referred to as "PssMin" in the papers by Yount */ | |
1367 /* and colleauges, i.e., the minimum supersaturation pressure gradients */ | |
1368 /* that will probe bubble formation in the VPM nuclei that started with the */ | |
1369 /* designated minimum initial radius (critical radius). */ | |
1370 | |
1371 /* The initial allowable gradients are computed directly from the */ | |
1372 /* "regenerated" radii after the Nuclear Regeneration subroutine. These */ | |
1373 /* gradients are tracked separately for helium and nitrogen. */ | |
1374 /* =============================================================================== */ | |
1375 | |
290 | 1376 static int calc_initial_allowable_gradient() |
38 | 1377 { |
1378 float initial_allowable_grad_n2_pa, | |
1379 initial_allowable_grad_he_pa; | |
1380 short i; | |
1381 | |
1382 /* loop */ | |
1383 /* =============================================================================== */ | |
1384 /* CALCULATIONS */ | |
1385 /* The initial allowable gradients are computed in Pascals and then converted */ | |
1386 /* to the diving pressure units. Two different sets of arrays are used to */ | |
1387 /* save the calculations - Initial Allowable Gradients and Allowable */ | |
1388 /* Gradients. The Allowable Gradients are assigned the values from Initial */ | |
1389 /* Allowable Gradients however the Allowable Gradients can be changed later */ | |
1390 /* by the Critical Volume subroutine. The values for the Initial Allowable */ | |
1391 /* Gradients are saved in a global array for later use by both the Critical */ | |
1392 /* Volume subroutine and the VPM Repetitive Algorithm subroutine. */ | |
1393 /* =============================================================================== */ | |
1394 | |
1395 for (i = 1; i <= 16; ++i) | |
1396 { | |
1397 initial_allowable_grad_n2_pa = | |
1398 SURFACE_TENSION_GAMMA * 2.0f * | |
1399 (SKIN_COMPRESSION_GAMMAC - SURFACE_TENSION_GAMMA) / | |
1400 (regenerated_radius_n2[i - 1] * SKIN_COMPRESSION_GAMMAC); | |
1401 | |
1402 initial_allowable_grad_he_pa = | |
1403 SURFACE_TENSION_GAMMA * 2.0f * | |
1404 (SKIN_COMPRESSION_GAMMAC - SURFACE_TENSION_GAMMA) / | |
1405 (regenerated_radius_he[i - 1] * SKIN_COMPRESSION_GAMMAC); | |
1406 | |
1407 pVpm->initial_allowable_gradient_n2[i - 1] = | |
1408 initial_allowable_grad_n2_pa / 101325.0f * UNITS_FACTOR; | |
1409 | |
1410 pVpm->initial_allowable_gradient_he[i - 1] = | |
1411 initial_allowable_grad_he_pa / 101325.0f * UNITS_FACTOR; | |
1412 | |
1413 allowable_gradient_he[i - 1] = | |
1414 pVpm->initial_allowable_gradient_he[i - 1]; | |
1415 | |
1416 allowable_gradient_n2[i - 1] = | |
1417 pVpm->initial_allowable_gradient_n2[i - 1]; | |
1418 } | |
1419 return 0; | |
1420 } /* calc_initial_allowable_gradient */ | |
1421 | |
1422 /* =============================================================================== */ | |
1423 /* SUBROUTINE CALC_DECO_CEILING */ | |
1424 /* Purpose: This subprogram calculates the deco ceiling (the safe ascent */ | |
1425 /* depth) in each compartment, based on the allowable gradients, and then */ | |
1426 /* finds the deepest deco ceiling across all compartments. This deepest */ | |
1427 /* value (Deco Ceiling Depth) is then used by the Decompression Stop */ | |
1428 /* subroutine to determine the actual deco schedule. */ | |
1429 /* =============================================================================== */ | |
1430 | |
290 | 1431 static int calc_deco_ceiling(float *deco_ceiling_depth,_Bool fallowable) |
38 | 1432 { |
1433 /* System generated locals */ | |
1434 float r1, r2; | |
1435 /* Local variables */ | |
1436 float weighted_allowable_gradient; | |
1437 short i; | |
1438 float compartment_deco_ceiling[16], | |
1439 gas_loading, | |
1440 tolerated_ambient_pressure; | |
1441 float gradient_he, gradient_n2; | |
1442 | |
1443 if(!vpm_b) | |
1444 fallowable = true; | |
1445 /* loop */ | |
1446 /* =============================================================================== */ | |
1447 /* CALCULATIONS */ | |
1448 /* Since there are two sets of allowable gradients being tracked, one for */ | |
1449 /* helium and one for nitrogen, a "weighted allowable gradient" must be */ | |
1450 /* computed each time based on the proportions of helium and nitrogen in */ | |
1451 /* each compartment. This proportioning follows the methodology of */ | |
1452 /* Buhlmann/Keller. If there is no helium and nitrogen in the compartment, */ | |
1453 /* such as after extended periods of oxygen breathing, then the minimum value */ | |
1454 /* across both gases will be used. It is important to note that if a */ | |
1455 /* compartment is empty of helium and nitrogen, then the weighted allowable */ | |
1456 /* gradient formula cannot be used since it will result in division by zero. */ | |
1457 /* =============================================================================== */ | |
1458 | |
1459 for (i = 1; i <= 16; ++i) | |
1460 { | |
1461 | |
1462 // abfrage raus und pointer stattdessen | |
1463 if(fallowable){ | |
1464 gradient_he = allowable_gradient_he[i-1]; | |
1465 gradient_n2 = allowable_gradient_n2[i-1]; | |
1466 } | |
1467 else{ | |
1468 gradient_he = deco_gradient_he[i-1]; | |
1469 gradient_n2 = deco_gradient_n2[i-1]; | |
1470 } | |
1471 | |
1472 gas_loading = helium_pressure[i - 1] + nitrogen_pressure[i - 1]; | |
1473 | |
1474 if (gas_loading > 0) | |
1475 { | |
1476 weighted_allowable_gradient = | |
1477 (gradient_he * helium_pressure[i - 1] + | |
1478 gradient_n2 * nitrogen_pressure[i - 1]) / | |
1479 (helium_pressure[i - 1] + nitrogen_pressure[i - 1]); | |
1480 | |
1481 tolerated_ambient_pressure = | |
1482 gas_loading + | |
1483 CONSTANT_PRESSURE_OTHER_GASES - | |
1484 weighted_allowable_gradient; | |
1485 } | |
1486 else | |
1487 { | |
1488 /* Computing MIN */ | |
1489 r1 = gradient_he; | |
1490 r2 = gradient_n2; | |
1491 weighted_allowable_gradient = fminf(r1,r2); | |
1492 | |
1493 tolerated_ambient_pressure = | |
1494 CONSTANT_PRESSURE_OTHER_GASES - weighted_allowable_gradient; | |
1495 } | |
1496 | |
1497 /* =============================================================================== */ | |
1498 /* The tolerated ambient pressure cannot be less than zero absolute, i.e., */ | |
1499 /* the vacuum of outer space! */ | |
1500 /* =============================================================================== */ | |
1501 | |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1502 if (tolerated_ambient_pressure < 0.0) { |
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1503 tolerated_ambient_pressure = 0.0; |
38 | 1504 } |
1505 compartment_deco_ceiling[i - 1] = | |
1506 tolerated_ambient_pressure - barometric_pressure; | |
1507 } | |
1508 | |
1509 /* =============================================================================== */ | |
1510 /* The Deco Ceiling Depth is computed in a loop after all of the individual */ | |
1511 /* compartment deco ceilings have been calculated. It is important that the */ | |
1512 /* Deco Ceiling Depth (max deco ceiling across all compartments) only be */ | |
1513 /* extracted from the compartment values and not be compared against some */ | |
1514 /* initialization value. For example, if MAX(Deco_Ceiling_Depth . .) was */ | |
1515 /* compared against zero, this could cause a program lockup because sometimes */ | |
1516 /* the Deco Ceiling Depth needs to be negative (but not less than zero */ | |
1517 /* absolute ambient pressure) in order to decompress to the last stop at zero */ | |
1518 /* depth. */ | |
1519 /* =============================================================================== */ | |
1520 | |
1521 *deco_ceiling_depth = compartment_deco_ceiling[0]; | |
1522 for (i = 2; i <= 16; ++i) | |
1523 { | |
1524 /* Computing MAX */ | |
1525 r1 = *deco_ceiling_depth; | |
1526 r2 = compartment_deco_ceiling[i - 1]; | |
1527 *deco_ceiling_depth = fmaxf(r1,r2); | |
1528 } | |
1529 return 0; | |
1530 } /* calc_deco_ceiling */ | |
1531 | |
1532 | |
1533 | |
1534 /* =============================================================================== */ | |
1535 /* SUBROUTINE CALC_MAX_ACTUAL_GRADIENT */ | |
1536 /* Purpose: This subprogram calculates the actual supersaturation gradient */ | |
1537 /* obtained in each compartment as a result of the ascent profile during */ | |
1538 /* decompression. Similar to the concept with crushing pressure, the */ | |
1539 /* supersaturation gradients are not cumulative over a multi-level, staged */ | |
1540 /* ascent. Rather, it will be the maximum value obtained in any one discrete */ | |
1541 /* step of the overall ascent. Thus, the program must compute and store the */ | |
1542 /* maximum actual gradient for each compartment that was obtained across all */ | |
1543 /* steps of the ascent profile. This subroutine is invoked on the last pass */ | |
1544 /* through the deco stop loop block when the final deco schedule is being */ | |
1545 /* generated. */ | |
1546 /* */ | |
1547 /* The max actual gradients are later used by the VPM Repetitive Algorithm to */ | |
1548 /* determine if adjustments to the critical radii are required. If the max */ | |
1549 /* actual gradient did not exceed the initial alllowable gradient, then no */ | |
1550 /* adjustment will be made. However, if the max actual gradient did exceed */ | |
1551 /* the intitial allowable gradient, such as permitted by the Critical Volume */ | |
1552 /* Algorithm, then the critical radius will be adjusted (made larger) on the */ | |
1553 /* repetitive dive to compensate for the bubbling that was allowed on the */ | |
1554 /* previous dive. The use of the max actual gradients is intended to prevent */ | |
1555 /* the repetitive algorithm from being overly conservative. */ | |
1556 /* =============================================================================== */ | |
1557 | |
290 | 1558 static int calc_max_actual_gradient(float *deco_stop_depth) |
38 | 1559 { |
1560 /* System generated locals */ | |
1561 float r1; | |
1562 | |
1563 /* Local variables */ | |
1564 short i; | |
1565 float compartment_gradient; | |
1566 | |
1567 /* loop */ | |
1568 /* =============================================================================== */ | |
1569 /* CALCULATIONS */ | |
1570 /* Note: negative supersaturation gradients are meaningless for this */ | |
1571 /* application, so the values must be equal to or greater than zero. */ | |
1572 /* =============================================================================== */ | |
1573 | |
1574 for (i = 1; i <= 16; ++i) | |
1575 { | |
1576 compartment_gradient = | |
1577 helium_pressure[i - 1] + | |
1578 nitrogen_pressure[i - 1] + | |
1579 CONSTANT_PRESSURE_OTHER_GASES - | |
1580 (*deco_stop_depth + barometric_pressure); | |
1581 if (compartment_gradient <= 0.0f) { | |
1582 compartment_gradient = 0.0f; | |
1583 } | |
1584 /* Computing MAX */ | |
1585 r1 = pVpm->max_actual_gradient[i - 1]; | |
1586 pVpm->max_actual_gradient[i - 1] = fmaxf(r1, compartment_gradient); | |
1587 } | |
1588 return 0; | |
1589 } /* calc_max_actual_gradient */ | |
1590 | |
1591 /* =============================================================================== */ | |
1592 /* SUBROUTINE CALC_SURFACE_PHASE_VOLUME_TIME */ | |
1593 /* Purpose: This subprogram computes the surface portion of the total phase */ | |
1594 /* volume time. This is the time factored out of the integration of */ | |
1595 /* supersaturation gradient x time over the surface interval. The VPM */ | |
1596 /* considers the gradients that allow bubbles to form or to drive bubble */ | |
1597 /* growth both in the water and on the surface after the dive. */ | |
1598 | |
1599 /* This subroutine is a new development to the VPM algorithm in that it */ | |
1600 /* computes the time course of supersaturation gradients on the surface */ | |
1601 /* when both helium and nitrogen are present. Refer to separate write-up */ | |
1602 /* for a more detailed explanation of this algorithm. */ | |
1603 /* =============================================================================== */ | |
1604 | |
290 | 1605 static int calc_surface_phase_volume_time() |
38 | 1606 { |
1607 /* Local variables */ | |
1608 float decay_time_to_zero_gradient; | |
1609 short i; | |
1610 float integral_gradient_x_time, | |
1611 surface_inspired_n2_pressure; | |
1612 | |
1613 /* loop */ | |
1614 /* =============================================================================== */ | |
1615 /* CALCULATIONS */ | |
1616 /* =============================================================================== */ | |
1617 | |
1618 surface_inspired_n2_pressure = | |
1619 (barometric_pressure - WATER_VAPOR_PRESSURE) * 0.79f; | |
1620 for (i = 1; i <= 16; ++i) | |
1621 { | |
1622 if (nitrogen_pressure[i - 1] > surface_inspired_n2_pressure) | |
1623 { | |
1624 surface_phase_volume_time[i - 1] = | |
1625 (helium_pressure[i - 1] / HELIUM_TIME_CONSTANT[i - 1] + | |
1626 (nitrogen_pressure[i - 1] - surface_inspired_n2_pressure) / | |
1627 NITROGEN_TIME_CONSTANT[i - 1]) / | |
1628 (helium_pressure[i - 1] + nitrogen_pressure[i - 1] - | |
1629 surface_inspired_n2_pressure); | |
1630 } else if (nitrogen_pressure[i - 1] <= surface_inspired_n2_pressure && | |
1631 helium_pressure[i - 1] + nitrogen_pressure[i - 1] >= surface_inspired_n2_pressure) | |
1632 { | |
1633 decay_time_to_zero_gradient = | |
1634 1.0f / (NITROGEN_TIME_CONSTANT[i - 1] - HELIUM_TIME_CONSTANT[i - 1]) * | |
1635 log((surface_inspired_n2_pressure - nitrogen_pressure[i - 1]) / | |
1636 helium_pressure[i - 1]); | |
1637 integral_gradient_x_time = | |
1638 helium_pressure[i - 1] / | |
1639 HELIUM_TIME_CONSTANT[i - 1] * | |
1640 (1.0f - expf(-HELIUM_TIME_CONSTANT[i - 1] * | |
1641 decay_time_to_zero_gradient)) + | |
1642 (nitrogen_pressure[i - 1] - surface_inspired_n2_pressure) / | |
1643 NITROGEN_TIME_CONSTANT[i - 1] * | |
1644 (1.0f - expf(-NITROGEN_TIME_CONSTANT[i - 1] * | |
1645 decay_time_to_zero_gradient)); | |
1646 surface_phase_volume_time[i - 1] = | |
1647 integral_gradient_x_time / | |
1648 (helium_pressure[i - 1] + | |
1649 nitrogen_pressure[i - 1] - | |
1650 surface_inspired_n2_pressure); | |
1651 } else { | |
1652 surface_phase_volume_time[i - 1] = 0.0f; | |
1653 } | |
1654 } | |
1655 return 0; | |
1656 } /* calc_surface_phase_volume_time */ | |
1657 | |
1658 /* =============================================================================== */ | |
1659 /* SUBROUTINE CRITICAL_VOLUME */ | |
1660 /* Purpose: This subprogram applies the VPM Critical Volume Algorithm. This */ | |
1661 /* algorithm will compute "relaxed" gradients for helium and nitrogen based */ | |
1662 /* on the setting of the Critical Volume Parameter Lambda. */ | |
1663 /* =============================================================================== */ | |
1664 | |
290 | 1665 static int critical_volume(float *deco_phase_volume_time) |
38 | 1666 { |
1667 /* System generated locals */ | |
1668 float r1; | |
1669 | |
1670 /* Local variables */ | |
1671 float initial_allowable_grad_n2_pa, | |
1672 initial_allowable_grad_he_pa, | |
1673 parameter_lambda_pascals, b, | |
1674 c; | |
1675 short i; | |
1676 float new_allowable_grad_n2_pascals, | |
1677 phase_volume_time[16], | |
1678 new_allowable_grad_he_pascals, | |
1679 adj_crush_pressure_n2_pascals, | |
1680 adj_crush_pressure_he_pascals; | |
1681 | |
1682 /* loop */ | |
1683 /* =============================================================================== */ | |
1684 /* CALCULATIONS */ | |
1685 /* Note: Since the Critical Volume Parameter Lambda was defined in units of */ | |
1686 /* fsw-min in the original papers by Yount and colleauges, the same */ | |
1687 /* convention is retained here. Although Lambda is adjustable only in units */ | |
1688 /* of fsw-min in the program settings (range from 6500 to 8300 with default */ | |
1689 /* 7500), it will convert to the proper value in Pascals-min in this */ | |
1690 /* subroutine regardless of which diving pressure units are being used in */ | |
1691 /* the main program - feet of seawater (fsw) or meters of seawater (msw). */ | |
1692 /* The allowable gradient is computed using the quadratic formula (refer to */ | |
1693 /* separate write-up posted on the Deco List web site). */ | |
1694 /* =============================================================================== */ | |
1695 | |
1696 /** | |
1697 ****************************************************************************** | |
1698 * @brief critical_volume comment by hw | |
1699 * @version V0.0.1 | |
1700 * @date 19-April-2014 | |
1701 * @retval global: allowable_gradient_he[i], allowable_gradient_n2[i] | |
1702 ****************************************************************************** | |
1703 */ | |
1704 | |
1705 parameter_lambda_pascals = | |
1706 CRIT_VOLUME_PARAMETER_LAMBDA / 33.0f * 101325.0f; | |
1707 for (i = 1; i <= 16; ++i) | |
1708 { | |
1709 phase_volume_time[i - 1] = | |
1710 *deco_phase_volume_time + surface_phase_volume_time[i - 1]; | |
1711 } | |
1712 for (i = 1; i <= 16; ++i) | |
1713 { | |
1714 | |
1715 adj_crush_pressure_he_pascals = | |
1716 pVpm->adjusted_crushing_pressure_he[i - 1] / UNITS_FACTOR * 101325.0f; | |
1717 | |
1718 initial_allowable_grad_he_pa = | |
1719 pVpm->initial_allowable_gradient_he[i - 1] / UNITS_FACTOR * 101325.0f; | |
1720 | |
1721 b = initial_allowable_grad_he_pa + parameter_lambda_pascals * | |
1722 SURFACE_TENSION_GAMMA / ( | |
1723 SKIN_COMPRESSION_GAMMAC * phase_volume_time[i - 1]); | |
1724 | |
1725 c = SURFACE_TENSION_GAMMA * ( | |
1726 SURFACE_TENSION_GAMMA * ( | |
1727 parameter_lambda_pascals * adj_crush_pressure_he_pascals)) / | |
1728 (SKIN_COMPRESSION_GAMMAC * | |
1729 (SKIN_COMPRESSION_GAMMAC * phase_volume_time[i - 1])); | |
1730 /* Computing 2nd power */ | |
1731 | |
1732 r1 = b; | |
1733 | |
1734 new_allowable_grad_he_pascals = | |
1735 (b + sqrtf(r1 * r1 - c * 4.0f)) / 2.0f; | |
1736 | |
1737 /* modify global variable */ | |
1738 allowable_gradient_he[i - 1] = | |
1739 new_allowable_grad_he_pascals / 101325.0f * UNITS_FACTOR; | |
1740 } | |
1741 | |
1742 for (i = 1; i <= 16; ++i) | |
1743 { | |
1744 adj_crush_pressure_n2_pascals = | |
1745 pVpm->adjusted_crushing_pressure_n2[i - 1] / UNITS_FACTOR * 101325.0f; | |
1746 | |
1747 initial_allowable_grad_n2_pa = | |
1748 pVpm->initial_allowable_gradient_n2[i - 1] / UNITS_FACTOR * 101325.0f; | |
1749 | |
1750 b = initial_allowable_grad_n2_pa + parameter_lambda_pascals * | |
1751 SURFACE_TENSION_GAMMA / ( | |
1752 SKIN_COMPRESSION_GAMMAC * phase_volume_time[i - 1]); | |
1753 | |
1754 c = SURFACE_TENSION_GAMMA * | |
1755 (SURFACE_TENSION_GAMMA * | |
1756 (parameter_lambda_pascals * adj_crush_pressure_n2_pascals)) / | |
1757 (SKIN_COMPRESSION_GAMMAC * | |
1758 (SKIN_COMPRESSION_GAMMAC * phase_volume_time[i - 1])); | |
1759 /* Computing 2nd power */ | |
1760 | |
1761 r1 = b; | |
1762 | |
1763 new_allowable_grad_n2_pascals = | |
1764 (b + sqrtf(r1 * r1 - c * 4.0f)) / 2.0f; | |
1765 | |
1766 /* modify global variable */ | |
1767 allowable_gradient_n2[i - 1] = | |
1768 new_allowable_grad_n2_pascals / 101325.0f * UNITS_FACTOR; | |
1769 } | |
1770 return 0; | |
1771 } /* critical_volume */ | |
1772 | |
1773 /* =============================================================================== */ | |
1774 /* SUBROUTINE CALC_START_OF_DECO_ZONE */ | |
1775 /* Purpose: This subroutine uses the Bisection Method to find the depth at */ | |
1776 /* which the leading compartment just enters the decompression zone. */ | |
1777 /* Source: "Numerical Recipes in Fortran 77", Cambridge University Press, */ | |
1778 /* 1992. */ | |
1779 /* =============================================================================== */ | |
1780 | |
290 | 1781 static int calc_start_of_deco_zone(float *starting_depth, |
38 | 1782 float *rate, |
1783 float *depth_start_of_deco_zone) | |
1784 { | |
1785 /* Local variables */ | |
1786 float last_diff_change, | |
1787 initial_helium_pressure, | |
1788 mid_range_nitrogen_pressure; | |
1789 short i, j; | |
1790 float initial_inspired_n2_pressure, | |
1791 cpt_depth_start_of_deco_zone, | |
1792 low_bound, | |
1793 initial_inspired_he_pressure, | |
1794 high_bound_nitrogen_pressure, | |
1795 nitrogen_rate, | |
1796 function_at_mid_range, | |
1797 function_at_low_bound, | |
1798 high_bound, | |
1799 mid_range_helium_pressure, | |
1800 mid_range_time, | |
1801 starting_ambient_pressure, | |
1802 initial_nitrogen_pressure, | |
1803 function_at_high_bound; | |
1804 | |
1805 float time_to_start_of_deco_zone, | |
1806 high_bound_helium_pressure, | |
1807 helium_rate, | |
1808 differential_change; | |
1809 float fraction_helium_begin; | |
1810 float fraction_helium_end; | |
1811 float fraction_nitrogen_begin; | |
1812 float fraction_nitrogen_end; | |
1813 float ending_ambient_pressure; | |
1814 float time_test; | |
1815 | |
1816 | |
1817 /* loop */ | |
1818 /* =============================================================================== */ | |
1819 /* CALCULATIONS */ | |
1820 /* First initialize some variables */ | |
1821 /* =============================================================================== */ | |
1822 | |
1823 *depth_start_of_deco_zone = 0.0f; | |
1824 starting_ambient_pressure = *starting_depth + barometric_pressure; | |
1825 | |
1826 //>>>>>>>>>>>>>>>>>>>> | |
1827 //Test depth to calculate helium_rate and nitrogen_rate | |
1828 ending_ambient_pressure = starting_ambient_pressure/2; | |
1829 | |
1830 time_test = (ending_ambient_pressure - starting_ambient_pressure) / *rate; | |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1831 decom_get_inert_gases(starting_ambient_pressure / 10.0, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_begin, &fraction_helium_begin ); |
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1832 decom_get_inert_gases(ending_ambient_pressure / 10.0, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_end, &fraction_helium_end ); |
38 | 1833 initial_inspired_he_pressure = (starting_ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_helium_begin; |
1834 initial_inspired_n2_pressure = (starting_ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_nitrogen_begin; | |
1835 helium_rate = ((ending_ambient_pressure - WATER_VAPOR_PRESSURE)* fraction_helium_end - initial_inspired_he_pressure)/time_test; | |
1836 nitrogen_rate = ((ending_ambient_pressure - WATER_VAPOR_PRESSURE)* fraction_nitrogen_end - initial_inspired_n2_pressure)/time_test; | |
1837 //>>>>>>>>>>>>>>>>>>>>> | |
1838 /*initial_inspired_he_pressure = | |
1839 (starting_ambient_pressure - water_vapor_pressure) * | |
1840 fraction_helium[mix_number - 1]; | |
1841 initial_inspired_n2_pressure = | |
1842 (starting_ambient_pressure - water_vapor_pressure) * | |
1843 fraction_nitrogen[mix_number - 1]; | |
1844 helium_rate = *rate * fraction_helium[mix_number - 1]; | |
1845 nitrogen_rate = *rate * fraction_nitrogen[mix_number - 1];*/ | |
1846 | |
1847 /* =============================================================================== */ | |
1848 /* ESTABLISH THE BOUNDS FOR THE ROOT SEARCH USING THE BISECTION METHOD */ | |
1849 /* AND CHECK TO MAKE SURE THAT THE ROOT WILL BE WITHIN BOUNDS. PROCESS */ | |
1850 /* EACH COMPARTMENT INDIVIDUALLY AND FIND THE MAXIMUM DEPTH ACROSS ALL */ | |
1851 /* COMPARTMENTS (LEADING COMPARTMENT) */ | |
1852 /* In this case, we are solving for time - the time when the gas tension in */ | |
1853 /* the compartment will be equal to ambient pressure. The low bound for time */ | |
1854 /* is set at zero and the high bound is set at the time it would take to */ | |
1855 /* ascend to zero ambient pressure (absolute). Since the ascent rate is */ | |
1856 /* negative, a multiplier of -1.0 is used to make the time positive. The */ | |
1857 /* desired point when gas tension equals ambient pressure is found at a time */ | |
1858 /* somewhere between these endpoints. The algorithm checks to make sure that */ | |
1859 /* the solution lies in between these bounds by first computing the low bound */ | |
1860 /* and high bound function values. */ | |
1861 /* =============================================================================== */ | |
1862 | |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
1863 low_bound = 0.0; |
38 | 1864 high_bound = starting_ambient_pressure / *rate * -1.0f; |
1865 for (i = 1; i <= 16; ++i) | |
1866 { | |
1867 initial_helium_pressure = helium_pressure[i - 1]; | |
1868 initial_nitrogen_pressure = nitrogen_pressure[i - 1]; | |
1869 function_at_low_bound = | |
1870 initial_helium_pressure + | |
1871 initial_nitrogen_pressure + | |
1872 CONSTANT_PRESSURE_OTHER_GASES - | |
1873 starting_ambient_pressure; | |
1874 high_bound_helium_pressure = | |
1875 schreiner_equation__2(&initial_inspired_he_pressure, | |
1876 &helium_rate, | |
1877 &high_bound, | |
1878 &HELIUM_TIME_CONSTANT[i - 1], | |
1879 &initial_helium_pressure); | |
1880 high_bound_nitrogen_pressure = | |
1881 schreiner_equation__2(&initial_inspired_n2_pressure, | |
1882 &nitrogen_rate, | |
1883 &high_bound, | |
1884 &NITROGEN_TIME_CONSTANT[i - 1], | |
1885 &initial_nitrogen_pressure); | |
1886 function_at_high_bound = high_bound_helium_pressure + | |
1887 high_bound_nitrogen_pressure + | |
1888 CONSTANT_PRESSURE_OTHER_GASES; | |
1889 if (function_at_high_bound * function_at_low_bound >= 0.0f) | |
1890 { | |
1891 printf("\nERROR! ROOT IS NOT WITHIN BRACKETS"); | |
1892 } | |
1893 | |
1894 /* =============================================================================== */ | |
1895 /* APPLY THE BISECTION METHOD IN SEVERAL ITERATIONS UNTIL A SOLUTION WITH */ | |
1896 /* THE DESIRED ACCURACY IS FOUND */ | |
1897 /* Note: the program allows for up to 100 iterations. Normally an exit will */ | |
1898 /* be made from the loop well before that number. If, for some reason, the */ | |
1899 /* program exceeds 100 iterations, there will be a pause to alert the user. */ | |
1900 /* =============================================================================== */ | |
1901 | |
1902 if (function_at_low_bound < 0.0f) | |
1903 { | |
1904 time_to_start_of_deco_zone = low_bound; | |
1905 differential_change = high_bound - low_bound; | |
1906 } else { | |
1907 time_to_start_of_deco_zone = high_bound; | |
1908 differential_change = low_bound - high_bound; | |
1909 } | |
1910 for (j = 1; j <= 100; ++j) | |
1911 { | |
1912 last_diff_change = differential_change; | |
1913 differential_change = last_diff_change * 0.5f; | |
1914 mid_range_time = | |
1915 time_to_start_of_deco_zone + | |
1916 differential_change; | |
1917 mid_range_helium_pressure = | |
1918 schreiner_equation__2(&initial_inspired_he_pressure, | |
1919 &helium_rate, | |
1920 &mid_range_time, | |
1921 &HELIUM_TIME_CONSTANT[i - 1], | |
1922 &initial_helium_pressure); | |
1923 mid_range_nitrogen_pressure = | |
1924 schreiner_equation__2(&initial_inspired_n2_pressure, | |
1925 &nitrogen_rate, | |
1926 &mid_range_time, | |
1927 &NITROGEN_TIME_CONSTANT[i - 1], | |
1928 &initial_nitrogen_pressure); | |
1929 function_at_mid_range = | |
1930 mid_range_helium_pressure + | |
1931 mid_range_nitrogen_pressure + | |
1932 CONSTANT_PRESSURE_OTHER_GASES - | |
1933 (starting_ambient_pressure + *rate * mid_range_time); | |
1934 if (function_at_mid_range <= 0.0f) { | |
1935 time_to_start_of_deco_zone = mid_range_time; | |
1936 } | |
1937 if( fabs(differential_change) < 0.001f | |
1938 || function_at_mid_range == 0.0f) | |
1939 { | |
1940 goto L170; | |
1941 } | |
1942 /* L150: */ | |
1943 } | |
1944 printf("\nERROR! ROOT SEARCH EXCEEDED MAXIMUM ITERATIONS"); | |
1945 //pause(); | |
1946 | |
1947 /* =============================================================================== */ | |
1948 /* When a solution with the desired accuracy is found, the program jumps out */ | |
1949 /* of the loop to Line 170 and assigns the solution value for the individual */ | |
1950 /* compartment. */ | |
1951 /* =============================================================================== */ | |
1952 | |
1953 L170: | |
1954 cpt_depth_start_of_deco_zone = | |
1955 starting_ambient_pressure + | |
1956 *rate * time_to_start_of_deco_zone - | |
1957 barometric_pressure; | |
1958 | |
1959 /* =============================================================================== */ | |
1960 /* The overall solution will be the compartment with the maximum depth where */ | |
1961 /* gas tension equals ambient pressure (leading compartment). */ | |
1962 /* =============================================================================== */ | |
1963 | |
1964 *depth_start_of_deco_zone = | |
1965 fmaxf(*depth_start_of_deco_zone, cpt_depth_start_of_deco_zone); | |
1966 /* L200: */ | |
1967 } | |
1968 return 0; | |
1969 } /* calc_start_of_deco_zone */ | |
1970 | |
1971 /* =============================================================================== */ | |
1972 /* SUBROUTINE PROJECTED_ASCENT */ | |
1973 /* Purpose: This subprogram performs a simulated ascent outside of the main */ | |
1974 /* program to ensure that a deco ceiling will not be violated due to unusual */ | |
1975 /* gas loading during ascent (on-gassing). If the deco ceiling is violated, */ | |
1976 /* the stop depth will be adjusted deeper by the step size until a safe */ | |
1977 /* ascent can be made. */ | |
1978 /* =============================================================================== */ | |
1979 | |
290 | 1980 static int projected_ascent(float *starting_depth, |
38 | 1981 float *rate, |
1982 float *deco_stop_depth, | |
1983 float *step_size) | |
1984 { | |
1985 /* Local variables */ | |
1986 float weighted_allowable_gradient, | |
1987 ending_ambient_pressure, | |
1988 temp_gas_loading[16]; | |
1989 int i; | |
1990 float allowable_gas_loading[16]; | |
1991 float temp_nitrogen_pressure[16]; | |
1992 float temp_helium_pressure[16]; | |
1993 float run_time_save = 0; | |
1994 | |
1995 /* loop */ | |
1996 /* =============================================================================== */ | |
1997 /* CALCULATIONS */ | |
1998 /* =============================================================================== */ | |
1999 | |
2000 | |
2001 L665: | |
2002 ending_ambient_pressure = *deco_stop_depth + barometric_pressure; | |
2003 for (i = 1; i <= 16; ++i) { | |
2004 temp_helium_pressure[i - 1] = helium_pressure[i - 1]; | |
2005 temp_nitrogen_pressure[i - 1] = nitrogen_pressure[i - 1]; | |
2006 } | |
2007 run_time_save = run_time; | |
2008 gas_loadings_ascent_descen(temp_helium_pressure, temp_nitrogen_pressure, *starting_depth,*deco_stop_depth,*rate,true); | |
2009 run_time = run_time_save; | |
2010 | |
2011 for (i = 1; i <= 16; ++i) | |
2012 { | |
2013 temp_gas_loading[i - 1] = | |
2014 temp_helium_pressure[i - 1] + | |
2015 temp_nitrogen_pressure[i - 1]; | |
2016 if (temp_gas_loading[i - 1] > 0.0f) | |
2017 { | |
2018 weighted_allowable_gradient = | |
2019 (allowable_gradient_he[i - 1] * | |
2020 temp_helium_pressure[i - 1] + | |
2021 allowable_gradient_n2[i - 1] * | |
2022 temp_nitrogen_pressure[i - 1]) / temp_gas_loading[i - 1]; | |
2023 } else { | |
2024 /* Computing MIN */ | |
2025 weighted_allowable_gradient = fminf(allowable_gradient_he[i - 1],allowable_gradient_n2[i - 1]); | |
2026 } | |
2027 allowable_gas_loading[i - 1] = | |
2028 ending_ambient_pressure + | |
2029 weighted_allowable_gradient - | |
2030 CONSTANT_PRESSURE_OTHER_GASES; | |
2031 /* L670: */ | |
2032 } | |
2033 for (i = 1; i <= 16; ++i) { | |
2034 if (temp_gas_loading[i - 1] > allowable_gas_loading[i - 1]) { | |
2035 *deco_stop_depth += *step_size; | |
2036 goto L665; | |
2037 } | |
2038 /* L671: */ | |
2039 } | |
2040 return 0; | |
2041 } /* projected_ascent */ | |
2042 | |
2043 /* =============================================================================== */ | |
2044 /* SUBROUTINE DECOMPRESSION_STOP */ | |
2045 /* Purpose: This subprogram calculates the required time at each */ | |
2046 /* decompression stop. */ | |
2047 /* =============================================================================== */ | |
2048 | |
290 | 2049 static void decompression_stop(float *deco_stop_depth, |
38 | 2050 float *step_size, |
2051 _Bool final_deco_calculation) | |
2052 { | |
2053 /* Local variables */ | |
2054 float inspired_nitrogen_pressure; | |
2055 // short last_segment_number; | |
2056 // float weighted_allowable_gradient; | |
2057 float initial_helium_pressure[16]; | |
2058 /* by hw */ | |
51
8f8ea3a32e82
Resolved warnings pointing to possible invalid memory access
Ideenmodellierer
parents:
38
diff
changeset
|
2059 float initial_CNS = gCNS_VPM; |
38 | 2060 |
2061 //static float time_counter; | |
2062 short i; | |
2063 float ambient_pressure; | |
2064 float inspired_helium_pressure, | |
2065 next_stop; | |
2066 //last_run_time, | |
2067 //temp_segment_time; | |
2068 | |
2069 float deco_ceiling_depth, | |
2070 initial_nitrogen_pressure[16]; | |
2071 //round_up_operation; | |
2072 float fraction_helium_begin; | |
2073 float fraction_nitrogen_begin; | |
2074 int count = 0; | |
2075 _Bool buehlmann_wait = false; | |
2076 float tissue_He_saturation[16]; | |
2077 float tissue_N2_saturation[16]; | |
877 | 2078 float vpm_buehlmann_safety_gradient = 1.0f - (((float)pDiveSettings->vpm_conservatism) / 40); |
38 | 2079 /* loop */ |
2080 /* =============================================================================== */ | |
2081 /* CALCULATIONS */ | |
2082 /* =============================================================================== */ | |
2083 | |
2084 segment_time = 0; | |
2085 // temp_segment_time = segment_time; | |
2086 ambient_pressure = *deco_stop_depth + barometric_pressure; | |
2087 //ending_ambient_pressure = ambient_pressure; | |
2088 decom_get_inert_gases(ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]), &fraction_nitrogen_begin, &fraction_helium_begin ); | |
2089 | |
877 | 2090 if(*deco_stop_depth == (float)(pDiveSettings->last_stop_depth_bar * 10)) |
38 | 2091 next_stop = 0; |
2092 else | |
2093 { | |
2094 next_stop = *deco_stop_depth - *step_size; | |
877 | 2095 next_stop = fmaxf(next_stop,(float)pDiveSettings->last_stop_depth_bar * 10); |
38 | 2096 } |
2097 | |
2098 inspired_helium_pressure = | |
2099 (ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_helium_begin; | |
2100 inspired_nitrogen_pressure = | |
2101 (ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_nitrogen_begin; | |
2102 | |
2103 /* =============================================================================== */ | |
2104 /* Check to make sure that program won't lock up if unable to decompress */ | |
2105 /* to the next stop. If so, write error message and terminate program. */ | |
2106 /* =============================================================================== */ | |
2107 | |
2108 //deco_ceiling_depth = next_stop +1; //deco_ceiling_depth = next_stop + 1; | |
2109 if(!vpm_violates_buehlmann) | |
149 | 2110 { |
38 | 2111 calc_deco_ceiling(&deco_ceiling_depth, false); //weg, weil auf jeden Fall schleife für safety und so konservativer |
149 | 2112 } |
38 | 2113 else |
149 | 2114 { |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
2115 deco_ceiling_depth = next_stop + 1.0; |
149 | 2116 } |
38 | 2117 if(deco_ceiling_depth > next_stop) |
2118 { | |
2119 while (deco_ceiling_depth > next_stop) | |
2120 { | |
2121 | |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
2122 segment_time += 60.0; |
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
2123 if(segment_time >= 999.0 ) |
38 | 2124 { |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
2125 segment_time = 999.0 ; |
38 | 2126 run_time += segment_time; |
2127 return; | |
2128 } | |
2129 //goto L700; | |
2130 initial_CNS = gCNS_VPM; | |
2131 decom_oxygen_calculate_cns_exposure(60*60,&pDiveSettings->decogaslist[mix_number],ambient_pressure/10,&gCNS_VPM); | |
2132 for (i = 0; i < 16; i++) | |
2133 { | |
2134 initial_helium_pressure[i] = helium_pressure[i]; | |
2135 initial_nitrogen_pressure[i] = nitrogen_pressure[i]; | |
2136 helium_pressure[i] += (inspired_helium_pressure - helium_pressure[i]) * float_buehlmann_He_factor_expositon_one_hour[i]; | |
2137 nitrogen_pressure[i] += (inspired_nitrogen_pressure - nitrogen_pressure[i]) * float_buehlmann_N2_factor_expositon_one_hour[i]; | |
2138 } | |
2139 calc_deco_ceiling(&deco_ceiling_depth, false); | |
2140 } | |
2141 if(deco_ceiling_depth < next_stop) | |
2142 { | |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
2143 segment_time -= 60.0; |
38 | 2144 gCNS_VPM = initial_CNS; |
2145 for (i = 0; i < 16; i++) | |
2146 { | |
2147 helium_pressure[i] = initial_helium_pressure[i]; | |
2148 nitrogen_pressure[i] = initial_nitrogen_pressure[i]; | |
2149 } | |
2150 deco_ceiling_depth = next_stop +1; | |
2151 } | |
2152 count = 0; | |
2153 while (deco_ceiling_depth > next_stop && count < 13) | |
2154 { | |
2155 count++; | |
2156 segment_time += 5; | |
2157 //goto L700; | |
2158 initial_CNS = gCNS_VPM; | |
2159 decom_oxygen_calculate_cns_exposure(60*5,&pDiveSettings->decogaslist[mix_number],ambient_pressure/10,&gCNS_VPM); | |
2160 for (i = 0; i < 16; i++) | |
2161 { | |
2162 initial_helium_pressure[i] = helium_pressure[i]; | |
2163 initial_nitrogen_pressure[i] = nitrogen_pressure[i]; | |
2164 helium_pressure[i] += (inspired_helium_pressure - helium_pressure[i]) * float_buehlmann_He_factor_expositon_five_minutes[i]; | |
2165 nitrogen_pressure[i] += (inspired_nitrogen_pressure - nitrogen_pressure[i]) * float_buehlmann_N2_factor_expositon_five_minutes[i]; | |
2166 } | |
2167 calc_deco_ceiling(&deco_ceiling_depth, false); | |
2168 } | |
2169 if(deco_ceiling_depth < next_stop) | |
2170 { | |
2171 segment_time -= 5; | |
2172 gCNS_VPM = initial_CNS; | |
2173 for (i = 0; i < 16; i++) { | |
2174 helium_pressure[i] = initial_helium_pressure[i]; | |
2175 nitrogen_pressure[i] = initial_nitrogen_pressure[i]; | |
2176 } | |
2177 deco_ceiling_depth = next_stop +1; | |
2178 } | |
2179 buehlmann_wait = false; | |
2180 while (buehlmann_wait || (deco_ceiling_depth > next_stop)) | |
2181 { | |
2182 //time_counter = temp_segment_time; | |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
2183 segment_time += 1.0; |
38 | 2184 |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
2185 if(segment_time >= 999.0 ) |
38 | 2186 { |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
2187 segment_time = 999.0 ; |
38 | 2188 run_time += segment_time; |
2189 return; | |
2190 } | |
2191 //goto L700; | |
2192 initial_CNS = gCNS_VPM; | |
877 | 2193 decom_oxygen_calculate_cns_exposure(60*1,&pDiveSettings->decogaslist[mix_number],ambient_pressure/10,&gCNS_VPM); |
38 | 2194 for (i = 0; i < 16; i++) |
2195 { | |
2196 initial_helium_pressure[i] = helium_pressure[i]; | |
2197 initial_nitrogen_pressure[i] = nitrogen_pressure[i]; | |
2198 helium_pressure[i] += (inspired_helium_pressure - helium_pressure[i]) * float_buehlmann_He_factor_expositon_one_minute[i]; | |
2199 nitrogen_pressure[i] += (inspired_nitrogen_pressure - nitrogen_pressure[i]) * float_buehlmann_N2_factor_expositon_one_minute[i]; | |
2200 } | |
2201 if(!buehlmann_wait) | |
2202 calc_deco_ceiling(&deco_ceiling_depth, false); | |
2203 | |
2204 if(buehlmannSafety && final_deco_calculation && !(deco_ceiling_depth > next_stop)) | |
2205 { | |
2206 for (i = 0; i < 16; i++) | |
2207 { | |
2208 tissue_He_saturation[i] = helium_pressure[i] / 10; | |
2209 tissue_N2_saturation[i] = nitrogen_pressure[i] / 10; | |
2210 } | |
2211 if( (fabsf(nitrogen_pressure[15] - inspired_nitrogen_pressure) < 0.00001f) && (fabsf(helium_pressure[15] - inspired_helium_pressure) < 0.00001f) | |
2212 && (fabsf(nitrogen_pressure[0] - inspired_nitrogen_pressure) < 0.00001f) && (fabsf(helium_pressure[0] - inspired_helium_pressure) < 0.00001f)) | |
2213 { | |
2214 buehlmann_wait_exceeded = true; | |
2215 break; | |
2216 } | |
2217 | |
2218 if(decom_tissue_test_tolerance(tissue_N2_saturation, tissue_He_saturation, vpm_buehlmann_safety_gradient, (next_stop / 10.0f) + pInput->pressure_surface_bar)) | |
2219 break; | |
2220 | |
2221 buehlmann_wait = true; | |
2222 } | |
2223 } | |
2224 if(buehlmann_wait) | |
149 | 2225 { |
38 | 2226 vpm_violates_buehlmann = true; |
149 | 2227 } |
2228 if(!buehlmann_wait) | |
38 | 2229 { |
2230 if(deco_ceiling_depth < next_stop) | |
2231 { | |
2232 segment_time -= 1; | |
2233 gCNS_VPM = initial_CNS; | |
2234 for (i = 0; i < 16; i++) { | |
2235 helium_pressure[i] = initial_helium_pressure[i]; | |
2236 nitrogen_pressure[i] = initial_nitrogen_pressure[i]; | |
2237 } | |
2238 deco_ceiling_depth = next_stop +1; | |
2239 } | |
2240 while (deco_ceiling_depth > next_stop) | |
2241 { | |
2242 //time_counter = temp_segment_time; | |
2243 segment_time += (float) 1.0f / 3.0f; | |
2244 //goto L700; | |
2245 initial_CNS = gCNS_VPM; | |
2246 decom_oxygen_calculate_cns_exposure(20,&pDiveSettings->decogaslist[mix_number],ambient_pressure/10,&gCNS_VPM); | |
2247 for (i = 0; i < 16; i++) | |
2248 { | |
2249 helium_pressure[i] += (inspired_helium_pressure - helium_pressure[i]) * float_buehlmann_He_factor_expositon_20_seconds[i]; | |
2250 nitrogen_pressure[i] += (inspired_nitrogen_pressure - nitrogen_pressure[i]) * float_buehlmann_N2_factor_expositon_20_seconds[i]; | |
2251 } | |
2252 calc_deco_ceiling(&deco_ceiling_depth, false); | |
2253 } | |
2254 } | |
2255 } | |
2256 | |
2257 /*float pressure_save =dive_data.pressure; | |
2258 dive_data.pressure = ambient_pressure/10; | |
2259 tissues_exposure_stage(st_deco_test,(int)(segment_time * 60), &dive_data, &gaslist); | |
2260 dive_data.pressure = pressure_save;*/ | |
2261 run_time += segment_time; | |
2262 return; | |
2263 } /* decompression_stop */ | |
2264 | |
2265 /* =============================================================================== */ | |
2266 // SUROUTINE BOYLES_LAW_COMPENSATION | |
2267 // Purpose: This subprogram calculates the reduction in allowable gradients | |
2268 // with decreasing ambient pressure during the decompression profile based | |
2269 // on Boyle's Law considerations. | |
2270 //=============================================================================== | |
290 | 2271 static void BOYLES_LAW_COMPENSATION (float* First_Stop_Depth, |
38 | 2272 float* Deco_Stop_Depth, |
2273 float* Step_Size) | |
2274 { | |
2275 short i; | |
2276 | |
2277 float Next_Stop; | |
2278 float Ambient_Pressure_First_Stop, Ambient_Pressure_Next_Stop; | |
2279 float Amb_Press_First_Stop_Pascals, Amb_Press_Next_Stop_Pascals; | |
2280 float A, B, C, Low_Bound, High_Bound, Ending_Radius; | |
2281 float Deco_Gradient_Pascals; | |
2282 float Allow_Grad_First_Stop_He_Pa, Radius_First_Stop_He; | |
2283 float Allow_Grad_First_Stop_N2_Pa, Radius_First_Stop_N2; | |
2284 | |
2285 //=============================================================================== | |
2286 // LO//AL ARRAYS | |
2287 //=============================================================================== | |
2288 // float Radius1_He[16], Radius2_He[16]; | |
2289 // float Radius1_N2[16], Radius2_N2[16]; | |
2290 float root_factor; | |
2291 | |
2292 //=============================================================================== | |
2293 // CALCULATIONS | |
2294 //=============================================================================== | |
2295 Next_Stop = *Deco_Stop_Depth - *Step_Size; | |
2296 | |
2297 Ambient_Pressure_First_Stop = *First_Stop_Depth + | |
2298 barometric_pressure; | |
2299 | |
2300 Ambient_Pressure_Next_Stop = Next_Stop + barometric_pressure; | |
2301 | |
2302 Amb_Press_First_Stop_Pascals = (Ambient_Pressure_First_Stop/UNITS_FACTOR) * 101325.0f; | |
2303 | |
2304 Amb_Press_Next_Stop_Pascals = | |
2305 (Ambient_Pressure_Next_Stop/UNITS_FACTOR) * 101325.0f; | |
2306 root_factor = powf(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals,1.0f / 3.0f); | |
2307 | |
2308 for( i = 0; i < 16;i++) | |
2309 { | |
2310 Allow_Grad_First_Stop_He_Pa = | |
2311 (allowable_gradient_he[i]/UNITS_FACTOR) * 101325.0f; | |
2312 | |
2313 Radius_First_Stop_He = (2.0f * SURFACE_TENSION_GAMMA) / | |
2314 Allow_Grad_First_Stop_He_Pa; | |
2315 | |
2316 // Radius1_He[i] = Radius_First_Stop_He; | |
2317 A = Amb_Press_Next_Stop_Pascals; | |
2318 B = -2.0f * SURFACE_TENSION_GAMMA; | |
2319 C = (Amb_Press_First_Stop_Pascals + (2.0f * SURFACE_TENSION_GAMMA)/ | |
2320 Radius_First_Stop_He)* Radius_First_Stop_He* | |
2321 (Radius_First_Stop_He*(Radius_First_Stop_He)); | |
2322 Low_Bound = Radius_First_Stop_He; | |
2323 High_Bound = Radius_First_Stop_He * root_factor; | |
2324 //*pow(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals,1.0/3.0); | |
2325 //*(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals)**(1.0/3.0); | |
2326 | |
2327 radius_root_finder(&A,&B,&C, &Low_Bound, &High_Bound, | |
2328 &Ending_Radius); | |
2329 | |
2330 // Radius2_He[i] = Ending_Radius; | |
2331 Deco_Gradient_Pascals = (2.0f * SURFACE_TENSION_GAMMA) / | |
2332 Ending_Radius; | |
2333 | |
2334 deco_gradient_he[i] = (Deco_Gradient_Pascals / 101325.0f)* | |
2335 UNITS_FACTOR; | |
2336 | |
2337 } | |
2338 | |
2339 for( i = 0; i < 16;i++) | |
2340 { | |
2341 Allow_Grad_First_Stop_N2_Pa = | |
2342 (allowable_gradient_n2[i]/UNITS_FACTOR) * 101325.0f; | |
2343 | |
2344 Radius_First_Stop_N2 = (2.0f * SURFACE_TENSION_GAMMA) / | |
2345 Allow_Grad_First_Stop_N2_Pa; | |
2346 | |
2347 // Radius1_N2[i] = Radius_First_Stop_N2; | |
2348 A = Amb_Press_Next_Stop_Pascals; | |
2349 B = -2.0f * SURFACE_TENSION_GAMMA; | |
2350 C = (Amb_Press_First_Stop_Pascals + (2.0f * SURFACE_TENSION_GAMMA)/ | |
2351 Radius_First_Stop_N2)* Radius_First_Stop_N2* | |
2352 (Radius_First_Stop_N2*(Radius_First_Stop_N2)); | |
2353 Low_Bound = Radius_First_Stop_N2; | |
2354 High_Bound = Radius_First_Stop_N2* root_factor;//pow(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals,1.0/3.0); | |
2355 | |
2356 //High_Bound = Radius_First_Stop_N2*exp(log(Amb_Press_First_Stop_Pascals/Amb_Press_Next_Stop_Pascals)/3); | |
2357 radius_root_finder(&A,&B,&C, &Low_Bound, &High_Bound, | |
2358 &Ending_Radius); | |
2359 | |
2360 // Radius2_N2[i] = Ending_Radius; | |
2361 Deco_Gradient_Pascals = (2.0f * SURFACE_TENSION_GAMMA) / | |
2362 Ending_Radius; | |
2363 | |
2364 deco_gradient_n2[i] = (Deco_Gradient_Pascals / 101325.0f)* | |
2365 UNITS_FACTOR; | |
2366 } | |
2367 } | |
2368 | |
2369 /* =============================================================================== */ | |
292 | 2370 // vpm_calc_ndl |
2371 // Purpose: This function computes NDL (time where no decostops are needed) | |
38 | 2372 //=============================================================================== |
291
24ff72e627f4
Deco Models: limit NDL to 240 minutes
Jan Mulder <jlmulder@xs4all.nl>
parents:
290
diff
changeset
|
2373 #define MAX_NDL 240 |
24ff72e627f4
Deco Models: limit NDL to 240 minutes
Jan Mulder <jlmulder@xs4all.nl>
parents:
290
diff
changeset
|
2374 |
292 | 2375 static int vpm_calc_ndl(void) |
38 | 2376 { |
2377 static float future_helium_pressure[16]; | |
2378 static float future_nitrogen_pressure[16]; | |
2379 static int temp_segment_time; | |
2380 static int mix_number; | |
2381 static float inspired_helium_pressure; | |
2382 static float inspired_nitrogen_pressure; | |
2383 | |
2384 float previous_helium_pressure[16]; | |
2385 float previous_nitrogen_pressure[16]; | |
2386 float ambient_pressure; | |
2387 float fraction_helium_begin; | |
2388 float fraction_nitrogen_begin; | |
2389 int i = 0; | |
2390 int count = 0; | |
2391 int status = CALC_END; | |
291
24ff72e627f4
Deco Models: limit NDL to 240 minutes
Jan Mulder <jlmulder@xs4all.nl>
parents:
290
diff
changeset
|
2392 |
38 | 2393 for(i = 0; i < 16;i++) |
2394 { | |
863
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
2395 future_helium_pressure[i] = pInput->tissue_helium_bar[i] * 10.0;//tissue_He_saturation[st_dive][i] * 10; |
0c89c6fa949c
Bugfix empty line in deco plan (VPM only):
Ideenmodellierer
parents:
830
diff
changeset
|
2396 future_nitrogen_pressure[i] = pInput->tissue_nitrogen_bar[i] * 10.0; |
38 | 2397 } |
2398 temp_segment_time = 0; | |
2399 | |
2400 mix_number = 0; | |
877 | 2401 ambient_pressure = pInput->pressure_ambient_bar * 10; |
2402 decom_get_inert_gases( ambient_pressure / 10, (&pDiveSettings->decogaslist[mix_number]) , &fraction_nitrogen_begin, &fraction_helium_begin ); | |
38 | 2403 inspired_helium_pressure =(ambient_pressure - WATER_VAPOR_PRESSURE) * fraction_helium_begin; |
2404 inspired_nitrogen_pressure =(ambient_pressure - WATER_VAPOR_PRESSURE) *fraction_nitrogen_begin; | |
2405 | |
2406 status = CALC_END; | |
2407 while (status == CALC_END) | |
2408 { | |
2409 count++; | |
2410 temp_segment_time += 60; | |
291
24ff72e627f4
Deco Models: limit NDL to 240 minutes
Jan Mulder <jlmulder@xs4all.nl>
parents:
290
diff
changeset
|
2411 if(temp_segment_time >= MAX_NDL) |
38 | 2412 { |
2413 pDecoInfo->output_ndl_seconds = temp_segment_time * 60; | |
292 | 2414 return CALC_NDL; |
38 | 2415 } |
2416 run_time += 60; | |
2417 //goto L700; | |
2418 for (i = 1; i <= 16; ++i) { | |
2419 previous_helium_pressure[i-1] = future_helium_pressure[i - 1]; | |
2420 previous_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1]; | |
2421 future_helium_pressure[i - 1] = future_helium_pressure[i - 1] + (inspired_helium_pressure - future_helium_pressure[i - 1]) * float_buehlmann_He_factor_expositon_one_hour[i-1]; | |
2422 future_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1] + (inspired_nitrogen_pressure - future_nitrogen_pressure[i - 1]) * float_buehlmann_N2_factor_expositon_one_hour[i-1]; | |
2423 helium_pressure[i - 1] = future_helium_pressure[i - 1]; | |
2424 nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1]; | |
2425 } | |
2426 vpm_calc_deco(); | |
2427 while((status = vpm_calc_critcal_volume(true,true)) == CALC_CRITICAL); | |
2428 | |
2429 } | |
2430 | |
2431 temp_segment_time -= 60; | |
2432 run_time -= 60; | |
2433 for (i = 1; i <= 16; ++i) | |
2434 { | |
2435 future_helium_pressure[i - 1] = previous_helium_pressure[i-1]; | |
2436 future_nitrogen_pressure[i - 1] = previous_nitrogen_pressure[i - 1]; | |
2437 } | |
2438 | |
2439 status = CALC_END; | |
2440 if(temp_segment_time < 60) | |
2441 nullzeit_unter60 = true; | |
2442 | |
2443 while (status == CALC_END) | |
2444 { | |
2445 temp_segment_time += 5; | |
291
24ff72e627f4
Deco Models: limit NDL to 240 minutes
Jan Mulder <jlmulder@xs4all.nl>
parents:
290
diff
changeset
|
2446 if(temp_segment_time >= MAX_NDL) |
38 | 2447 { |
2448 pDecoInfo->output_ndl_seconds = temp_segment_time * 60; | |
292 | 2449 return CALC_NDL; |
38 | 2450 } |
2451 if(nullzeit_unter60 && temp_segment_time > 60) | |
2452 { | |
2453 nullzeit_unter60 = false; | |
292 | 2454 return CALC_NDL; |
38 | 2455 } |
2456 run_time += 5; | |
2457 //goto L700; | |
2458 for (i = 1; i <= 16; ++i) { | |
2459 previous_helium_pressure[i-1] = future_helium_pressure[i - 1]; | |
2460 previous_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1]; | |
2461 future_helium_pressure[i - 1] = future_helium_pressure[i - 1] + (inspired_helium_pressure - future_helium_pressure[i - 1]) * float_buehlmann_He_factor_expositon_five_minutes[i-1]; | |
2462 future_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1] + (inspired_nitrogen_pressure - future_nitrogen_pressure[i - 1]) * float_buehlmann_N2_factor_expositon_five_minutes[i-1]; | |
2463 helium_pressure[i - 1] = future_helium_pressure[i - 1]; | |
2464 nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1]; | |
2465 } | |
2466 vpm_calc_deco(); | |
2467 while((status =vpm_calc_critcal_volume(true,true)) == CALC_CRITICAL); | |
2468 } | |
2469 temp_segment_time -= 5; | |
2470 run_time -= 5; | |
2471 for (i = 1; i <= 16; ++i) { | |
2472 future_helium_pressure[i - 1] = previous_helium_pressure[i-1]; | |
2473 future_nitrogen_pressure[i - 1] = previous_nitrogen_pressure[i - 1]; | |
2474 } | |
2475 status = CALC_END; | |
291
24ff72e627f4
Deco Models: limit NDL to 240 minutes
Jan Mulder <jlmulder@xs4all.nl>
parents:
290
diff
changeset
|
2476 |
38 | 2477 if(temp_segment_time <= 20) |
2478 { | |
2479 while (status == CALC_END) | |
2480 { | |
2481 temp_segment_time += minimum_deco_stop_time; | |
2482 run_time += minimum_deco_stop_time; | |
2483 //goto L700; | |
2484 for (i = 1; i <= 16; ++i) { | |
2485 future_helium_pressure[i - 1] = future_helium_pressure[i - 1] + (inspired_helium_pressure - future_helium_pressure[i - 1]) * float_buehlmann_He_factor_expositon_one_minute[i-1]; | |
2486 future_nitrogen_pressure[i - 1] = future_nitrogen_pressure[i - 1] + (inspired_nitrogen_pressure - future_nitrogen_pressure[i - 1]) * float_buehlmann_N2_factor_expositon_one_minute[i-1]; | |
2487 helium_pressure[i - 1] = future_helium_pressure[i - 1]; | |
2488 nitrogen_pressure[i - 1] =future_nitrogen_pressure[i - 1]; | |
2489 | |
2490 } | |
2491 vpm_calc_deco(); | |
2492 while((status =vpm_calc_critcal_volume(true,true)) == CALC_CRITICAL); | |
2493 | |
2494 } | |
2495 } | |
2496 else | |
2497 temp_segment_time += 5; | |
2498 pDecoInfo->output_ndl_seconds = temp_segment_time * 60; | |
2499 if(temp_segment_time > 1) | |
292 | 2500 return CALC_NDL; |
38 | 2501 else |
2502 return CALC_BEGIN; | |
2503 } | |
902 | 2504 |
2505 void vpm_table_init() | |
2506 { | |
2507 vpmTable.output_time_to_surface_seconds = 0; | |
907 | 2508 vpmTableState = VPM_TABLE_INIT; |
2509 } | |
2510 uint8_t vpm_get_decozone(void) | |
2511 { | |
2512 return((uint8_t)pVpm->depth_start_of_deco_zone_save); | |
2513 } | |
2514 SvpmTableState vpm_get_TableState(void) | |
2515 { | |
2516 return vpmTableState; | |
902 | 2517 } |
2518 |