38
|
1 /**
|
|
2 ******************************************************************************
|
|
3 * @file compass.c
|
|
4 * @author heinrichs weikamp gmbh
|
|
5 * @date 27-March-2014
|
|
6 * @version V0.2.0
|
|
7 * @since 21-April-2016
|
|
8 * @brief for Honeywell Compass and ST LSM303D
|
|
9 *
|
|
10 @verbatim
|
|
11 ==============================================================================
|
|
12 ##### How to use #####
|
|
13 ==============================================================================
|
|
14 V0.1.0 09-March-2016
|
|
15 V0.2.0 21-April-2016 Orientation fixed for LSM303D,
|
|
16 roll and pitch added to calibration output,
|
|
17 orientation double checked with datasheets and layout
|
|
18 as well as with value output during calibration
|
|
19 V0.2.1 19-May-2016 New date rate config and full-scale selection
|
|
20
|
|
21 @endverbatim
|
|
22 ******************************************************************************
|
|
23 * @attention
|
|
24 *
|
|
25 * <h2><center>© COPYRIGHT(c) 2016 heinrichs weikamp</center></h2>
|
|
26 *
|
|
27 ******************************************************************************
|
|
28 */
|
|
29
|
|
30 #include <math.h>
|
|
31 #include <string.h>
|
|
32
|
|
33 #include "compass.h"
|
|
34 #include "compass_LSM303D.h"
|
|
35
|
|
36 #include "i2c.h"
|
219
|
37 #include "spi.h"
|
555
|
38 #include "scheduler.h"
|
38
|
39 #include "RTE_FlashAccess.h" // to store compass_calib_data
|
|
40
|
|
41 #include "stm32f4xx_hal.h"
|
|
42
|
410
|
43 extern uint32_t time_elapsed_ms(uint32_t ticksstart,uint32_t ticksnow);
|
555
|
44 extern SGlobal global;
|
38
|
45
|
|
46
|
|
47 /// crazy compass calibration stuff
|
|
48 typedef struct
|
|
49 {
|
|
50 unsigned short int compass_N;
|
|
51 float Su, Sv, Sw;
|
|
52 float Suu, Svv, Sww, Suv, Suw, Svw;
|
|
53 float Suuu, Svvv, Swww;
|
|
54 float Suuv, Suuw, Svvu, Svvw, Swwu, Swwv;
|
|
55 } SCompassCalib;
|
|
56
|
|
57
|
|
58 #define Q_PI (18000)
|
|
59 #define Q_PIO2 (9000)
|
|
60
|
|
61
|
|
62
|
|
63 //////////////////////////////////////////////////////////////////////////////
|
|
64 // fifth order of polynomial approximation of atan(), giving 0.05 deg max error
|
|
65 //
|
|
66 #define K1 (5701) // Needs K1/2**16
|
|
67 #define K2 (1645) // Needs K2/2**48 WAS NEGATIV
|
|
68 #define K3 ( 446) // Needs K3/2**80
|
|
69
|
|
70 const float PI = 3.14159265; ///< pi, used in compass_calc()
|
|
71
|
|
72 typedef short int Int16;
|
|
73 typedef signed char Int8;
|
|
74 typedef Int16 Angle;
|
|
75
|
|
76
|
|
77 /// The (filtered) components of the magnetometer sensor
|
|
78 int16_t compass_DX_f; ///< output from sensor
|
|
79 int16_t compass_DY_f; ///< output from sensor
|
|
80 int16_t compass_DZ_f; ///< output from sensor
|
|
81
|
|
82
|
|
83 /// Found soft-iron calibration values, deduced from already filtered values
|
|
84 int16_t compass_CX_f; ///< calibration value
|
|
85 int16_t compass_CY_f; ///< calibration value
|
|
86 int16_t compass_CZ_f; ///< calibration value
|
|
87
|
|
88
|
|
89 /// The (filtered) components of the accelerometer sensor
|
|
90 int16_t accel_DX_f; ///< output from sensor
|
|
91 int16_t accel_DY_f; ///< output from sensor
|
|
92 int16_t accel_DZ_f; ///< output from sensor
|
|
93
|
|
94
|
|
95 /// The compass result values
|
|
96 float compass_heading; ///< the final result calculated in compass_calc()
|
|
97 float compass_roll; ///< the final result calculated in compass_calc()
|
|
98 float compass_pitch; ///< the final result calculated in compass_calc()
|
|
99
|
|
100
|
|
101 uint8_t compass_gain; ///< 7 on start, can be reduced during calibration
|
|
102
|
571
|
103 uint8_t hardwareCompass = compass_generation_undef; ///< either HMC5883L (=1) or LSM303D (=2) or LSM303AGR (=3) or not defined yet (=0)
|
38
|
104
|
|
105 /// LSM303D variables
|
|
106 uint8_t magDataBuffer[6]; ///< here raw data from LSM303D is stored, can be local
|
|
107 uint8_t accDataBuffer[6]; ///< here raw data from LSM303D is stored, can be local
|
|
108
|
|
109
|
|
110 // struct accel_scale _accel_scale;
|
|
111 unsigned _accel_range_m_s2;
|
|
112 float _accel_range_scale;
|
|
113 unsigned _accel_samplerate;
|
|
114 unsigned _accel_onchip_filter_bandwith;
|
|
115
|
|
116 // struct mag_scale _mag_scale;
|
|
117 unsigned _mag_range_ga;
|
|
118 float _mag_range_scale;
|
|
119 unsigned _mag_samplerate;
|
|
120
|
|
121 // default scale factors
|
|
122 float _accel_scale_x_offset = 0.0f;
|
|
123 float _accel_scale_x_scale = 1.0f;
|
|
124 float _accel_scale_y_offset = 0.0f;
|
|
125 float _accel_scale_y_scale = 1.0f;
|
|
126 float _accel_scale_z_offset = 0.0f;
|
|
127 float _accel_scale_z_scale = 1.0f;
|
|
128
|
|
129 float _mag_scale_x_offset = 0.0f;
|
|
130 float _mag_scale_x_scale = 1.0f;
|
|
131 float _mag_scale_y_offset = 0.0f;
|
|
132 float _mag_scale_y_scale = 1.0f;
|
|
133 float _mag_scale_z_offset = 0.0f;
|
|
134 float _mag_scale_z_scale = 1.0f;
|
|
135
|
|
136
|
|
137 /* External function prototypes ----------------------------------------------*/
|
|
138
|
|
139 extern void copyCompassDataDuringCalibration(int16_t dx, int16_t dy, int16_t dz);
|
|
140
|
|
141 /* Private function prototypes -----------------------------------------------*/
|
|
142
|
|
143 void compass_reset_calibration(SCompassCalib *g);
|
|
144 void compass_add_calibration(SCompassCalib *g);
|
|
145 void compass_solve_calibration(SCompassCalib *g);
|
|
146
|
|
147 void compass_init_HMC5883L(uint8_t fast, uint8_t gain);
|
|
148 void compass_sleep_HMC5883L(void);
|
|
149 void compass_read_HMC5883L(void);
|
|
150
|
|
151 void accelerator_init_MMA8452Q(void);
|
|
152 void accelerator_sleep_MMA8452Q(void);
|
|
153 void acceleration_read_MMA8452Q(void);
|
|
154
|
|
155 void compass_init_LSM303D(uint8_t fast, uint8_t gain);
|
|
156 void compass_sleep_LSM303D(void);
|
|
157 void compass_read_LSM303D(void);
|
|
158 void acceleration_read_LSM303D(void);
|
|
159
|
357
|
160 void compass_init_LSM303AGR(uint8_t fast, uint8_t gain);
|
|
161 void compass_sleep_LSM303AGR(void);
|
|
162 void compass_read_LSM303AGR(void);
|
|
163 void acceleration_read_LSM303AGR(void);
|
|
164
|
38
|
165 int LSM303D_accel_set_onchip_lowpass_filter_bandwidth(unsigned bandwidth);
|
|
166 int compass_calib_common(void);
|
|
167
|
|
168 void compass_calc_roll_pitch_only(void);
|
|
169
|
|
170 void rotate_mag_3f(float *x, float *y, float *z);
|
|
171 void rotate_accel_3f(float *x, float *y, float *z);
|
|
172
|
|
173
|
|
174 /* Exported functions --------------------------------------------------------*/
|
|
175
|
|
176
|
|
177 // ===============================================================================
|
|
178 // compass_init
|
|
179 /// @brief This might be called several times with different gain values during calibration
|
|
180 /// On first call it figures out which hardware is integrated
|
|
181 ///
|
|
182 /// @param gain: 7 is max gain, compass_calib() might reduce it
|
|
183 // ===============================================================================
|
|
184
|
|
185 void compass_init(uint8_t fast, uint8_t gain)
|
|
186 {
|
|
187
|
|
188 // don't call again with fast, gain in calib mode etc.
|
|
189 // if unknown
|
|
190 if(hardwareCompass == COMPASS_NOT_RECOGNIZED)
|
|
191 {
|
|
192 return;
|
|
193 }
|
|
194
|
571
|
195 if(hardwareCompass == compass_generation_undef) /* check if compass had been detected before */
|
|
196 {
|
|
197 tfull32 dataBlock[4];
|
|
198 if(BFA_readLastDataBlock(dataBlock) == BFA_OK)
|
|
199 {
|
|
200 if(dataBlock[3].Word16.hi16 == BFA_calc_Block_Checksum(dataBlock))
|
|
201 {
|
|
202 compass_CX_f = dataBlock[0].Word16.low16;
|
|
203 compass_CY_f = dataBlock[0].Word16.hi16;
|
|
204 compass_CZ_f = dataBlock[1].Word16.low16;
|
|
205 hardwareCompass = dataBlock[1].Word16.hi16;
|
|
206 if(hardwareCompass >= compass_generation_future) /* no generation stored (including COMPASS_NOT_RECOGNIZED) */
|
|
207 {
|
|
208 hardwareCompass = compass_generation_undef;
|
|
209 }
|
|
210 }
|
|
211 }
|
|
212 }
|
|
213
|
38
|
214 // old code but without else
|
571
|
215 if(hardwareCompass == compass_generation_undef)
|
38
|
216 {
|
|
217 uint8_t data = WHO_AM_I;
|
|
218 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
|
|
219 I2C_Master_Receive( DEVICE_COMPASS_303D, &data, 1);
|
357
|
220 if(data == WHOIAM_VALUE_LSM303D)
|
|
221 hardwareCompass = compass_generation2; //LSM303D;
|
358
|
222 data = WHO_AM_I;
|
|
223 I2C_Master_Transmit( DEVICE_ACCELARATOR_303AGR, &data, 1);
|
|
224 I2C_Master_Receive( DEVICE_ACCELARATOR_303AGR, &data, 1);
|
357
|
225 if(data == WHOIAM_VALUE_LSM303AGR)
|
|
226 hardwareCompass = compass_generation3; //LSM303AGR;
|
38
|
227 }
|
|
228
|
180
|
229 /* No compass identified => Retry */
|
571
|
230 if(hardwareCompass == compass_generation_undef)
|
38
|
231 {
|
514
|
232 I2C_DeInit();
|
|
233 HAL_Delay(100);
|
|
234 MX_I2C1_Init();
|
|
235 HAL_Delay(100);
|
38
|
236 uint8_t data = WHO_AM_I;
|
|
237 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
|
|
238 I2C_Master_Receive( DEVICE_COMPASS_303D, &data, 1);
|
357
|
239 if(data == WHOIAM_VALUE_LSM303D)
|
580
|
240 {
|
357
|
241 hardwareCompass = compass_generation2; //LSM303D;
|
580
|
242 }
|
|
243 else
|
|
244 {
|
|
245 data = WHO_AM_I;
|
|
246 I2C_Master_Transmit( DEVICE_ACCELARATOR_303AGR, &data, 1);
|
|
247 I2C_Master_Receive( DEVICE_ACCELARATOR_303AGR, &data, 1);
|
|
248 if(data == WHOIAM_VALUE_LSM303AGR)
|
|
249 hardwareCompass = compass_generation3; //LSM303AGR;
|
|
250 }
|
38
|
251 }
|
70
|
252
|
180
|
253 /* Assume that a HMC5883L is equipped by default if detection still failed */
|
571
|
254 if(hardwareCompass == compass_generation_undef)
|
357
|
255 hardwareCompass = compass_generation1; //HMC5883L;
|
38
|
256
|
|
257 HAL_StatusTypeDef resultOfOperationHMC_MMA = HAL_TIMEOUT;
|
|
258
|
358
|
259 // test if both chips of the two-chip solution (gen 1) are present
|
357
|
260 if(hardwareCompass == compass_generation1) // HMC5883L)
|
38
|
261 {
|
488
|
262 HAL_Delay(100);
|
|
263 I2C_DeInit();
|
|
264 HAL_Delay(100);
|
358
|
265 MX_I2C1_Init();
|
488
|
266 HAL_Delay(100);
|
38
|
267 uint8_t data = 0x2A; // CTRL_REG1 of DEVICE_ACCELARATOR_MMA8452Q
|
|
268 resultOfOperationHMC_MMA = I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, &data, 1);
|
|
269 if(resultOfOperationHMC_MMA == HAL_OK)
|
|
270 {
|
357
|
271 hardwareCompass = compass_generation1; //HMC5883L; // all fine, keep it
|
38
|
272 }
|
|
273 else
|
|
274 {
|
|
275 hardwareCompass = COMPASS_NOT_RECOGNIZED;
|
|
276 }
|
|
277 }
|
|
278
|
357
|
279 if(hardwareCompass == compass_generation2) //LSM303D)
|
38
|
280 compass_init_LSM303D(fast, gain);
|
357
|
281 if(hardwareCompass == compass_generation3) //LSM303AGR)
|
|
282 compass_init_LSM303AGR(fast, gain);
|
|
283 if(hardwareCompass == compass_generation1) //HMC5883L)
|
38
|
284 compass_init_HMC5883L(fast, gain);
|
|
285
|
555
|
286 if(global.deviceDataSendToMaster.hw_Info.compass == 0)
|
|
287 {
|
|
288 global.deviceDataSendToMaster.hw_Info.compass = hardwareCompass;
|
559
|
289 global.deviceDataSendToMaster.hw_Info.checkCompass = 1;
|
555
|
290 }
|
38
|
291 }
|
|
292
|
|
293
|
|
294 // ===============================================================================
|
|
295 // compass_calib
|
|
296 /// @brief with onchip_lowpass_filter configuration for accelerometer of LSM303D
|
|
297 // ===============================================================================
|
|
298 int compass_calib(void)
|
|
299 {
|
357
|
300 if(hardwareCompass == compass_generation2) //LSM303D)
|
38
|
301 {
|
|
302 LSM303D_accel_set_onchip_lowpass_filter_bandwidth(773);
|
|
303 int out = compass_calib_common();
|
|
304 LSM303D_accel_set_onchip_lowpass_filter_bandwidth(LSM303D_ACCEL_DEFAULT_ONCHIP_FILTER_FREQ);
|
|
305 return out;
|
|
306 }
|
|
307 else
|
357
|
308 if(hardwareCompass == compass_generation1) //HMC5883L)
|
|
309 {
|
|
310 return compass_calib_common();
|
|
311 }
|
|
312 else
|
|
313 if(hardwareCompass == compass_generation3) //LSM303AGR)
|
38
|
314 {
|
|
315 return compass_calib_common();
|
|
316 }
|
|
317 else
|
|
318 {
|
|
319 return 0; // standard answer of compass_calib_common();
|
|
320 }
|
|
321
|
|
322
|
|
323 }
|
|
324
|
|
325
|
|
326 // ===============================================================================
|
|
327 // compass_sleep
|
|
328 /// @brief low power mode
|
|
329 // ===============================================================================
|
|
330 void compass_sleep(void)
|
|
331 {
|
514
|
332 if(hardwareCompass == compass_generation2) //LSM303D
|
38
|
333 compass_sleep_LSM303D();
|
514
|
334 if(hardwareCompass == compass_generation1) //HMC5883L
|
38
|
335 compass_sleep_HMC5883L();
|
514
|
336 if(hardwareCompass == compass_generation3) //LSM303AGR
|
|
337 compass_sleep_LSM303AGR();
|
38
|
338 }
|
|
339
|
|
340
|
|
341 // ===============================================================================
|
|
342 // compass_read
|
|
343 /// @brief reads magnetometer and accelerometer for LSM303D,
|
|
344 /// otherwise magnetometer only
|
|
345 // ===============================================================================
|
|
346 void compass_read(void)
|
|
347 {
|
357
|
348 if(hardwareCompass == compass_generation2) //LSM303D)
|
38
|
349 compass_read_LSM303D();
|
357
|
350 if(hardwareCompass == compass_generation1) //HMC5883L)
|
38
|
351 compass_read_HMC5883L();
|
357
|
352 if(hardwareCompass == compass_generation3) //LSM303AGR)
|
514
|
353 compass_read_LSM303AGR();
|
357
|
354
|
38
|
355 }
|
|
356
|
|
357
|
|
358 // ===============================================================================
|
|
359 // accelerator_init
|
|
360 /// @brief empty for for LSM303D
|
|
361 // ===============================================================================
|
|
362 void accelerator_init(void)
|
|
363 {
|
357
|
364 if(hardwareCompass == compass_generation1) //HMC5883L)
|
38
|
365 accelerator_init_MMA8452Q();
|
|
366 }
|
|
367
|
|
368
|
|
369 // ===============================================================================
|
|
370 // accelerator_sleep
|
|
371 /// @brief empty for for LSM303D
|
|
372 // ===============================================================================
|
|
373 void accelerator_sleep(void)
|
|
374 {
|
357
|
375 if(hardwareCompass == compass_generation1) //HMC5883L)
|
38
|
376 accelerator_sleep_MMA8452Q();
|
|
377 }
|
|
378
|
|
379
|
|
380 // ===============================================================================
|
|
381 // acceleration_read
|
|
382 /// @brief empty for for LSM303D
|
|
383 // ===============================================================================
|
|
384 void acceleration_read(void)
|
|
385 {
|
357
|
386 if(hardwareCompass == compass_generation2) //LSM303D)
|
38
|
387 acceleration_read_LSM303D();
|
357
|
388 if(hardwareCompass == compass_generation1) //HMC5883L)
|
38
|
389 acceleration_read_MMA8452Q();
|
357
|
390 if(hardwareCompass == compass_generation3) //LSM303AGR)
|
|
391 acceleration_read_LSM303AGR();
|
38
|
392 }
|
|
393
|
|
394
|
|
395 /* Private functions ---------------------------------------------------------*/
|
|
396
|
|
397 // ===============================================================================
|
357
|
398 // LSM303AGR_read_reg
|
|
399 // ===============================================================================
|
|
400 uint8_t LSM303AGR_read_reg(uint8_t addr)
|
|
401 {
|
|
402 uint8_t data;
|
|
403
|
|
404 I2C_Master_Transmit( DEVICE_COMPASS_303AGR, &addr, 1);
|
|
405 I2C_Master_Receive( DEVICE_COMPASS_303AGR, &data, 1);
|
|
406 return data;
|
|
407 }
|
|
408
|
|
409
|
|
410 // ===============================================================================
|
|
411 // LSM303AGR_write_reg
|
|
412 // ===============================================================================
|
|
413 void LSM303AGR_write_reg(uint8_t addr, uint8_t value)
|
|
414 {
|
|
415 uint8_t data[2];
|
|
416
|
|
417 data[0] = addr;
|
|
418 data[1] = value;
|
|
419 I2C_Master_Transmit( DEVICE_COMPASS_303AGR, data, 2);
|
|
420 }
|
|
421
|
|
422 // ===============================================================================
|
|
423 // LSM303AGR_acc_write_reg
|
|
424 // ===============================================================================
|
|
425 void LSM303AGR_acc_write_reg(uint8_t addr, uint8_t value)
|
|
426 {
|
|
427 uint8_t data[2];
|
|
428
|
|
429 data[0] = addr;
|
|
430 data[1] = value;
|
|
431 I2C_Master_Transmit( DEVICE_ACCELARATOR_303AGR, data, 2);
|
|
432 }
|
|
433
|
|
434
|
|
435 // ===============================================================================
|
|
436 // LSM303AGR_write_checked_reg
|
|
437 // ===============================================================================
|
|
438 void LSM303AGR_write_checked_reg(uint8_t addr, uint8_t value)
|
|
439 {
|
|
440 LSM303AGR_write_reg(addr, value);
|
|
441 }
|
|
442
|
|
443 // ===============================================================================
|
|
444 // LSM303AGR_acc_write_checked_reg
|
|
445 // ===============================================================================
|
|
446 void LSM303AGR_acc_write_checked_reg(uint8_t addr, uint8_t value)
|
|
447 {
|
|
448 LSM303AGR_acc_write_reg(addr, value);
|
|
449 }
|
|
450
|
|
451 // ===============================================================================
|
38
|
452 // LSM303D_read_reg
|
|
453 // ===============================================================================
|
|
454 uint8_t LSM303D_read_reg(uint8_t addr)
|
|
455 {
|
|
456 uint8_t data;
|
|
457
|
|
458 I2C_Master_Transmit( DEVICE_COMPASS_303D, &addr, 1);
|
|
459 I2C_Master_Receive( DEVICE_COMPASS_303D, &data, 1);
|
|
460 return data;
|
|
461 }
|
|
462
|
|
463
|
|
464 // ===============================================================================
|
|
465 // LSM303D_write_reg
|
|
466 // ===============================================================================
|
|
467 void LSM303D_write_reg(uint8_t addr, uint8_t value)
|
|
468 {
|
|
469 uint8_t data[2];
|
|
470
|
|
471 /* enable accel*/
|
|
472 data[0] = addr;
|
|
473 data[1] = value;
|
|
474 I2C_Master_Transmit( DEVICE_COMPASS_303D, data, 2);
|
|
475 }
|
|
476
|
|
477
|
|
478 // ===============================================================================
|
|
479 // LSM303D_write_checked_reg
|
|
480 // ===============================================================================
|
|
481 void LSM303D_write_checked_reg(uint8_t addr, uint8_t value)
|
|
482 {
|
|
483 LSM303D_write_reg(addr, value);
|
|
484 }
|
|
485
|
|
486
|
|
487 // ===============================================================================
|
|
488 // LSM303D_modify_reg
|
|
489 // ===============================================================================
|
|
490 void LSM303D_modify_reg(unsigned reg, uint8_t clearbits, uint8_t setbits)
|
|
491 {
|
|
492 uint8_t val;
|
|
493
|
|
494 val = LSM303D_read_reg(reg);
|
|
495 val &= ~clearbits;
|
|
496 val |= setbits;
|
|
497 LSM303D_write_checked_reg(reg, val);
|
|
498 }
|
|
499
|
|
500 // ===============================================================================
|
|
501 // LSM303D_accel_set_onchip_lowpass_filter_bandwidth
|
|
502 // ===============================================================================
|
|
503 int LSM303D_accel_set_onchip_lowpass_filter_bandwidth(unsigned bandwidth)
|
|
504 {
|
|
505 uint8_t setbits = 0;
|
|
506 uint8_t clearbits = REG2_ANTIALIAS_FILTER_BW_BITS_A;
|
|
507
|
|
508 if (bandwidth == 0) {
|
|
509 bandwidth = 773;
|
|
510 }
|
|
511
|
|
512 if (bandwidth <= 50) {
|
|
513 setbits |= REG2_AA_FILTER_BW_50HZ_A;
|
|
514 _accel_onchip_filter_bandwith = 50;
|
|
515
|
|
516 } else if (bandwidth <= 194) {
|
|
517 setbits |= REG2_AA_FILTER_BW_194HZ_A;
|
|
518 _accel_onchip_filter_bandwith = 194;
|
|
519
|
|
520 } else if (bandwidth <= 362) {
|
|
521 setbits |= REG2_AA_FILTER_BW_362HZ_A;
|
|
522 _accel_onchip_filter_bandwith = 362;
|
|
523
|
|
524 } else if (bandwidth <= 773) {
|
|
525 setbits |= REG2_AA_FILTER_BW_773HZ_A;
|
|
526 _accel_onchip_filter_bandwith = 773;
|
|
527
|
|
528 } else {
|
|
529 return -1;
|
|
530 }
|
|
531
|
|
532 LSM303D_modify_reg(ADDR_CTRL_REG2, clearbits, setbits);
|
|
533
|
|
534 return 0;
|
|
535 }
|
|
536
|
|
537
|
|
538 // ===============================================================================
|
|
539 // LSM303D_accel_set_driver_lowpass_filter
|
|
540 // ===============================================================================
|
|
541 int LSM303D_accel_set_driver_lowpass_filter(float samplerate, float bandwidth)
|
|
542 {
|
|
543 /*
|
|
544 _accel_filter_x_set_cutoff_frequency(samplerate, bandwidth);
|
|
545 _accel_filter_y_set_cutoff_frequency(samplerate, bandwidth);
|
|
546 _accel_filter_z_set_cutoff_frequency(samplerate, bandwidth);
|
|
547 */
|
|
548 return 0;
|
|
549 }
|
|
550
|
|
551
|
|
552 // rotate_mag_3f: nicht genutzt aber praktisch; rotate_accel_3f wird benutzt
|
|
553 // ===============================================================================
|
|
554 // rotate_mag_3f
|
|
555 /// @brief swap axis in convient way, by hw
|
|
556 /// @param *x raw input is set to *y input
|
|
557 /// @param *y raw input is set to -*x input
|
|
558 /// @param *z raw is not touched
|
|
559 // ===============================================================================
|
|
560 void rotate_mag_3f(float *x, float *y, float *z)
|
|
561 {
|
|
562 return;
|
|
563 /*
|
|
564 *x = *x; // HMC: *x = -*y
|
|
565 *y = *y; // HMC: *y = *x // change 20.04.2016: zuvor *y = -*y
|
|
566 *z = *z; // HMC: *z = *z
|
|
567 */
|
|
568 }
|
|
569
|
|
570
|
|
571 // ===============================================================================
|
|
572 // rotate_accel_3f
|
|
573 /// @brief swap axis in convient way, by hw, same as MMA8452Q
|
|
574 /// @param *x raw input, output is with sign change
|
|
575 /// @param *y raw input, output is with sign change
|
|
576 /// @param *z raw input, output is with sign change
|
|
577 // ===============================================================================
|
|
578 void rotate_accel_3f(float *x, float *y, float *z)
|
|
579 {
|
|
580 *x = -*x;
|
|
581 *y = -*y;
|
|
582 *z = -*z;
|
|
583 /* tested:
|
|
584 x = x, y =-y, z=-z: does not work with roll
|
|
585 x = x, y =y, z=-z: does not work with pitch
|
|
586 x = x, y =y, z=z: does not work at all
|
|
587 */
|
|
588 }
|
|
589
|
|
590
|
|
591 // ===============================================================================
|
357
|
592 // compass_init_LSM303D
|
38
|
593 /// This might be called several times with different gain values during calibration
|
|
594 /// but gain change is not supported at the moment.
|
|
595 ///
|
|
596 /// @param gain: 7 is max gain and set with here, compass_calib() might reduce it
|
|
597 // ===============================================================================
|
|
598
|
|
599 //uint8_t testCompassLS303D[11];
|
|
600
|
|
601 void compass_init_LSM303D(uint8_t fast, uint8_t gain)
|
|
602 {
|
|
603 if(fast == 0)
|
|
604 {
|
|
605 LSM303D_write_checked_reg(ADDR_CTRL_REG0, 0x00);
|
580
|
606 LSM303D_write_checked_reg(ADDR_CTRL_REG1, 0x3F); // mod 12,5 Hz 3 instead of 6,25 Hz 2 BDU and all axis
|
|
607 LSM303D_write_checked_reg(ADDR_CTRL_REG2, 0xC0); // 50Hz anti alias filter
|
|
608 LSM303D_write_checked_reg(ADDR_CTRL_REG3, 0x00); // no interrupts
|
|
609 LSM303D_write_checked_reg(ADDR_CTRL_REG4, 0x00); // no interrupts
|
|
610 LSM303D_write_checked_reg(ADDR_CTRL_REG5, 0x68); // mod 12,5 Hz 8 instead of 6,25 Hz 4 High resolution
|
38
|
611 }
|
|
612 else
|
|
613 {
|
|
614 LSM303D_write_checked_reg(ADDR_CTRL_REG0, 0x00);
|
|
615 LSM303D_write_checked_reg(ADDR_CTRL_REG1, 0x6F); // 100 Hz
|
|
616 LSM303D_write_checked_reg(ADDR_CTRL_REG2, 0xC0);
|
|
617 LSM303D_write_checked_reg(ADDR_CTRL_REG3, 0x00);
|
|
618 LSM303D_write_checked_reg(ADDR_CTRL_REG4, 0x00);
|
|
619 LSM303D_write_checked_reg(ADDR_CTRL_REG5, 0x74); // 100 Hz
|
|
620 }
|
|
621 LSM303D_write_checked_reg(ADDR_CTRL_REG6, 0x00);
|
|
622 LSM303D_write_checked_reg(ADDR_CTRL_REG7, 0x00);
|
|
623
|
|
624 return;
|
|
625 }
|
|
626
|
|
627
|
|
628 // ===============================================================================
|
|
629 // compass_sleep_LSM303D
|
357
|
630 // @brief Gen 2 chip
|
38
|
631 // ===============================================================================
|
|
632 void compass_sleep_LSM303D(void)
|
|
633 {
|
|
634 LSM303D_write_checked_reg(ADDR_CTRL_REG1, 0x00); // CNTRL1: acceleration sensor Power-down mode
|
|
635 LSM303D_write_checked_reg(ADDR_CTRL_REG7, 0x02); // CNTRL7: magnetic sensor Power-down mode
|
|
636 }
|
|
637
|
|
638
|
|
639 // ===============================================================================
|
|
640 // acceleration_read_LSM303D
|
357
|
641 // output is accel_DX_f, accel_DY_f, accel_DZ_f
|
38
|
642 // ===============================================================================
|
|
643 void acceleration_read_LSM303D(void)
|
|
644 {
|
|
645 uint8_t data;
|
|
646 float xraw_f, yraw_f, zraw_f;
|
|
647 float accel_report_x, accel_report_y, accel_report_z;
|
|
648
|
|
649 memset(accDataBuffer,0,6);
|
|
650
|
|
651 accel_DX_f = 0;
|
|
652 accel_DY_f = 0;
|
|
653 accel_DZ_f = 0;
|
|
654
|
|
655 for(int i=0;i<6;i++)
|
|
656 {
|
|
657 data = ADDR_OUT_X_L_A + i;
|
|
658 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
|
|
659 I2C_Master_Receive( DEVICE_COMPASS_303D, &accDataBuffer[i], 1);
|
|
660 }
|
|
661
|
|
662 xraw_f = ((float)( (int16_t)((accDataBuffer[1] << 8) | (accDataBuffer[0]))));
|
|
663 yraw_f = ((float)( (int16_t)((accDataBuffer[3] << 8) | (accDataBuffer[2]))));
|
|
664 zraw_f = ((float)( (int16_t)((accDataBuffer[5] << 8) | (accDataBuffer[4]))));
|
|
665
|
|
666 rotate_accel_3f(&xraw_f, &yraw_f, &zraw_f);
|
|
667
|
|
668 // mh
|
|
669 accel_report_x = xraw_f;
|
|
670 accel_report_y = yraw_f;
|
|
671 accel_report_z = zraw_f;
|
|
672
|
|
673 accel_DX_f = ((int16_t)(accel_report_x));
|
|
674 accel_DY_f = ((int16_t)(accel_report_y));
|
|
675 accel_DZ_f = ((int16_t)(accel_report_z));
|
|
676 }
|
|
677
|
|
678
|
|
679 // ===============================================================================
|
|
680 // compass_read_LSM303D
|
|
681 ///
|
|
682 /// output is compass_DX_f, compass_DY_f, compass_DZ_f
|
|
683 // ===============================================================================
|
|
684 void compass_read_LSM303D(void)
|
|
685 {
|
|
686 uint8_t data;
|
|
687 // float xraw_f, yraw_f, zraw_f;
|
|
688 // float mag_report_x, mag_report_y, mag_report_z;
|
|
689
|
|
690 memset(magDataBuffer,0,6);
|
|
691
|
|
692 compass_DX_f = 0;
|
|
693 compass_DY_f = 0;
|
|
694 compass_DZ_f = 0;
|
|
695
|
|
696 for(int i=0;i<6;i++)
|
|
697 {
|
|
698 data = ADDR_OUT_X_L_M + i;
|
|
699 I2C_Master_Transmit( DEVICE_COMPASS_303D, &data, 1);
|
|
700 I2C_Master_Receive( DEVICE_COMPASS_303D, &magDataBuffer[i], 1);
|
|
701 }
|
|
702
|
|
703 // mh 160620 flip x and y if flip display
|
|
704 compass_DX_f = (((int16_t)((magDataBuffer[1] << 8) | (magDataBuffer[0]))));
|
|
705 compass_DY_f = (((int16_t)((magDataBuffer[3] << 8) | (magDataBuffer[2]))));
|
|
706 compass_DZ_f = (((int16_t)((magDataBuffer[5] << 8) | (magDataBuffer[4]))));
|
|
707 // no rotation
|
|
708 return;
|
357
|
709 }
|
|
710
|
|
711
|
|
712 // ===============================================================================
|
|
713 // compass_init_LSM303AGR
|
|
714 /// This might be called several times with different gain values during calibration
|
|
715 /// but gain change is not supported at the moment.
|
|
716 ///
|
|
717 /// @param gain: 7 is max gain and set with here, compass_calib() might reduce it
|
|
718 // ===============================================================================
|
38
|
719
|
357
|
720 void compass_init_LSM303AGR(uint8_t fast, uint8_t gain)
|
|
721 {
|
|
722 if(fast == 0)
|
|
723 {
|
358
|
724 // init compass
|
580
|
725 LSM303AGR_write_checked_reg(0x60, 0x80); // CFG_REG_A_M 10Hz continuous measurement
|
|
726 LSM303AGR_write_checked_reg(0x61, 0x03); // CFG_REG_B_M Enable offset cancellation and low pass filter
|
|
727 LSM303AGR_write_checked_reg(0x62, 0x10); // CFG_REG_C_M Avoid incoherence (BDU)
|
|
728 LSM303AGR_write_checked_reg(0x63, 0x00); // INT_CTRL_REG_M No interrupts
|
358
|
729
|
|
730 // init accel (Same chip, but different address...)
|
|
731 LSM303AGR_acc_write_checked_reg(0x1F, 0x00); // TEMP_CFG_REG_A (Temp sensor off)
|
580
|
732 LSM303AGR_acc_write_checked_reg(0x20, 0x27); // CTRL_REG1_A (10Hz, x,y,z = ON, low power mode)
|
|
733 LSM303AGR_acc_write_checked_reg(0x21, 0x00); // CTRL_REG2_A (High pass filter normal mode)
|
|
734 LSM303AGR_acc_write_checked_reg(0x22, 0x00); // CTRL_REG3_A (no interrupts)
|
|
735 LSM303AGR_acc_write_checked_reg(0x23, 0x88); // CTRL_REG4_A, High Resolution Mode enabled, enable BDU
|
357
|
736 }
|
|
737 else
|
|
738 {
|
358
|
739 // init compass
|
|
740 LSM303AGR_write_checked_reg(0x60, 0x84); // 20Hz
|
357
|
741 LSM303AGR_write_checked_reg(0x61, 0x03); // CFG_REG_B_M
|
|
742 LSM303AGR_write_checked_reg(0x62, 0x10); // CFG_REG_C_M
|
358
|
743 LSM303AGR_write_checked_reg(0x63, 0x00); // INT_CTRL_REG_M
|
|
744
|
|
745 // init accel (Same chip, but different address...)
|
|
746 LSM303AGR_acc_write_checked_reg(0x1F, 0x00); // TEMP_CFG_REG_A (Temp sensor off)
|
580
|
747 LSM303AGR_acc_write_checked_reg(0x20, 0x47); // CTRL_REG1_A (50Hz, x,y,z = ON)
|
358
|
748 LSM303AGR_acc_write_checked_reg(0x21, 0x00); // CTRL_REG2_A
|
|
749 LSM303AGR_acc_write_checked_reg(0x22, 0x00); // CTRL_REG3_A
|
580
|
750 LSM303AGR_acc_write_checked_reg(0x23, 0x88); // CTRL_REG4_A, High Resolution Mode enabled
|
357
|
751 }
|
|
752
|
|
753 return;
|
|
754 }
|
|
755
|
|
756
|
|
757 // ===============================================================================
|
|
758 // compass_sleep_LSM303D
|
|
759 // @brief Gen 2 chip
|
|
760 // ===============================================================================
|
|
761 void compass_sleep_LSM303AGR(void)
|
|
762 {
|
580
|
763 LSM303AGR_write_checked_reg(0x60, 0x13); // low power and idle mode
|
|
764 LSM303AGR_write_checked_reg(0x61, 0x04); // pulse only at power on
|
|
765 LSM303AGR_write_checked_reg(0x62, 0x51); // int mag pin used (?), BDU and DRDY is output
|
|
766 LSM303AGR_write_checked_reg(0x63, 0x00); // no interrupts
|
357
|
767
|
|
768
|
580
|
769 LSM303AGR_acc_write_checked_reg(0x1F, 0x00); // temperature off
|
|
770 LSM303AGR_acc_write_checked_reg(0x20, 0x00); // power down
|
357
|
771 }
|
|
772
|
38
|
773
|
357
|
774 // ===============================================================================
|
|
775 // acceleration_read_LSM303AGR
|
|
776 // output is accel_DX_f, accel_DY_f, accel_DZ_f
|
|
777 // ===============================================================================
|
|
778 void acceleration_read_LSM303AGR(void)
|
|
779 {
|
|
780 uint8_t data;
|
|
781 float xraw_f, yraw_f, zraw_f;
|
|
782 float accel_report_x, accel_report_y, accel_report_z;
|
|
783
|
|
784 memset(accDataBuffer,0,6);
|
|
785
|
|
786 accel_DX_f = 0;
|
|
787 accel_DY_f = 0;
|
|
788 accel_DZ_f = 0;
|
|
789
|
|
790 for(int i=0;i<6;i++)
|
|
791 {
|
358
|
792 data = 0x28 + i; // OUT_X_L_A
|
357
|
793 I2C_Master_Transmit( DEVICE_ACCELARATOR_303AGR, &data, 1);
|
|
794 I2C_Master_Receive( DEVICE_ACCELARATOR_303AGR, &accDataBuffer[i], 1);
|
|
795 }
|
|
796
|
|
797 xraw_f = ((float)( (int16_t)((accDataBuffer[1] << 8) | (accDataBuffer[0]))));
|
|
798 yraw_f = ((float)( (int16_t)((accDataBuffer[3] << 8) | (accDataBuffer[2]))));
|
|
799 zraw_f = ((float)( (int16_t)((accDataBuffer[5] << 8) | (accDataBuffer[4]))));
|
|
800
|
|
801 rotate_accel_3f(&xraw_f, &yraw_f, &zraw_f);
|
|
802
|
|
803 // mh
|
|
804 accel_report_x = xraw_f;
|
|
805 accel_report_y = yraw_f;
|
358
|
806 accel_report_z = -zraw_f; // flip Z in gen 2 hardware
|
357
|
807
|
|
808 accel_DX_f = ((int16_t)(accel_report_x));
|
|
809 accel_DY_f = ((int16_t)(accel_report_y));
|
|
810 accel_DZ_f = ((int16_t)(accel_report_z));
|
|
811 }
|
|
812
|
|
813
|
|
814 // ===============================================================================
|
|
815 // compass_read_LSM303AGR
|
|
816 ///
|
|
817 /// output is compass_DX_f, compass_DY_f, compass_DZ_f
|
|
818 // ===============================================================================
|
|
819 void compass_read_LSM303AGR(void)
|
|
820 {
|
|
821 uint8_t data;
|
|
822 // float xraw_f, yraw_f, zraw_f;
|
|
823 // float mag_report_x, mag_report_y, mag_report_z;
|
|
824
|
|
825 memset(magDataBuffer,0,6);
|
|
826
|
|
827 compass_DX_f = 0;
|
|
828 compass_DY_f = 0;
|
|
829 compass_DZ_f = 0;
|
|
830
|
|
831 for(int i=0;i<6;i++)
|
|
832 {
|
|
833 data = 0x68 + i; // OUTX_L_REG_M
|
|
834 I2C_Master_Transmit( DEVICE_COMPASS_303AGR, &data, 1);
|
|
835 I2C_Master_Receive( DEVICE_COMPASS_303AGR, &magDataBuffer[i], 1);
|
|
836 }
|
|
837
|
|
838 // mh 160620 flip x and y if flip display
|
|
839 compass_DX_f = (((int16_t)((magDataBuffer[1] << 8) | (magDataBuffer[0]))));
|
|
840 compass_DY_f = (((int16_t)((magDataBuffer[3] << 8) | (magDataBuffer[2]))));
|
|
841 compass_DZ_f = (((int16_t)((magDataBuffer[5] << 8) | (magDataBuffer[4]))));
|
358
|
842
|
|
843 // align axis in gen 2 hardware
|
|
844 compass_DZ_f *= -1;
|
|
845
|
357
|
846 return;
|
38
|
847 }
|
|
848
|
|
849
|
|
850 // --------------------------------------------------------------------------------
|
|
851 // ----------EARLIER COMPONENTS ---------------------------------------------------
|
|
852 // --------------------------------------------------------------------------------
|
|
853
|
|
854 // ===============================================================================
|
|
855 // compass_init_HMC5883L
|
|
856 /// @brief The horrible Honeywell compass chip
|
|
857 /// This might be called several times during calibration
|
|
858 ///
|
|
859 /// @param fast: 1 is fast mode, 0 is normal mode
|
|
860 /// @param gain: 7 is max gain and set with here, compass_calib() might reduce it
|
|
861 // ===============================================================================
|
|
862 void compass_init_HMC5883L(uint8_t fast, uint8_t gain)
|
|
863 {
|
|
864 uint8_t write_buffer[4];
|
|
865
|
|
866 compass_gain = gain;
|
|
867 uint16_t length = 0;
|
|
868 write_buffer[0] = 0x00; // 00 = config Register A
|
|
869
|
|
870 if( fast )
|
|
871 write_buffer[1] = 0x38; // 0b 0011 1000; // ConfigA: 75Hz, 2 Samples averaged
|
|
872 else
|
|
873 write_buffer[1] = 0x68; // 0b 0110 1000; // ConfigA: 3Hz, 8 Samples averaged
|
|
874
|
|
875 switch(gain)
|
|
876 {
|
|
877 case 7:
|
|
878 write_buffer[2] = 0xE0; //0b 1110 0000; // ConfigB: gain
|
|
879 break;
|
|
880 case 6:
|
|
881 write_buffer[2] = 0xC0; //0b 1100 0000; // ConfigB: gain
|
|
882 break;
|
|
883 case 5:
|
|
884 write_buffer[2] = 0xA0; //0b 1010 0000; // ConfigB: gain
|
|
885 break;
|
|
886 case 4:
|
|
887 write_buffer[2] = 0x80; //0b 1000 0000; // ConfigB: gain
|
|
888 break;
|
|
889 case 3:
|
|
890 write_buffer[2] = 0x60; //0b 0110 0000; // ConfigB: gain
|
|
891 break;
|
|
892 case 2:
|
|
893 write_buffer[2] = 0x40; //0b 01000 0000; // ConfigB: gain
|
|
894 break;
|
|
895 case 1:
|
|
896 write_buffer[2] = 0x20; //0b 00100 0000; // ConfigB: gain
|
|
897 break;
|
|
898 case 0:
|
|
899 write_buffer[2] = 0x00; //0b 00000 0000; // ConfigB: gain
|
|
900 break;
|
|
901 }
|
|
902 write_buffer[3] = 0x00; // Mode: continuous mode
|
|
903 length = 4;
|
|
904 //hmc_twi_write(0);
|
|
905 I2C_Master_Transmit( DEVICE_COMPASS_HMC5883L, write_buffer, length);
|
|
906 }
|
|
907
|
|
908
|
|
909
|
|
910 // ===============================================================================
|
|
911 // compass_sleep_HMC5883L
|
|
912 /// @brief Power-down mode for Honeywell compass chip
|
|
913 // ===============================================================================
|
|
914 void compass_sleep_HMC5883L(void)
|
|
915 {
|
|
916 uint8_t write_buffer[4];
|
|
917 uint16_t length = 0;
|
|
918
|
|
919 write_buffer[0] = 0x00; // 00 = config Register A
|
|
920 write_buffer[1] = 0x68; // 0b 0110 1000; // ConfigA
|
|
921 write_buffer[2] = 0x20; // 0b 0010 0000; // ConfigB
|
|
922 write_buffer[3] = 0x02; // 0b 0000 0010; // Idle Mode
|
|
923 length = 4;
|
|
924 I2C_Master_Transmit( DEVICE_COMPASS_HMC5883L, write_buffer, length);
|
|
925 }
|
|
926
|
|
927
|
|
928 // ===============================================================================
|
|
929 // accelerator_init_MMA8452Q
|
|
930 /// @brief Power-down mode for acceleration chip used in combination with Honeywell compass
|
|
931 // ===============================================================================
|
|
932 void accelerator_init_MMA8452Q(void)
|
|
933 {
|
|
934 uint8_t write_buffer[4];
|
|
935 uint16_t length = 0;
|
|
936 //HAL_Delay(1);
|
|
937 //return;
|
|
938 write_buffer[0] = 0x0E; // XYZ_DATA_CFG
|
|
939 write_buffer[1] = 0x00;//0b00000000; // High pass Filter=0 , +/- 2g range
|
|
940 length = 2;
|
|
941 I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, write_buffer, length);
|
|
942 //HAL_Delay(1);
|
|
943 write_buffer[0] = 0x2A; // CTRL_REG1
|
|
944 write_buffer[1] = 0x34; //0b00110100; // CTRL_REG1: 160ms data rate, St.By Mode, reduced noise mode
|
|
945 write_buffer[2] = 0x02; //0b00000010; // CTRL_REG2: High Res in Active mode
|
|
946 length = 3;
|
|
947 I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, write_buffer, length);
|
|
948
|
|
949 //HAL_Delay(1);
|
|
950 //hw_delay_us(100);
|
|
951 write_buffer[0] = 0x2A; // CTRL_REG1
|
|
952 write_buffer[1] = 0x35; //0b00110101; // CTRL_REG1: ... Active Mode
|
|
953 length = 2;
|
|
954 I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, write_buffer, length);
|
|
955 /*
|
|
956 HAL_Delay(6);
|
|
957 compass_read();
|
|
958 HAL_Delay(1);
|
|
959 acceleration_read();
|
|
960
|
|
961 compass_calc();
|
|
962 */
|
|
963 }
|
|
964
|
|
965
|
|
966 // ===============================================================================
|
|
967 // accelerator_sleep_MMA8452Q
|
|
968 /// @brief compass_sleep_HMC5883L
|
|
969 // ===============================================================================
|
|
970 void accelerator_sleep_MMA8452Q(void)
|
|
971 {
|
|
972 uint16_t length = 0;
|
|
973 uint8_t write_buffer[4];
|
|
974
|
|
975 write_buffer[0] = 0x2A; // CTRL_REG1
|
|
976 write_buffer[1] = 0x00; //0b00000000; // CTRL_REG1: Standby Mode
|
|
977 length = 2;
|
|
978 I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, write_buffer, length);
|
|
979 }
|
|
980
|
|
981
|
|
982 // ===============================================================================
|
|
983 // compass_read_HMC5883L
|
|
984 /// @brief The new ST 303D - get ALL data and store in static variables
|
|
985 ///
|
|
986 /// output is compass_DX_f, compass_DY_f, compass_DZ_f
|
|
987 // ===============================================================================
|
|
988 void compass_read_HMC5883L(void)
|
|
989 {
|
|
990 uint8_t buffer[20];
|
|
991 compass_DX_f = 0;
|
|
992 compass_DY_f = 0;
|
|
993 compass_DZ_f = 0;
|
|
994 uint8_t length = 0;
|
|
995 uint8_t read_buffer[6];
|
|
996 signed_tword data;
|
|
997 for(int i = 0; i<6;i++)
|
|
998 read_buffer[i] = 0;
|
|
999 buffer[0] = 0x03; // 03 = Data Output X MSB Register
|
|
1000 length = 1;
|
|
1001 I2C_Master_Transmit( DEVICE_COMPASS_HMC5883L, buffer, length);
|
|
1002 length = 6;
|
|
1003 I2C_Master_Receive( DEVICE_COMPASS_HMC5883L, read_buffer, length);
|
|
1004
|
|
1005
|
|
1006 data.Byte.hi = read_buffer[0];
|
|
1007 data.Byte.low = read_buffer[1];
|
|
1008 //Y = Z
|
|
1009 compass_DY_f = - data.Word;
|
|
1010
|
|
1011 data.Byte.hi = read_buffer[2];
|
|
1012 data.Byte.low = read_buffer[3];
|
|
1013 compass_DZ_f = data.Word;
|
|
1014
|
|
1015 data.Byte.hi = read_buffer[4];
|
|
1016 data.Byte.low = read_buffer[5];
|
|
1017 //X = -Y
|
|
1018 compass_DX_f = data.Word;
|
|
1019 }
|
|
1020
|
|
1021
|
|
1022 // ===============================================================================
|
|
1023 // acceleration_read_MMA8452Q
|
|
1024 /// @brief The old MMA8452Q used with the Honeywell compass
|
|
1025 /// get the acceleration data and store in static variables
|
|
1026 ///
|
|
1027 /// output is accel_DX_f, accel_DY_f, accel_DZ_f
|
|
1028 // ===============================================================================
|
|
1029 void acceleration_read_MMA8452Q(void)
|
|
1030 {
|
|
1031 uint8_t buffer[20];
|
|
1032 accel_DX_f = 0;
|
|
1033 accel_DY_f = 0;
|
|
1034 accel_DZ_f = 0;
|
|
1035 uint8_t length = 0;
|
|
1036 // bit8_Type status ;
|
|
1037 uint8_t read_buffer[7];
|
|
1038 signed_tword data;
|
|
1039 for(int i = 0; i<6;i++)
|
|
1040 read_buffer[i] = 0;
|
|
1041 buffer[0] = 0x00; // 03 = Data Output X MSB Register
|
|
1042 length = 1;
|
|
1043 I2C_Master_Transmit( DEVICE_ACCELARATOR_MMA8452Q, buffer, length);
|
|
1044 length = 7;
|
|
1045 I2C_Master_Receive( DEVICE_ACCELARATOR_MMA8452Q, read_buffer, length);
|
|
1046
|
|
1047 // status.uw = read_buffer[0];
|
|
1048 data.Byte.hi = read_buffer[1];
|
|
1049 data.Byte.low = read_buffer[2];
|
|
1050 accel_DX_f =data.Word/16;
|
|
1051 data.Byte.hi = read_buffer[3];
|
|
1052 data.Byte.low = read_buffer[4];
|
|
1053 accel_DY_f =data.Word/16;
|
|
1054 data.Byte.hi = read_buffer[5];
|
|
1055 data.Byte.low = read_buffer[6];
|
|
1056 accel_DZ_f =data.Word/16;
|
|
1057
|
|
1058 accel_DX_f *= -1;
|
|
1059 accel_DY_f *= -1;
|
|
1060 accel_DZ_f *= -1;
|
|
1061 }
|
|
1062
|
|
1063
|
|
1064 // ===============================================================================
|
|
1065 // compass_calc_roll_pitch_only
|
|
1066 /// @brief only the roll and pitch parts of compass_calc()
|
|
1067 ///
|
|
1068 /// input is accel_DX_f, accel_DY_f, accel_DZ_f
|
|
1069 /// output is compass_pitch and compass_roll
|
|
1070 // ===============================================================================
|
|
1071 void compass_calc_roll_pitch_only(void)
|
|
1072 {
|
|
1073 float sinPhi, cosPhi;
|
|
1074 float Phi, Teta;
|
|
1075
|
|
1076 //---- Calculate sine and cosine of roll angle Phi -----------------------
|
|
1077 Phi= atan2f(accel_DY_f, accel_DZ_f) ;
|
|
1078 compass_roll = Phi * 180.0f /PI;
|
|
1079 sinPhi = sinf(Phi);
|
|
1080 cosPhi = cosf(Phi);
|
|
1081
|
|
1082 //---- calculate sin and cosine of pitch angle Theta ---------------------
|
|
1083 Teta = atanf(-(float)accel_DX_f/(accel_DY_f * sinPhi + accel_DZ_f * cosPhi));
|
|
1084 compass_pitch = Teta * 180.0f /PI;
|
|
1085 }
|
|
1086
|
|
1087
|
|
1088 // ===============================================================================
|
|
1089 // compass_calc
|
|
1090 /// @brief all the fancy stuff first implemented in OSTC3
|
|
1091 ///
|
|
1092 /// input is compass_DX_f, compass_DY_f, compass_DZ_f, accel_DX_f, accel_DY_f, accel_DZ_f
|
|
1093 /// and compass_CX_f, compass_CY_f, compass_CZ_f
|
|
1094 /// output is compass_heading, compass_pitch and compass_roll
|
|
1095 // ===============================================================================
|
|
1096 void compass_calc(void)
|
|
1097 {
|
|
1098 float sinPhi, cosPhi, sinTeta, cosTeta;
|
|
1099 float Phi, Teta, Psi;
|
|
1100 int16_t iBfx, iBfy;
|
|
1101 int16_t iBpx, iBpy, iBpz;
|
|
1102
|
|
1103 //---- Make hard iron correction -----------------------------------------
|
|
1104 // Measured magnetometer orientation, measured ok.
|
|
1105 // From matthias drawing: (X,Y,Z) --> (X,Y,Z) : no rotation.
|
|
1106 iBpx = compass_DX_f - compass_CX_f; // X
|
|
1107 iBpy = compass_DY_f - compass_CY_f; // Y
|
|
1108 iBpz = compass_DZ_f - compass_CZ_f; // Z
|
|
1109
|
|
1110 //---- Calculate sine and cosine of roll angle Phi -----------------------
|
|
1111 //sincos(accel_DZ_f, accel_DY_f, &sin, &cos);
|
|
1112 Phi= atan2f(accel_DY_f, accel_DZ_f) ;
|
|
1113 compass_roll = Phi * 180.0f /PI;
|
|
1114 sinPhi = sinf(Phi);
|
|
1115 cosPhi = cosf(Phi);
|
|
1116
|
|
1117 //---- rotate by roll angle (-Phi) ---------------------------------------
|
|
1118 iBfy = iBpy * cosPhi - iBpz * sinPhi;
|
|
1119 iBpz = iBpy * sinPhi + iBpz * cosPhi;
|
|
1120 //Gz = imul(accel_DY_f, sin) + imul(accel_DZ_f, cos);
|
|
1121
|
|
1122 //---- calculate sin and cosine of pitch angle Theta ---------------------
|
|
1123 //sincos(Gz, -accel_DX_f, &sin, &cos); // NOTE: changed sin sign.
|
|
1124 // Teta takes into account roll of computer and sends combination of Y and Z :-) understand now hw 160421
|
|
1125 Teta = atanf(-(float)accel_DX_f/(accel_DY_f * sinPhi + accel_DZ_f * cosPhi));
|
|
1126 compass_pitch = Teta * 180.0f /PI;
|
|
1127 sinTeta = sinf(Teta);
|
|
1128 cosTeta = cosf(Teta);
|
|
1129 /* correct cosine if pitch not in range -90 to 90 degrees */
|
|
1130 if( cosTeta < 0 ) cosTeta = -cosTeta;
|
|
1131
|
|
1132 ///---- de-rotate by pitch angle Theta -----------------------------------
|
|
1133 iBfx = iBpx * cosTeta + iBpz * sinTeta;
|
|
1134
|
|
1135 //---- Detect uncalibrated compass ---------------------------------------
|
|
1136 if( !compass_CX_f && !compass_CY_f && !compass_CZ_f )
|
|
1137 {
|
|
1138 compass_heading = -1;
|
|
1139 return;
|
|
1140 }
|
|
1141
|
|
1142 //---- calculate current yaw = e-compass angle Psi -----------------------
|
|
1143 // Result in degree (no need of 0.01 deg precision...
|
|
1144 Psi = atan2f(-iBfy,iBfx);
|
|
1145 compass_heading = Psi * 180.0f /PI;
|
|
1146 // Result in 0..360 range:
|
|
1147 if( compass_heading < 0 )
|
|
1148 compass_heading += 360;
|
|
1149 }
|
|
1150
|
|
1151
|
|
1152 // //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
1153 // // - Calibration - ///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
1154 // //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
1155
|
|
1156 /* can be lost during sleep as those are reset with compass_reset_calibration() */
|
|
1157
|
|
1158 // ===============================================================================
|
|
1159 // compass_reset_calibration
|
|
1160 /// @brief all the fancy stuff first implemented in OSTC3
|
|
1161 ///
|
|
1162 /// output is struct g and compass_CX_f, compass_CY_f, compass_CZ_f
|
|
1163 ///
|
|
1164 /// @param g: is a struct with crazy stuff like Suuu, Svvv, Svvu, etc.
|
|
1165 /// all is set to zero here
|
|
1166 // ===============================================================================
|
|
1167 void compass_reset_calibration(SCompassCalib *g)
|
|
1168 {
|
|
1169 g->compass_N = 0;
|
|
1170 g->Su = g->Sv = g->Sw = 0.0;
|
|
1171 g->Suu = g->Svv = g->Sww = g->Suv = g->Suw = g->Svw = 0.0;
|
|
1172 g->Suuu = g->Svvv = g->Swww = 0.0;
|
|
1173 g->Suuv = g->Suuw = g->Svvu = g->Svvw = g->Swwu = g->Swwv = 0.0;
|
|
1174 compass_CX_f = compass_CY_f = compass_CZ_f = 0.0;
|
|
1175 }
|
|
1176
|
|
1177
|
|
1178 // ===============================================================================
|
|
1179 // compass_add_calibration
|
|
1180 /// @brief all the fancy stuff first implemented in OSTC3
|
|
1181 ///
|
|
1182 /// input is compass_DX_f, compass_DY_f, compass_DZ_f
|
|
1183 /// and compass_CX_f, compass_CY_f, compass_CZ_f
|
|
1184 /// output is struct g
|
|
1185 ///
|
|
1186 /// @param g: is a struct with crazy stuff like Suuu, Svvv, Svvu, etc.
|
|
1187 // ===============================================================================
|
|
1188 void compass_add_calibration(SCompassCalib *g)
|
|
1189 {
|
|
1190 float u, v, w;
|
|
1191
|
|
1192 u = (compass_DX_f - compass_CX_f) / 32768.0f;
|
|
1193 v = (compass_DY_f - compass_CY_f) / 32768.0f;
|
|
1194 w = (compass_DZ_f - compass_CZ_f) / 32768.0f;
|
|
1195
|
|
1196 g->compass_N++;
|
|
1197 g->Su += u;
|
|
1198 g->Sv += v;
|
|
1199 g->Sw += w;
|
|
1200 g->Suv += u*v;
|
|
1201 g->Suw += u*w;
|
|
1202 g->Svw += v*w;
|
|
1203 g->Suu += u*u;
|
|
1204 g->Suuu += u*u*u;
|
|
1205 g->Suuv += v*u*u;
|
|
1206 g->Suuw += w*u*u;
|
|
1207 g->Svv += v*v;
|
|
1208 g->Svvv += v*v*v;
|
|
1209 g->Svvu += u*v*v;
|
|
1210 g->Svvw += w*v*v;
|
|
1211 g->Sww += w*w;
|
|
1212 g->Swww += w*w*w;
|
|
1213 g->Swwu += u*w*w;
|
|
1214 g->Swwv += v*w*w;
|
|
1215 }
|
|
1216
|
|
1217 //////////////////////////////////////////////////////////////////////////////
|
|
1218
|
|
1219 // ===============================================================================
|
|
1220 // compass_solve_calibration
|
|
1221 /// @brief all the fancy stuff first implemented in OSTC3
|
|
1222 ///
|
|
1223 /// input is compass_CX_f, compass_CY_f, compass_CZ_f and g
|
|
1224 /// output is struct g
|
|
1225 ///
|
|
1226 /// @param g: is a struct with crazy stuff like Suuu, Svvv, Svvu, etc.
|
|
1227 // ===============================================================================
|
|
1228 void compass_solve_calibration(SCompassCalib *g)
|
|
1229 {
|
|
1230 float yu, yv, yw;
|
|
1231 float delta;
|
|
1232 float uc, vc, wc;
|
|
1233
|
|
1234
|
|
1235 //---- Normalize partial sums --------------------------------------------
|
|
1236 //
|
|
1237 // u, v, w should be centered on the mean value um, vm, wm:
|
|
1238 // x = u + um, with um = Sx/N
|
|
1239 //
|
|
1240 // So:
|
|
1241 // (u + um)**2 = u**2 + 2u*um + um**2
|
|
1242 // Su = 0, um = Sx/N
|
|
1243 // Sxx = Suu + 2 um Su + N*(Sx/N)**2 = Suu + Sx**2/N
|
|
1244 // Suu = Sxx - Sx**2/N
|
|
1245 yu = g->Su/g->compass_N;
|
|
1246 yv = g->Sv/g->compass_N;
|
|
1247 yw = g->Sw/g->compass_N;
|
|
1248
|
|
1249 g->Suu -= g->Su*yu;
|
|
1250 g->Svv -= g->Sv*yv;
|
|
1251 g->Sww -= g->Sw*yw;
|
|
1252
|
|
1253 // (u + um)(v + vm) = uv + u vm + v um + um vm
|
|
1254 // Sxy = Suv + N * um vm
|
|
1255 // Suv = Sxy - N * (Sx/N)(Sy/N);
|
|
1256 g->Suv -= g->Su*yv;
|
|
1257 g->Suw -= g->Su*yw;
|
|
1258 g->Svw -= g->Sv*yw;
|
|
1259
|
|
1260 // (u + um)**3 = u**3 + 3 u**2 um + 3 u um**2 + um**3
|
|
1261 // Sxxx = Suuu + 3 um Suu + 3 um**2 Su + N.um**3
|
|
1262 // Su = 0, um = Sx/N:
|
|
1263 // Suuu = Sxxx - 3 Sx*Suu/N - N.(Sx/N)**3
|
|
1264 // = Sxxx - 3 Sx*Suu/N - Sx**3/N**2
|
|
1265
|
|
1266 // (u + um)**2 (v + vm) = (u**2 + 2 u um + um**2)(v + vm)
|
|
1267 // Sxxy = Suuv + vm Suu + 2 um (Suv + vm Su) + um**2 (Sv + N.vm)
|
|
1268 //
|
|
1269 // Su = 0, Sv = 0, vm = Sy/N:
|
|
1270 // Sxxy = Suuv + vm Suu + 2 um Suv + N um**2 vm
|
|
1271 //
|
|
1272 // Suuv = Sxxy - (Sy/N) Suu - 2 (Sx/N) Suv - (Sx/N)**2 Sy
|
|
1273 // = Sxxy - Suu*Sy/N - 2 Suv*Sx/N - Sx*Sx*Sy/N/N
|
|
1274 // = Sxxy - (Suu + Sx*Sx/N)*Sy/N - 2 Suv*Sx/N
|
|
1275 g->Suuu -= (3*g->Suu + g->Su*yu)*yu;
|
|
1276 g->Suuv -= (g->Suu + g->Su*yu)*yv + 2*g->Suv*yu;
|
|
1277 g->Suuw -= (g->Suu + g->Su*yu)*yw + 2*g->Suw*yu;
|
|
1278
|
|
1279 g->Svvu -= (g->Svv + g->Sv*yv)*yu + 2*g->Suv*yv;
|
|
1280 g->Svvv -= (3*g->Svv + g->Sv*yv)*yv;
|
|
1281 g->Svvw -= (g->Svv + g->Sv*yv)*yw + 2*g->Svw*yv;
|
|
1282
|
|
1283 g->Swwu -= (g->Sww + g->Sw*yw)*yu + 2*g->Suw*yw;
|
|
1284 g->Swwv -= (g->Sww + g->Sw*yw)*yv + 2*g->Svw*yw;
|
|
1285 g->Swww -= (3*g->Sww + g->Sw*yw)*yw;
|
|
1286
|
|
1287 //---- Solve the system --------------------------------------------------
|
|
1288 // uc Suu + vc Suv + wc Suw = (Suuu + Svvu + Swwu) / 2
|
|
1289 // uc Suv + vc Svv + wc Svw = (Suuv + Svvv + Swwv) / 2
|
|
1290 // uc Suw + vc Svw + wc Sww = (Suuw + Svvw + Swww) / 2
|
|
1291 // Note this is symetric, with a positiv diagonal, hence
|
|
1292 // it always have a uniq solution.
|
|
1293 yu = 0.5f * (g->Suuu + g->Svvu + g->Swwu);
|
|
1294 yv = 0.5f * (g->Suuv + g->Svvv + g->Swwv);
|
|
1295 yw = 0.5f * (g->Suuw + g->Svvw + g->Swww);
|
|
1296 delta = g->Suu * (g->Svv * g->Sww - g->Svw * g->Svw)
|
|
1297 - g->Suv * (g->Suv * g->Sww - g->Svw * g->Suw)
|
|
1298 + g->Suw * (g->Suv * g->Svw - g->Svv * g->Suw);
|
|
1299
|
|
1300 uc = (yu * (g->Svv * g->Sww - g->Svw * g->Svw)
|
|
1301 - yv * (g->Suv * g->Sww - g->Svw * g->Suw)
|
|
1302 + yw * (g->Suv * g->Svw - g->Svv * g->Suw) )/delta;
|
|
1303 vc = (g->Suu * ( yv * g->Sww - yw * g->Svw)
|
|
1304 - g->Suv * ( yu * g->Sww - yw * g->Suw)
|
|
1305 + g->Suw * ( yu * g->Svw - yv * g->Suw) )/delta;
|
|
1306 wc = (g->Suu * (g->Svv * yw - g->Svw * yv )
|
|
1307 - g->Suv * (g->Suv * yw - g->Svw * yu )
|
|
1308 + g->Suw * (g->Suv * yv - g->Svv * yu ) )/delta;
|
|
1309
|
|
1310 // Back to uncentered coordinates:
|
|
1311 // xc = um + uc
|
|
1312 uc = g->Su/g->compass_N + compass_CX_f/32768.0f + uc;
|
|
1313 vc = g->Sv/g->compass_N + compass_CY_f/32768.0f + vc;
|
|
1314 wc = g->Sw/g->compass_N + compass_CZ_f/32768.0f + wc;
|
|
1315
|
|
1316 // Then save the new calibrated center:
|
|
1317 compass_CX_f = (short)(32768 * uc);
|
|
1318 compass_CY_f = (short)(32768 * vc);
|
|
1319 compass_CZ_f = (short)(32768 * wc);
|
|
1320 }
|
|
1321
|
|
1322
|
|
1323 // ===============================================================================
|
|
1324 // compass_calib
|
|
1325 /// @brief the main loop for calibration
|
|
1326 /// output is compass_CX_f, compass_CY_f, compass_CZ_f and g
|
|
1327 /// 160704 removed -4096 limit for LSM303D
|
|
1328 ///
|
|
1329 /// @return always 0
|
|
1330 // ===============================================================================
|
|
1331 int compass_calib_common(void)
|
|
1332 {
|
410
|
1333 SCompassCalib g;
|
38
|
1334
|
|
1335 // Starts with no calibration at all:
|
410
|
1336 compass_reset_calibration(&g);
|
|
1337 uint32_t tickstart = 0;
|
|
1338 tickstart = HAL_GetTick();
|
|
1339 /* run calibration for one minute */
|
|
1340 while(time_elapsed_ms(tickstart,HAL_GetTick()) < 60000)
|
38
|
1341 {
|
410
|
1342 while((SPI_Evaluate_RX_Data() == 0) && (time_elapsed_ms(tickstart,HAL_GetTick()) < 60000))
|
|
1343 {
|
|
1344 HAL_Delay(1);
|
|
1345 }
|
|
1346 compass_read();
|
|
1347 acceleration_read();
|
|
1348 compass_calc_roll_pitch_only();
|
38
|
1349
|
410
|
1350 if((hardwareCompass == compass_generation1 ) //HMC5883L)
|
38
|
1351 &&((compass_DX_f == -4096) ||
|
410
|
1352 (compass_DY_f == -4096) ||
|
|
1353 (compass_DZ_f == -4096) ))
|
|
1354 {
|
|
1355 if(compass_gain == 0)
|
|
1356 return -1;
|
|
1357 compass_gain--;
|
|
1358 compass_init(1, compass_gain);
|
|
1359 compass_reset_calibration(&g);
|
|
1360 continue;
|
|
1361 }
|
38
|
1362
|
410
|
1363 copyCompassDataDuringCalibration(compass_DX_f,compass_DY_f,compass_DZ_f);
|
|
1364 compass_add_calibration(&g);
|
104
|
1365 }
|
38
|
1366
|
|
1367 compass_solve_calibration(&g);
|
|
1368
|
571
|
1369 if((hardwareCompass != compass_generation_undef) /* if compass is not know at this point in time storing data makes no sense */
|
|
1370 && (hardwareCompass != COMPASS_NOT_RECOGNIZED))
|
|
1371 {
|
|
1372 tfull32 dataBlock[4];
|
|
1373 dataBlock[0].Word16.low16 = compass_CX_f;
|
|
1374 dataBlock[0].Word16.hi16 = compass_CY_f;
|
|
1375 dataBlock[1].Word16.low16 = compass_CZ_f;
|
|
1376 dataBlock[1].Word16.hi16 = hardwareCompass;
|
|
1377 dataBlock[2].Full32 = 0x7FFFFFFF;
|
|
1378 dataBlock[3].Word16.low16 = 0xFFFF;
|
|
1379 dataBlock[3].Word16.hi16 = BFA_calc_Block_Checksum(dataBlock);
|
|
1380 BFA_writeDataBlock(dataBlock);
|
|
1381 }
|
410
|
1382 return 0;
|
38
|
1383 }
|
|
1384
|