view Small_CPU/Src/pressure.c @ 353:9c8e2e962f55
fix-merge-mess
Added tag v1.5.0 release for changeset 143fe85f82a2
Signed-off-by: Jan Mulder <jlmulder@xs4all.nl>
author |
Jan Mulder <jlmulder@xs4all.nl> |
date |
Tue, 08 Oct 2019 16:41:57 +0200 (2019-10-08) |
parents |
1f24022345d1 |
children |
cb3870f79e9d |
line source
/**
******************************************************************************
* @file pressure.c
* @author heinrichs weikamp gmbh
* @date 2014
* @version V0.0.2
* @since 20-Oct-2016
* @brief
*
@verbatim
==============================================================================
##### How to use #####
==============================================================================
V0.0.2 18-Oct-2016 pressure_calculation_AN520_004_mod_MS5803_30BA__09_2015
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>© COPYRIGHT(c) 2016 heinrichs weikamp</center></h2>
*
******************************************************************************
*/
/* surface time
the last 30 minutes will be saved once per minute in a endless loop
at the beginning of a dive the oldest value will be used
*/
#include "math.h"
#include "scheduler.h"
#include "pressure.h"
#include "i2c.h"
#include "rtc.h"
#define CMD_RESET 0x1E // ADC reset command
#define CMD_ADC_READ 0x00 // ADC read command
#define CMD_ADC_CONV 0x40 // ADC conversion command
#define CMD_ADC_D1 0x00 // ADC D1 conversion
#define CMD_ADC_D2 0x10 // ADC D2 conversion
#define CMD_ADC_256 0x00 // ADC OSR=256
#define CMD_ADC_512 0x02 // ADC OSR=512
#define CMD_ADC_1024 0x04 // ADC OSR=1024
#define CMD_ADC_2048 0x06 // ADC OSR=2056
#define CMD_ADC_4096 0x08 // ADC OSR=4096
#define CMD_PROM_RD 0xA0 // Prom read command
/* remove comment to use a predefined profile for pressure changes instead of real world data */
/* #define SIMULATE_PRESSURE */
#define PRESSURE_SURFACE_MAX_MBAR (1030.0f) /* It is unlikely that pressure at surface is greater than this value => clip to it */
#define PRESSURE_HISTORY_SIZE (8u)
#define PRESSURE_JUMP_VALID_MBAR (500.0f) /* values are measure several times a second => jumps > 5m very unlikely */
#define PRESSURE_SURFACE_QUE (30u) /* history buffer [minutes] for past pressure measurements */
#define PRESSURE_SURFACE_EVA_WINDOW (15u) /* Number of entries evaluated during instability test. Used to avoid detection while dive enters water */
#define PRESSURE_SURFACE_STABLE_LIMIT (10u) /* Define pressure as stable if delta (mBar) is below this value */
#define PRESSURE_SURFACE_DETECT_STABLE_CNT (5u) /* Event count to detect stable condition */
#define PRESSURE_SURFACE_UNSTABLE_LIMIT (50u) /* Define pressure as not stable if delta (mBar) is larger than this value */
#define PRESSURE_SURFACE_DETECT_UNSTABLE_CNT (3u) /* Event count to detect unstable condition */
static uint16_t get_ci_by_coef_num(uint8_t coef_num);
//void pressure_calculation_new(void);
//void pressure_calculation_old(void);
static void pressure_calculation_AN520_004_mod_MS5803_30BA__09_2015(void);
static uint8_t crc4(uint16_t n_prom[]);
static HAL_StatusTypeDef pressure_sensor_get_data(void);
static uint32_t get_adc(void);
uint8_t pressureSensorInitSuccess = 0;
static uint16_t C[8] = { 1 };
static uint32_t D1 = 1;
static uint32_t D2 = 1;
static uint8_t n_crc;
static int64_t C5_x_2p8 = 1;
static int64_t C2_x_2p16 = 1;
static int64_t C1_x_2p15 = 1;
/*
short C2plus10000 = -1;
short C3plus200 = -1;
short C4minus250 = -1;
short UT1 = -1;
short C6plus100 = -1;
*/
static float pressure_offset = 0.0; /* Offset value which may be specified by the user via PC Software */
static float temperature_offset = 0.0; /* Offset value which may be specified by the user via PC Software */
static float ambient_temperature = 0;
static float ambient_pressure_mbar = 1000.0;
static float surface_pressure_mbar = 1000.0;
static float surface_ring_mbar[PRESSURE_SURFACE_QUE] = { 0 };
static uint8_t surface_pressure_writeIndex = 0;
static float surface_pressure_stable_value = 0;
static uint8_t surface_pressure_stable = 0;
static float pressure_history_mbar[PRESSURE_HISTORY_SIZE];
static uint8_t secondCounterSurfaceRing = 0;
static uint8_t avgCount = 0;
static float runningAvg = 0;
float get_temperature(void)
{
return ambient_temperature;
}
float get_pressure_mbar(void)
{
return ambient_pressure_mbar;
}
float get_surface_mbar(void)
{
return surface_pressure_mbar;
}
void init_surface_ring(uint8_t force)
{
if((surface_ring_mbar[0] == 0) || (force)) /* only initialize once. Keep value in place in case of an i2c recovery */
{
secondCounterSurfaceRing = 0; /* restart calculation */
avgCount = 0;
runningAvg = 0;
for(int i=0; i<PRESSURE_SURFACE_QUE; i++)
surface_ring_mbar[i] = ambient_pressure_mbar;
surface_pressure_mbar = ambient_pressure_mbar;
surface_pressure_writeIndex = 0; /* index of the oldest value in the ring buffer */
}
}
void init_pressure_history(void)
{
for(int i=0; i<PRESSURE_HISTORY_SIZE; i++)
{
pressure_history_mbar[i] = 1000.0;
}
}
uint8_t is_surface_pressure_stable(void)
{
return surface_pressure_stable;
}
float set_last_surface_pressure_stable(void)
{
surface_pressure_mbar = surface_pressure_stable_value;
return surface_pressure_stable_value;
}
/* iterate backward through the history memory and evaluate the changes pressure changes during the last 30 minutes */
void evaluate_surface_pressure()
{
uint8_t index;
float lastvalue;
uint8_t stablecnt = 0;
uint8_t unstablecnt = 0;
uint8_t EvaluationWindow = PRESSURE_SURFACE_QUE - PRESSURE_SURFACE_EVA_WINDOW; /* do not use the latest 15 values to avoid unstable condition due to something like fin handling */
uint8_t EvaluatedValues = 0;
lastvalue = surface_ring_mbar[surface_pressure_writeIndex];
surface_pressure_stable_value = surface_ring_mbar[surface_pressure_writeIndex]; /* default: if no stable value is found return the oldest value */
index = surface_pressure_writeIndex;
surface_pressure_stable = 1;
if(index == 0)
{
index = PRESSURE_SURFACE_QUE - 1;
}
else
{
index = index - 1;
}
do
{
if((EvaluatedValues < EvaluationWindow) &&
(fabs(surface_pressure_stable_value - surface_ring_mbar[index]) > PRESSURE_SURFACE_UNSTABLE_LIMIT)) /* unusual change during last 30 minutes */
{
unstablecnt++;
if(unstablecnt > PRESSURE_SURFACE_DETECT_UNSTABLE_CNT)
{
surface_pressure_stable = 0;
}
}
/* search for a value which does not change for several iterations */
if (fabs(lastvalue - surface_ring_mbar[index]) < PRESSURE_SURFACE_STABLE_LIMIT)
{
stablecnt++;
}
else
{
stablecnt = 0;
}
if ((stablecnt >= PRESSURE_SURFACE_DETECT_STABLE_CNT) && (surface_pressure_stable == 0)&&(surface_pressure_stable_value == surface_ring_mbar[surface_pressure_writeIndex])) /* pressure is unstable => search for new stable value */
{
surface_pressure_stable_value = surface_ring_mbar[index];
unstablecnt = 0;
}
lastvalue = surface_ring_mbar[index];
if(index == 0)
{
index = PRESSURE_SURFACE_QUE - 1;
}
else
{
index = index - 1;
}
EvaluatedValues++;
} while (index != surface_pressure_writeIndex);
}
void update_surface_pressure(uint8_t call_rhythm_seconds)
{
if(is_init_pressure_done())
{
runningAvg = (runningAvg * avgCount + ambient_pressure_mbar) / (avgCount +1);
avgCount++;
secondCounterSurfaceRing += call_rhythm_seconds;
if(secondCounterSurfaceRing >= 60)
{
if(runningAvg < PRESSURE_SURFACE_MAX_MBAR)
{
surface_ring_mbar[surface_pressure_writeIndex] = runningAvg;
}
else
{
surface_ring_mbar[surface_pressure_writeIndex] = PRESSURE_SURFACE_MAX_MBAR;
}
surface_pressure_writeIndex++; /* the write index is now pointing to the oldest value in the buffer which will be overwritten next time */
if(surface_pressure_writeIndex == PRESSURE_SURFACE_QUE)
{
surface_pressure_writeIndex = 0;
}
surface_pressure_mbar = surface_ring_mbar[surface_pressure_writeIndex]; /* 30 minutes old measurement */
secondCounterSurfaceRing = 0;
avgCount = 1; /* use the current value as starting point but restart the weight decrement of the measurements */
}
evaluate_surface_pressure();
}
}
#ifdef DEMOMODE
float demo_modify_temperature_helper(float bottom_mbar_diff_to_surface)
{
const float temperature_surface = 31.0;
const float temperature_bottom = 14.0;
const float temperature_difference = temperature_bottom - temperature_surface;
// range 0.0 - 1.0
float position_now = (ambient_pressure_mbar - surface_pressure_mbar) / bottom_mbar_diff_to_surface;
if(position_now <= 0)
return temperature_surface;
if(position_now >= 1)
return temperature_bottom;
return temperature_surface + (temperature_difference * position_now);
}
uint32_t demo_modify_temperature_and_pressure(int32_t divetime_in_seconds, uint8_t subseconds, float ceiling_mbar)
{
const float descent_rate = 4000/60;
const float ascent_rate = 1000/60;
const uint32_t seconds_descend = (1 * 60) + 30;
const uint32_t turbo_seconds_at_bottom_start = (0 * 60) + 0;
const uint32_t seconds_descend_and_bottomtime = seconds_descend + turbo_seconds_at_bottom_start + (2 * 60) + 0;
uint32_t time_elapsed_in_seconds;
static float ambient_pressure_mbar_memory = 0;
static uint32_t time_last_call = 0;
if(divetime_in_seconds <= seconds_descend)
{
ambient_pressure_mbar = (divetime_in_seconds * descent_rate) + ((float)(subseconds) * descent_rate) + surface_pressure_mbar;
ambient_temperature = demo_modify_temperature_helper(descent_rate * seconds_descend);
time_last_call = divetime_in_seconds;
return 0;
}
else
if(divetime_in_seconds <= seconds_descend + turbo_seconds_at_bottom_start)
{
ambient_pressure_mbar = (seconds_descend * descent_rate) + surface_pressure_mbar;
ambient_temperature = demo_modify_temperature_helper(descent_rate * seconds_descend);
ambient_pressure_mbar_memory = ambient_pressure_mbar;
time_last_call = divetime_in_seconds;
return turbo_seconds_at_bottom_start;
}
else
if(divetime_in_seconds <= seconds_descend_and_bottomtime)
{
ambient_pressure_mbar = (seconds_descend * descent_rate) + surface_pressure_mbar;
ambient_temperature = demo_modify_temperature_helper(descent_rate * seconds_descend);
ambient_pressure_mbar_memory = ambient_pressure_mbar;
time_last_call = divetime_in_seconds;
return 0;
}
else
{
time_elapsed_in_seconds = divetime_in_seconds - time_last_call;
ambient_pressure_mbar = ambient_pressure_mbar_memory - time_elapsed_in_seconds * ascent_rate;
if(ambient_pressure_mbar < surface_pressure_mbar)
ambient_pressure_mbar = surface_pressure_mbar;
else if(ambient_pressure_mbar < ceiling_mbar)
ambient_pressure_mbar = ceiling_mbar;
ambient_temperature = demo_modify_temperature_helper(descent_rate * seconds_descend);
ambient_pressure_mbar_memory = ambient_pressure_mbar;
time_last_call = divetime_in_seconds;
return 0;
}
}
#endif
uint8_t is_init_pressure_done(void)
{
return pressureSensorInitSuccess;
}
uint8_t init_pressure(void)
{
uint8_t buffer[1];
buffer[0] = 0x1e;
uint8_t retValue = 0xFF;
pressureSensorInitSuccess = false;
init_pressure_history();
/* Send reset request to pressure sensor */
retValue = I2C_Master_Transmit( DEVICE_PRESSURE, buffer, 1);
if(retValue != HAL_OK)
{
return (HAL_StatusTypeDef)retValue;
}
HAL_Delay(3);
for(uint8_t i=0;i<8;i++)
{
C[i] = get_ci_by_coef_num(i);
}
n_crc = crc4(C); // no evaluation at the moment hw 151026
C5_x_2p8 = C[5] * 256;
C2_x_2p16 = C[2] * 65536;
C1_x_2p15 = C[1] * 32768;
if(global.I2C_SystemStatus == HAL_OK)
{
pressureSensorInitSuccess = 1;
retValue = pressure_update();
}
return retValue;
}
static uint32_t get_adc(void)
{
uint8_t buffer[1];
uint8_t resivebuf[4];
uint32_t answer = 0;
buffer[0] = 0x00; // Get ADC
I2C_Master_Transmit( DEVICE_PRESSURE, buffer, 1);
I2C_Master_Receive( DEVICE_PRESSURE, resivebuf, 4);
resivebuf[3] = 0;
answer = 256*256 *(uint32_t)resivebuf[0] + 256 * (uint32_t)resivebuf[1] + (uint32_t)resivebuf[2];
return answer;
}
static uint16_t get_ci_by_coef_num(uint8_t coef_num)
{
uint8_t resivebuf[2];
uint8_t cmd = CMD_PROM_RD+coef_num*2;
I2C_Master_Transmit( DEVICE_PRESSURE, &cmd, 1);
I2C_Master_Receive( DEVICE_PRESSURE, resivebuf, 2);
return (256*(uint16_t)resivebuf[0]) + (uint16_t)resivebuf[1];
}
uint8_t pressure_update(void)
{
HAL_StatusTypeDef statusReturn = HAL_TIMEOUT;
statusReturn = pressure_sensor_get_data();
pressure_calculation();
return (uint8_t)statusReturn;
}
/* Switch between pressure and temperature measurement with every successful read operation */
void pressure_update_alternating(void)
{
static uint8_t getTemperature= 0;
if(getTemperature)
{
if(pressure_sensor_get_temperature_raw() == HAL_OK)
{
getTemperature = 0;
}
}
else
{
if(pressure_sensor_get_pressure_raw() == HAL_OK)
{
getTemperature = 1;
}
}
pressure_calculation();
return;
}
static uint32_t pressure_sensor_get_one_value(uint8_t cmd, HAL_StatusTypeDef *statusReturn)
{
uint8_t command = CMD_ADC_CONV + cmd;
HAL_StatusTypeDef statusReturnTemp = HAL_TIMEOUT;
statusReturnTemp = I2C_Master_Transmit( DEVICE_PRESSURE, &command, 1);
if(statusReturn)
{
*statusReturn = statusReturnTemp;
}
switch (cmd & 0x0f) // wait necessary conversion time
{
case CMD_ADC_256 : HAL_Delay(1); break;
case CMD_ADC_512 : HAL_Delay(3); break;
case CMD_ADC_1024: HAL_Delay(4); break;
case CMD_ADC_2048: HAL_Delay(6); break;
case CMD_ADC_4096: HAL_Delay(10); break;
}
return get_adc();
}
static HAL_StatusTypeDef pressure_sensor_get_data(void)
{
uint32_t requestedValue = 0;
HAL_StatusTypeDef statusReturn1 = HAL_TIMEOUT;
HAL_StatusTypeDef statusReturn2 = HAL_TIMEOUT;
requestedValue = pressure_sensor_get_one_value(CMD_ADC_D2 + CMD_ADC_1024, &statusReturn2);
if (statusReturn2 == HAL_OK)
{
D2 = requestedValue;
}
requestedValue = pressure_sensor_get_one_value(CMD_ADC_D1 + CMD_ADC_1024, &statusReturn1);
if (statusReturn1 == HAL_OK)
{
D1 = requestedValue;
}
if(statusReturn2 > statusReturn1) // if anything is not HAL_OK (0x00) or worse
return statusReturn2;
else
return statusReturn1;
}
HAL_StatusTypeDef pressure_sensor_get_pressure_raw(void)
{
uint32_t requestedValue = 0;
HAL_StatusTypeDef statusReturn = HAL_TIMEOUT;
requestedValue = pressure_sensor_get_one_value(CMD_ADC_D1 + CMD_ADC_1024, &statusReturn);
if (statusReturn == HAL_OK)
{
D1 = requestedValue;
}
return statusReturn;
}
HAL_StatusTypeDef pressure_sensor_get_temperature_raw(void)
{
uint32_t requestedValue = 0;
HAL_StatusTypeDef statusReturn = HAL_TIMEOUT;
requestedValue = pressure_sensor_get_one_value(CMD_ADC_D2 + CMD_ADC_1024, &statusReturn);
if (statusReturn == HAL_OK)
{
D2 = requestedValue;
}
return statusReturn;
}
#ifdef SIMULATE_PRESSURE
void pressure_simulation()
{
static uint32_t tickstart = 0;
static float pressure_sim_mbar = 0;
static uint32_t passedSecond = 0;
static uint32_t secondtick = 0;
uint32_t lasttick = 0;
if( tickstart == 0)
{
tickstart = HAL_GetTick(); /* init time stamp */
secondtick = tickstart;
pressure_sim_mbar = 1000;
}
lasttick = HAL_GetTick();
if(time_elapsed_ms(secondtick,lasttick) > 1000) /* one second passed since last tick */
{
secondtick = lasttick;
passedSecond++;
#ifdef DIVE_AFTER_LANDING
if(passedSecond < 10) pressure_sim_mbar = 1000.0; /* stay stable for 10 seconds */
else if(passedSecond < 300) pressure_sim_mbar -= 1.0; /* decrease pressure in 5 minutes target 770mbar => delta 330 */
else if(passedSecond < 900) pressure_sim_mbar += 0.0; /*stay stable 10 minutes*/
else if(passedSecond < 1500) pressure_sim_mbar += 0.5; /* return to 1 bar in 10 Minutes*/
else if(passedSecond < 1800) pressure_sim_mbar += 0.0; /* 5 minutes break */
else if(passedSecond < 2000) pressure_sim_mbar += 10.0; /* start dive */
else if(passedSecond < 2300) pressure_sim_mbar += 0.0; /* stay on depth */
else if(passedSecond < 2500) pressure_sim_mbar -= 10.0; /* return to surface */
else pressure_sim_mbar = 1000.0; /* final state */
#else /* short dive */
if(passedSecond < 10) pressure_sim_mbar = 1000.0; /* stay stable for 10 seconds */
else if(passedSecond < 180) pressure_sim_mbar += 10.0; /* Start dive */
else if(passedSecond < 300) pressure_sim_mbar += 0.0; /*stay on depth*/
else if(passedSecond < 460) pressure_sim_mbar -= 10.0; /* return to surface */
else if(passedSecond < 600) pressure_sim_mbar += 0.0; /* stay */
else if(passedSecond < 610) pressure_sim_mbar = 1000.0; /* get ready for second dive */
else if(passedSecond < 780) pressure_sim_mbar += 10.0; /* Start dive */
else if(passedSecond < 900) pressure_sim_mbar += 0.0; /*stay on depth*/
else if(passedSecond < 1060) pressure_sim_mbar -= 10.0; /* return to surface */
else if(passedSecond < 1200) pressure_sim_mbar += 0.0; /* stay */
else pressure_sim_mbar = 1000.0; /* final state */
#endif
}
ambient_pressure_mbar = pressure_sim_mbar;
ambient_temperature = 25.0;
return;
}
#endif
void pressure_calculation(void)
{
if(global.I2C_SystemStatus != HAL_OK)
return;
#ifdef SIMULATE_PRESSURE
pressure_simulation();
#else
pressure_calculation_AN520_004_mod_MS5803_30BA__09_2015();
#endif
}
static uint8_t pressure_plausible(float pressurevalue)
{
static uint8_t pressurewriteindex = 0;
uint8_t retval = 0;
uint8_t index;
float pressure_average = 0;
for(index = 0; index < PRESSURE_HISTORY_SIZE; index++)
{
pressure_average += pressure_history_mbar[index];
}
pressure_average /= PRESSURE_HISTORY_SIZE;
if(pressure_average == 1000.0) /* first pressure calculation */
{
if(fabs(pressurevalue - pressure_average) < 11000.0) /* just in case a reset occur during dive assume value equal < 100m as valid */
{
for(index = 0; index < PRESSURE_HISTORY_SIZE; index++)
{
pressure_history_mbar[index] = pressurevalue; /* set history to current value */
retval = 1;
}
}
}
else
{
if(fabs(pressurevalue - pressure_average) < PRESSURE_JUMP_VALID_MBAR)
{
pressure_history_mbar[pressurewriteindex++] = pressurevalue;
pressurewriteindex &= 0x7; /* wrap around if necessary */
retval = 1;
}
}
return retval;
}
static void pressure_calculation_AN520_004_mod_MS5803_30BA__09_2015(void)
{
static float runningAvg = 0;
static uint8_t avgCnt = 0;
uint32_t local_D1; // ADC value of the pressure conversion
uint32_t local_D2; // ADC value of the temperature conversion
int32_t local_Px10; // compensated pressure value
int32_t local_Tx100; // compensated temperature value
int64_t local_dT; // int32_t, difference between actual and measured temperature
int64_t local_OFF; // offset at actual temperature
int64_t local_SENS; // sensitivity at actual temperature
float calc_pressure;
int64_t T2;
int64_t OFF2;
int64_t SENS2;
local_D1 = D1;
local_D2 = D2;
local_dT = ((int64_t)local_D2) - ((int64_t)C[5]) * 256; //pow(2,8);
local_OFF = ((int64_t)C[2]) * 65536 + local_dT * ((int64_t)C[4]) / 128; // pow(2,16), pow(2,7)
local_SENS = ((int64_t)C[1]) * 32768 + local_dT * ((int64_t)C[3]) / 256; // pow(2,15), pow(2,8)
local_Tx100 = (int32_t)(2000 + (local_dT * ((int64_t)C[6])) / 8388608);// pow(2,23)
if(local_Tx100 < 2000) // low temperature
{
T2 = 3 * local_dT;
T2 *= local_dT;
T2 /= 8589934592;
OFF2 = ((int64_t)local_Tx100) - 2000;
OFF2 *= OFF2;
OFF2 *= 3;
OFF2 /= 2;
SENS2 = ((int64_t)local_Tx100) - 2000;
SENS2 *= SENS2;
SENS2 *= 5;
SENS2 /= 8;
local_Tx100 -= (int32_t)T2;
local_OFF -= OFF2;
local_SENS -= SENS2;
}
else
{
T2 = 7 * local_dT;
T2 *= local_dT;
T2 /= 137438953472;
OFF2 = ((int64_t)local_Tx100) - 2000;
OFF2 *= OFF2;
OFF2 /= 16;
local_Tx100 -= (int32_t)T2;
local_OFF -= OFF2;
}
local_Px10 = (int32_t)(
(((int64_t)((local_D1 * local_SENS) / 2097152)) - local_OFF)
/ 8192 );// )) / 10; // pow(2,21), pow(2,13)
ambient_temperature = ((float)local_Tx100) / 100;
ambient_temperature += temperature_offset;
calc_pressure = ((float)local_Px10) / 10;
calc_pressure += pressure_offset;
if(pressure_plausible(calc_pressure))
{
runningAvg = (avgCnt * runningAvg + calc_pressure) / (avgCnt + 1);
if (avgCnt < 10) /* build an average considering the last measurements to have a weight "1 of 10" */
{ /* Main reason for this is the jitter of up to +-10 HPa in surface mode which is caused */
avgCnt++; /* by the measurement range of the sensor which is focused on under water pressure measurement */
}
ambient_pressure_mbar = runningAvg;
}
}
/* taken from AN520 by meas-spec.com dated 9. Aug. 2011
* short and int are both 16bit according to AVR/GCC google results
*/
static uint8_t crc4(uint16_t n_prom[])
{
uint16_t cnt; // simple counter
uint16_t n_rem; // crc reminder
uint16_t crc_read; // original value of the crc
uint8_t n_bit;
n_rem = 0x00;
crc_read=n_prom[7]; //save read CRC
n_prom[7]=(0xFF00 & (n_prom[7])); //CRC byte is replaced by 0
for (cnt = 0; cnt < 16; cnt++) // operation is performed on bytes
{ // choose LSB or MSB
if (cnt%2==1) n_rem ^= (uint16_t) ((n_prom[cnt>>1]) & 0x00FF);
else n_rem ^= (uint16_t) (n_prom[cnt>>1]>>8);
for (n_bit = 8; n_bit > 0; n_bit--)
{
if (n_rem & (0x8000))
{
n_rem = (n_rem << 1) ^ 0x3000;
}
else
{
n_rem = (n_rem << 1);
}
}
}
n_rem= (0x000F & (n_rem >> 12)); // // final 4-bit reminder is CRC code
n_prom[7]=crc_read; // restore the crc_read to its original place
return (n_rem ^ 0x00);
}
/*
void test_calculation(void)
{
C1 = 29112;
C2 = 26814;
C3 = 19125;
C4 = 17865;
C5 = 32057;
C6 = 31305;
C2_x_2p16 = C2 * 65536;
C1_x_2p15 = C1 * 32768;
D1 = 4944364;
D2 = 8198974;
pressure_calculation() ;
};
*/
void pressure_set_offset (float pressureOffset, float temperatureOffset)
{
if(pressure_offset != pressureOffset) /* we received a new value => reinit surface que */
{
ambient_pressure_mbar -= pressure_offset; /* revert old value */
ambient_pressure_mbar += pressureOffset; /* apply new offset */
init_surface_ring(1);
}
pressure_offset = pressureOffset;
temperature_offset = temperatureOffset;
}