Mercurial > public > hwos_code
annotate src/compass.c @ 650:bc214815deb2
3.19/10.75 release
author | heinrichsweikamp |
---|---|
date | Sun, 28 Aug 2022 13:13:38 +0200 |
parents | cd58f7fc86db |
children | 75e90cd0c2c3 |
rev | line source |
---|---|
282
7d9edd3b8c86
Make a more compact COMPASS calibration code (<7KB), and add more tests.
jDG
parents:
214
diff
changeset
|
1 ////////////////////////////////////////////////////////////////////////////// |
7d9edd3b8c86
Make a more compact COMPASS calibration code (<7KB), and add more tests.
jDG
parents:
214
diff
changeset
|
2 /// compass.c |
623 | 3 /// Compute north direction from magnetic/acceleration measures V3.02.1 |
604 | 4 /// |
282
7d9edd3b8c86
Make a more compact COMPASS calibration code (<7KB), and add more tests.
jDG
parents:
214
diff
changeset
|
5 /// Copyright (c) 2012-2015, JD Gascuel, HeinrichsWeikamp, all right reserved. |
0 | 6 ////////////////////////////////////////////////////////////////////////////// |
7 // HISTORY | |
8 // 2012-12-01 [jDG] Creation | |
9 // 2012-12-23 [jDG] Added filtering. | |
10 // 2012-12-30 [jDG] Added calibration (spherical best fit). | |
282
7d9edd3b8c86
Make a more compact COMPASS calibration code (<7KB), and add more tests.
jDG
parents:
214
diff
changeset
|
11 // 2015-05-22 [jDG] Minor cleanups. Smaller calibration code. |
0 | 12 |
623 | 13 #include "configuration.inc" |
0 | 14 #include "compass.h" |
15 | |
623 | 16 |
17 #ifdef _compass | |
18 | |
19 | |
0 | 20 ////////////////////////////////////////////////////////////////////////////// |
650 | 21 // |
22 // Put compass data into bank 13 (stack) and bank 9 (variables) | |
23 // | |
0 | 24 #ifndef UNIX |
650 | 25 # pragma udata overlay bank13=0xd00 |
26 static char C_STACK[256]; // overlay C-code data stack here | |
27 # define C_STACK_ADDR C_STACK | |
28 # define RESET_C_STACK \ | |
29 _asm \ | |
30 LFSR 1,C_STACK_ADDR \ | |
31 LFSR 2,C_STACK_ADDR \ | |
604 | 32 _endasm |
650 | 33 # pragma udata bank9a = 0x900 |
604 | 34 # pragma code compass_run |
650 | 35 # define PARAMETER static |
36 # define OVERLAY overlay | |
0 | 37 #else |
604 | 38 # define RESET_C_STACK |
650 | 39 # define PARAMETER |
40 # define OVERLAY | |
0 | 41 #endif |
42 | |
650 | 43 |
0 | 44 ////////////////////////////////////////////////////////////////////////////// |
45 // fifth order of polynomial approximation of atan(), giving 0.05 deg max error | |
46 // | |
604 | 47 #define K1 (5701) // needs K1/2**16 |
48 #define K2 (1645) // needs K2/2**48 WAS NEGATIV | |
49 #define K3 ( 446) // needs K3/2**80 | |
50 | |
0 | 51 |
52 ////////////////////////////////////////////////////////////////////////////// | |
604 | 53 // Interface to assembler multiplies |
54 | |
0 | 55 Int16 umul(PARAMETER Int16 a, PARAMETER Int16 b) |
56 { | |
604 | 57 extern Int16 compass_umul(void); |
58 extern Int16 compass_a, compass_b; | |
59 compass_a = a; | |
60 compass_b = b; | |
61 return compass_umul(); | |
0 | 62 } |
63 | |
64 Int16 imul(PARAMETER Int16 a, PARAMETER Int16 b) | |
65 { | |
604 | 66 extern Int16 compass_imul(void); |
67 extern Int16 compass_a, compass_b; | |
68 compass_a = a; | |
69 compass_b = b; | |
70 return compass_imul(); | |
0 | 71 } |
72 | |
73 ////////////////////////////////////////////////////////////////////////////// | |
74 /// Returns a / b * 2**16 | |
75 /// | |
604 | 76 /// A 16/16 -> 16 bits divide, returning a scaled result. |
0 | 77 /// Used to multiply fractional numbers in the range 0..1, |
78 /// represented as 0..32767. | |
604 | 79 |
0 | 80 Int16 udiv(PARAMETER Int16 a, PARAMETER Int16 b) |
81 { | |
604 | 82 OVERLAY Int16 d, r; |
623 | 83 OVERLAY char failsafe=250; |
84 | |
604 | 85 //---- Pre-scale both numerator and denominator -------------------------- |
86 while( (((a>>8) | (b>>8)) & 0xC0) == 0 ) | |
87 { | |
623 | 88 failsafe--; |
89 if( failsafe == 0 ) break; | |
90 | |
604 | 91 a <<= 1; |
92 b <<= 1; | |
93 } | |
0 | 94 |
604 | 95 //---- Make division trials ---------------------------------------------- |
96 d = 0x4000; // start with 0.5, because 1.0 is sign bit | |
97 b >>= 1; // hence pre-shift b | |
98 r = 0; | |
99 do { | |
100 if( a >= b ) // a is big enough ? | |
101 { | |
102 a -= b; // then count d times b out of it | |
103 r |= d; // and accumulate that bit | |
104 } | |
105 b >>= 1; // then loop trying twice smaller | |
106 d >>= 1; | |
107 } while( b ); | |
108 return r; | |
0 | 109 } |
110 | |
111 ////////////////////////////////////////////////////////////////////////////// | |
112 /// Computes atan(y/x) in Angle, for x, y in range 0..32767 | |
113 /// | |
114 /// Results a single quadrant Angle, in the range 0 .. Q_PI/2 | |
604 | 115 |
0 | 116 Angle utan(PARAMETER Int16 y, PARAMETER Int16 x) |
117 { | |
604 | 118 OVERLAY Int16 ratio, angle, x2, x3; |
0 | 119 |
604 | 120 //---- Handle zero divisor ----------------------------------------------- |
121 if( x == 0 ) | |
122 return (y == 0) ? 0 : Q_PIO2; | |
0 | 123 |
604 | 124 //---- Make it half-quadrant : 0 .. 45 deg ------------------------------- |
125 ratio = (x > y) ? udiv(y, x) : udiv(x, y); | |
0 | 126 |
604 | 127 //---- Then apply the polynomial approximation --------------------------- |
128 angle = umul(K1, ratio); // r*K1 / 2**16 | |
129 x2 = umul(ratio, ratio); // r**2 / 2**16 | |
130 x3 = umul(x2, ratio); // r**3 / 2**32 | |
131 angle -= umul(x3, K2); // K2*r**3 / 2**48: NEGATIV. | |
0 | 132 |
604 | 133 x3 = umul(x3, x2); // r**5 / 2**64 |
134 angle += umul(x3, K3); // K3*r**5 / 2**80 | |
0 | 135 |
604 | 136 //---- Recover the full quadrant ----------------------------------------- |
137 return (x < y) ? (Angle)(Q_PIO2 - angle) | |
138 : (Angle)(angle); | |
0 | 139 } |
140 | |
141 ////////////////////////////////////////////////////////////////////////////// | |
142 /// Computes atan2(y/x) in Angle, for x, y in range -32768 to 32767 | |
143 /// | |
144 /// Results a four quadrant Angle, in the range -Q_PI .. +Q_PI | |
604 | 145 |
0 | 146 Angle itan(PARAMETER Int16 y, PARAMETER Int16 x) |
147 { | |
604 | 148 // Beware: -32768 is not properly handled (sign error) |
149 if( x == -32768 ) x = -32767; | |
150 if( y == -32768 ) y = -32767; | |
0 | 151 |
604 | 152 if( x >= 0 ) |
153 if( y >= 0 ) // first quadrant: 0..90 deg. | |
154 return utan(y,x); | |
155 else // fourth quadrant: 0..-90 deg | |
156 return -utan(-y,x); | |
157 else | |
158 if( y >= 0 ) // second quadrant: 90..180 deg | |
159 return Q_PI - utan(y, -x); | |
160 else // third quadrant: -90..-180 deg; | |
161 return -Q_PI + utan(-y, -x); | |
0 | 162 } |
163 | |
164 ////////////////////////////////////////////////////////////////////////////// | |
165 /// Computes cos(theta) = sqrtf(x2/h2), | |
166 /// when theta = atan(y/x) and h2=x*x+y*y | |
167 /// | |
604 | 168 |
0 | 169 Int16 cosxh(PARAMETER Int16 x2, PARAMETER Int16 h2) |
170 { | |
604 | 171 OVERLAY Int16 r = 0; |
172 OVERLAY Int16 d = 0x4000; | |
0 | 173 |
604 | 174 do { |
175 OVERLAY Int16 a = r + d; | |
176 a = umul(a, a); | |
177 a = umul(a, h2); | |
178 if( a <= x2 ) r += d; | |
179 d >>= 1; | |
180 } while( d ); | |
0 | 181 |
604 | 182 return r; |
0 | 183 } |
184 | |
185 ////////////////////////////////////////////////////////////////////////////// | |
186 /// Computes both sin and cos of angle y/x, | |
187 /// with h = sqrt(x**2+y**2). | |
188 /// | |
604 | 189 |
0 | 190 void sincos(PARAMETER Int16 x, PARAMETER Int16 y, Int16* sin, Int16* cos) |
191 { | |
604 | 192 OVERLAY Int16 x2, y2, h2; |
623 | 193 OVERLAY char failsafe = 250; |
194 | |
195 //---- Fold into one quadrant -------------------------------------------- | |
604 | 196 OVERLAY char neg = 0; |
197 if( x < 0 ) | |
198 { | |
199 neg |= 1; | |
200 x = -x; | |
201 } | |
202 if( y < 0 ) | |
203 { | |
204 neg |= 2; | |
205 y = -y; | |
206 } | |
623 | 207 |
208 //---- Pre-scale both numerator and denominator ---------------------- | |
604 | 209 while( (((x>>8) | (y>>8)) & 0xE0) == 0 ) |
210 { | |
623 | 211 failsafe--; |
212 if( failsafe == 0 ) break; | |
213 | |
604 | 214 x <<= 1; |
215 y <<= 1; | |
216 } | |
0 | 217 |
604 | 218 //---- Uses trig() to do the stuff one on quadrant ------------------- |
219 x2 = umul(x,x); | |
220 y2 = umul(y,y); | |
221 h2 = x2 + y2; | |
222 x2 = cosxh(x2, h2); | |
0 | 223 |
604 | 224 //---- Results back in four quadrants -------------------------------- |
225 *cos = (neg & 1) ? -x2 : x2; | |
226 y2 = cosxh(y2, h2); | |
227 *sin = (neg & 2) ? -y2 : y2; | |
0 | 228 } |
229 | |
230 ////////////////////////////////////////////////////////////////////////////// | |
231 // | |
232 | |
233 void compass(void) | |
234 { | |
604 | 235 OVERLAY Int16 sin, cos; |
236 OVERLAY Int16 iBfx, iBfy, Gz; | |
237 OVERLAY Int16 iBpx, iBpy, iBpz; | |
238 | |
239 RESET_C_STACK; | |
0 | 240 |
623 | 241 //---- Detect uncalibrated compass --------------------------------------- |
242 if( !compass_CX_f && !compass_CY_f && !compass_CZ_f ) | |
243 { | |
244 // no usable compass is signaled by bit 15 set to 1 | |
245 compass_heading_new = 32768; | |
246 return; | |
247 } | |
248 | |
604 | 249 //---- Make hard iron correction ----------------------------------------- |
250 // Measured magnetometer orientation, measured ok | |
251 // From matthias drawing: (X,Y,Z) --> (X,Y,Z) : no rotation | |
252 iBpx = compass_DX_f - compass_CX_f; // X | |
253 iBpy = compass_DY_f - compass_CY_f; // Y | |
254 iBpz = compass_DZ_f - compass_CZ_f; // Z | |
0 | 255 |
604 | 256 //---- Calculate sine and cosine of roll angle Phi ----------------------- |
257 sincos(accel_DZ_f, accel_DY_f, &sin, &cos); | |
650 | 258 |
604 | 259 //---- rotate by roll angle (-Phi) --------------------------------------- |
260 iBfy = imul(iBpy, cos) - imul(iBpz, sin); | |
261 iBpz = imul(iBpy, sin) + imul(iBpz, cos); | |
262 Gz = imul(accel_DY_f, sin) + imul(accel_DZ_f, cos); | |
0 | 263 |
604 | 264 //---- calculate sin and cosine of pitch angle Theta --------------------- |
265 sincos(Gz, -accel_DX_f, &sin, &cos); // NOTE: changed sin sign | |
628 | 266 |
604 | 267 /* correct cosine if pitch not in range -90 to 90 degrees */ |
268 if( cos < 0 ) cos = -cos; | |
0 | 269 |
604 | 270 ///---- de-rotate by pitch angle Theta ----------------------------------- |
271 iBfx = imul(iBpx, cos) + imul(iBpz, sin); | |
0 | 272 |
604 | 273 //---- calculate current yaw = e-compass angle Psi ----------------------- |
274 // Result in degree (no need of 0.01 deg precision... | |
623 | 275 compass_heading_new = itan(-iBfy, iBfx) / 100; |
0 | 276 |
604 | 277 // Result in 0..360 range: |
623 | 278 if( compass_heading_new < 0 ) |
279 compass_heading_new += 360; | |
0 | 280 } |
623 | 281 |
282 #endif // _compass |