Mercurial > public > ostc4
view Common/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_tim_ex.c @ 140:f6c52eb0e25d FlipDisplay
Increase prescalar => frame takes about 4ms.
author | Ideenmodellierer |
---|---|
date | Thu, 28 Feb 2019 19:03:29 +0100 |
parents | c78bcbd5deda |
children |
line wrap: on
line source
/** ****************************************************************************** * @file stm32f4xx_hal_tim_ex.c * @author MCD Application Team * @brief TIM HAL module driver. * This file provides firmware functions to manage the following * functionalities of the Timer extension peripheral: * + Time Hall Sensor Interface Initialization * + Time Hall Sensor Interface Start * + Time Complementary signal bread and dead time configuration * + Time Master and Slave synchronization configuration @verbatim ============================================================================== ##### TIMER Extended features ##### ============================================================================== [..] The Timer Extension features include: (#) Complementary outputs with programmable dead-time for : (++) Input Capture (++) Output Compare (++) PWM generation (Edge and Center-aligned Mode) (++) One-pulse mode output (#) Synchronization circuit to control the timer with external signals and to interconnect several timers together. (#) Break input to put the timer output signals in reset state or in a known state. (#) Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning purposes ##### How to use this driver ##### ============================================================================== [..] (#) Initialize the TIM low level resources by implementing the following functions depending from feature used : (++) Complementary Output Compare : HAL_TIM_OC_MspInit() (++) Complementary PWM generation : HAL_TIM_PWM_MspInit() (++) Complementary One-pulse mode output : HAL_TIM_OnePulse_MspInit() (++) Hall Sensor output : HAL_TIM_HallSensor_MspInit() (#) Initialize the TIM low level resources : (##) Enable the TIM interface clock using __TIMx_CLK_ENABLE(); (##) TIM pins configuration (+++) Enable the clock for the TIM GPIOs using the following function: __GPIOx_CLK_ENABLE(); (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); (#) The external Clock can be configured, if needed (the default clock is the internal clock from the APBx), using the following function: HAL_TIM_ConfigClockSource, the clock configuration should be done before any start function. (#) Configure the TIM in the desired functioning mode using one of the initialization function of this driver: (++) HAL_TIMEx_HallSensor_Init and HAL_TIMEx_ConfigCommutationEvent: to use the Timer Hall Sensor Interface and the commutation event with the corresponding Interrupt and DMA request if needed (Note that One Timer is used to interface with the Hall sensor Interface and another Timer should be used to use the commutation event). (#) Activate the TIM peripheral using one of the start functions: (++) Complementary Output Compare : HAL_TIMEx_OCN_Start(), HAL_TIMEx_OCN_Start_DMA(), HAL_TIMEx_OC_Start_IT() (++) Complementary PWM generation : HAL_TIMEx_PWMN_Start(), HAL_TIMEx_PWMN_Start_DMA(), HAL_TIMEx_PWMN_Start_IT() (++) Complementary One-pulse mode output : HAL_TIMEx_OnePulseN_Start(), HAL_TIMEx_OnePulseN_Start_IT() (++) Hall Sensor output : HAL_TIMEx_HallSensor_Start(), HAL_TIMEx_HallSensor_Start_DMA(), HAL_TIMEx_HallSensor_Start_IT(). @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f4xx_hal.h" /** @addtogroup STM32F4xx_HAL_Driver * @{ */ /** @defgroup TIMEx TIMEx * @brief TIM HAL module driver * @{ */ #ifdef HAL_TIM_MODULE_ENABLED /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /** @addtogroup TIMEx_Private_Functions * @{ */ /* Private function prototypes -----------------------------------------------*/ static void TIM_CCxNChannelCmd(TIM_TypeDef* TIMx, uint32_t Channel, uint32_t ChannelNState); /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @defgroup TIMEx_Exported_Functions TIM Exported Functions * @{ */ /** @defgroup TIMEx_Exported_Functions_Group1 Timer Hall Sensor functions * @brief Timer Hall Sensor functions * @verbatim ============================================================================== ##### Timer Hall Sensor functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure TIM HAL Sensor. (+) De-initialize TIM HAL Sensor. (+) Start the Hall Sensor Interface. (+) Stop the Hall Sensor Interface. (+) Start the Hall Sensor Interface and enable interrupts. (+) Stop the Hall Sensor Interface and disable interrupts. (+) Start the Hall Sensor Interface and enable DMA transfers. (+) Stop the Hall Sensor Interface and disable DMA transfers. @endverbatim * @{ */ /** * @brief Initializes the TIM Hall Sensor Interface and create the associated handle. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param sConfig TIM Hall Sensor configuration structure * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSensor_InitTypeDef* sConfig) { TIM_OC_InitTypeDef OC_Config; /* Check the TIM handle allocation */ if(htim == NULL) { return HAL_ERROR; } assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity)); assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); /* Set the TIM state */ htim->State= HAL_TIM_STATE_BUSY; /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ HAL_TIMEx_HallSensor_MspInit(htim); /* Configure the Time base in the Encoder Mode */ TIM_Base_SetConfig(htim->Instance, &htim->Init); /* Configure the Channel 1 as Input Channel to interface with the three Outputs of the Hall sensor */ TIM_TI1_SetConfig(htim->Instance, sConfig->IC1Polarity, TIM_ICSELECTION_TRC, sConfig->IC1Filter); /* Reset the IC1PSC Bits */ htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; /* Set the IC1PSC value */ htim->Instance->CCMR1 |= sConfig->IC1Prescaler; /* Enable the Hall sensor interface (XOR function of the three inputs) */ htim->Instance->CR2 |= TIM_CR2_TI1S; /* Select the TIM_TS_TI1F_ED signal as Input trigger for the TIM */ htim->Instance->SMCR &= ~TIM_SMCR_TS; htim->Instance->SMCR |= TIM_TS_TI1F_ED; /* Use the TIM_TS_TI1F_ED signal to reset the TIM counter each edge detection */ htim->Instance->SMCR &= ~TIM_SMCR_SMS; htim->Instance->SMCR |= TIM_SLAVEMODE_RESET; /* Program channel 2 in PWM 2 mode with the desired Commutation_Delay*/ OC_Config.OCFastMode = TIM_OCFAST_DISABLE; OC_Config.OCIdleState = TIM_OCIDLESTATE_RESET; OC_Config.OCMode = TIM_OCMODE_PWM2; OC_Config.OCNIdleState = TIM_OCNIDLESTATE_RESET; OC_Config.OCNPolarity = TIM_OCNPOLARITY_HIGH; OC_Config.OCPolarity = TIM_OCPOLARITY_HIGH; OC_Config.Pulse = sConfig->Commutation_Delay; TIM_OC2_SetConfig(htim->Instance, &OC_Config); /* Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2 register to 101 */ htim->Instance->CR2 &= ~TIM_CR2_MMS; htim->Instance->CR2 |= TIM_TRGO_OC2REF; /* Initialize the TIM state*/ htim->State= HAL_TIM_STATE_READY; return HAL_OK; } /** * @brief DeInitializes the TIM Hall Sensor interface * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim) { /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); htim->State = HAL_TIM_STATE_BUSY; /* Disable the TIM Peripheral Clock */ __HAL_TIM_DISABLE(htim); /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ HAL_TIMEx_HallSensor_MspDeInit(htim); /* Change TIM state */ htim->State = HAL_TIM_STATE_RESET; /* Release Lock */ __HAL_UNLOCK(htim); return HAL_OK; } /** * @brief Initializes the TIM Hall Sensor MSP. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @retval None */ __weak void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_TIMEx_HallSensor_MspInit could be implemented in the user file */ } /** * @brief DeInitializes TIM Hall Sensor MSP. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @retval None */ __weak void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_TIMEx_HallSensor_MspDeInit could be implemented in the user file */ } /** * @brief Starts the TIM Hall Sensor Interface. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim) { /* Check the parameters */ assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); /* Enable the Input Capture channels 1 (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); /* Enable the Peripheral */ __HAL_TIM_ENABLE(htim); /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM Hall sensor Interface. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim) { /* Check the parameters */ assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); /* Disable the Input Capture channels 1, 2 and 3 (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM Hall Sensor Interface in interrupt mode. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim) { /* Check the parameters */ assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); /* Enable the capture compare Interrupts 1 event */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); /* Enable the Input Capture channels 1 (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); /* Enable the Peripheral */ __HAL_TIM_ENABLE(htim); /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM Hall Sensor Interface in interrupt mode. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim) { /* Check the parameters */ assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); /* Disable the Input Capture channels 1 (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); /* Disable the capture compare Interrupts event */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM Hall Sensor Interface in DMA mode. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param pData The destination Buffer address. * @param Length The length of data to be transferred from TIM peripheral to memory. * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) { /* Check the parameters */ assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); if((htim->State == HAL_TIM_STATE_BUSY)) { return HAL_BUSY; } else if((htim->State == HAL_TIM_STATE_READY)) { if(((uint32_t)pData == 0U) && (Length > 0)) { return HAL_ERROR; } else { htim->State = HAL_TIM_STATE_BUSY; } } /* Enable the Input Capture channels 1 (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); /* Set the DMA Input Capture 1 Callback */ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA Stream for Capture 1*/ HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length); /* Enable the capture compare 1 Interrupt */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); /* Enable the Peripheral */ __HAL_TIM_ENABLE(htim); /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM Hall Sensor Interface in DMA mode. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim) { /* Check the parameters */ assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); /* Disable the Input Capture channels 1 (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); /* Disable the capture compare Interrupts 1 event */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Return function status */ return HAL_OK; } /** * @} */ /** @defgroup TIMEx_Exported_Functions_Group2 Timer Complementary Output Compare functions * @brief Timer Complementary Output Compare functions * @verbatim ============================================================================== ##### Timer Complementary Output Compare functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Start the Complementary Output Compare/PWM. (+) Stop the Complementary Output Compare/PWM. (+) Start the Complementary Output Compare/PWM and enable interrupts. (+) Stop the Complementary Output Compare/PWM and disable interrupts. (+) Start the Complementary Output Compare/PWM and enable DMA transfers. (+) Stop the Complementary Output Compare/PWM and disable DMA transfers. @endverbatim * @{ */ /** * @brief Starts the TIM Output Compare signal generation on the complementary * output. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param Channel TIM Channel to be enabled. * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) { /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); /* Enable the Capture compare channel N */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); /* Enable the Main Output */ __HAL_TIM_MOE_ENABLE(htim); /* Enable the Peripheral */ __HAL_TIM_ENABLE(htim); /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM Output Compare signal generation on the complementary * output. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param Channel TIM Channel to be disabled. * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) { /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); /* Disable the Capture compare channel N */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM Output Compare signal generation in interrupt mode * on the complementary output. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param Channel TIM Channel to be enabled. * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) { /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); switch (Channel) { case TIM_CHANNEL_1: { /* Enable the TIM Output Compare interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); } break; case TIM_CHANNEL_2: { /* Enable the TIM Output Compare interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); } break; case TIM_CHANNEL_3: { /* Enable the TIM Output Compare interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); } break; case TIM_CHANNEL_4: { /* Enable the TIM Output Compare interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); } break; default: break; } /* Enable the TIM Break interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK); /* Enable the Capture compare channel N */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); /* Enable the Main Output */ __HAL_TIM_MOE_ENABLE(htim); /* Enable the Peripheral */ __HAL_TIM_ENABLE(htim); /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM Output Compare signal generation in interrupt mode * on the complementary output. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param Channel TIM Channel to be disabled. * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) { /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); switch (Channel) { case TIM_CHANNEL_1: { /* Disable the TIM Output Compare interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); } break; case TIM_CHANNEL_2: { /* Disable the TIM Output Compare interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); } break; case TIM_CHANNEL_3: { /* Disable the TIM Output Compare interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); } break; case TIM_CHANNEL_4: { /* Disable the TIM Output Compare interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); } break; default: break; } /* Disable the Capture compare channel N */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); /* Disable the TIM Break interrupt (only if no more channel is active) */ if((READ_REG(htim->Instance->CCER) & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == RESET) { __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK); } /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM Output Compare signal generation in DMA mode * on the complementary output. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param Channel TIM Channel to be enabled. * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @param pData The source Buffer address. * @param Length The length of data to be transferred from memory to TIM peripheral * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) { /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); if((htim->State == HAL_TIM_STATE_BUSY)) { return HAL_BUSY; } else if((htim->State == HAL_TIM_STATE_READY)) { if(((uint32_t)pData == 0U) && (Length > 0)) { return HAL_ERROR; } else { htim->State = HAL_TIM_STATE_BUSY; } } switch (Channel) { case TIM_CHANNEL_1: { /* Set the DMA Period elapsed callback */ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA Stream */ HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length); /* Enable the TIM Output Compare DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); } break; case TIM_CHANNEL_2: { /* Set the DMA Period elapsed callback */ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA Stream */ HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length); /* Enable the TIM Output Compare DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); } break; case TIM_CHANNEL_3: { /* Set the DMA Period elapsed callback */ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA Stream */ HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length); /* Enable the TIM Output Compare DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); } break; case TIM_CHANNEL_4: { /* Set the DMA Period elapsed callback */ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA Stream */ HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length); /* Enable the TIM Output Compare DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); } break; default: break; } /* Enable the Capture compare channel N */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); /* Enable the Main Output */ __HAL_TIM_MOE_ENABLE(htim); /* Enable the Peripheral */ __HAL_TIM_ENABLE(htim); /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM Output Compare signal generation in DMA mode * on the complementary output. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param Channel TIM Channel to be disabled. * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) { /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); switch (Channel) { case TIM_CHANNEL_1: { /* Disable the TIM Output Compare DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); } break; case TIM_CHANNEL_2: { /* Disable the TIM Output Compare DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); } break; case TIM_CHANNEL_3: { /* Disable the TIM Output Compare DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); } break; case TIM_CHANNEL_4: { /* Disable the TIM Output Compare interrupt */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); } break; default: break; } /* Disable the Capture compare channel N */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Change the htim state */ htim->State = HAL_TIM_STATE_READY; /* Return function status */ return HAL_OK; } /** * @} */ /** @defgroup TIMEx_Exported_Functions_Group3 Timer Complementary PWM functions * @brief Timer Complementary PWM functions * @verbatim ============================================================================== ##### Timer Complementary PWM functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Start the Complementary PWM. (+) Stop the Complementary PWM. (+) Start the Complementary PWM and enable interrupts. (+) Stop the Complementary PWM and disable interrupts. (+) Start the Complementary PWM and enable DMA transfers. (+) Stop the Complementary PWM and disable DMA transfers. (+) Start the Complementary Input Capture measurement. (+) Stop the Complementary Input Capture. (+) Start the Complementary Input Capture and enable interrupts. (+) Stop the Complementary Input Capture and disable interrupts. (+) Start the Complementary Input Capture and enable DMA transfers. (+) Stop the Complementary Input Capture and disable DMA transfers. (+) Start the Complementary One Pulse generation. (+) Stop the Complementary One Pulse. (+) Start the Complementary One Pulse and enable interrupts. (+) Stop the Complementary One Pulse and disable interrupts. @endverbatim * @{ */ /** * @brief Starts the PWM signal generation on the complementary output. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param Channel TIM Channel to be enabled. * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) { /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); /* Enable the complementary PWM output */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); /* Enable the Main Output */ __HAL_TIM_MOE_ENABLE(htim); /* Enable the Peripheral */ __HAL_TIM_ENABLE(htim); /* Return function status */ return HAL_OK; } /** * @brief Stops the PWM signal generation on the complementary output. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param Channel TIM Channel to be disabled. * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) { /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); /* Disable the complementary PWM output */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Return function status */ return HAL_OK; } /** * @brief Starts the PWM signal generation in interrupt mode on the * complementary output. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param Channel TIM Channel to be disabled. * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) { /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); switch (Channel) { case TIM_CHANNEL_1: { /* Enable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); } break; case TIM_CHANNEL_2: { /* Enable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); } break; case TIM_CHANNEL_3: { /* Enable the TIM Capture/Compare 3 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); } break; case TIM_CHANNEL_4: { /* Enable the TIM Capture/Compare 4 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); } break; default: break; } /* Enable the TIM Break interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK); /* Enable the complementary PWM output */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); /* Enable the Main Output */ __HAL_TIM_MOE_ENABLE(htim); /* Enable the Peripheral */ __HAL_TIM_ENABLE(htim); /* Return function status */ return HAL_OK; } /** * @brief Stops the PWM signal generation in interrupt mode on the * complementary output. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param Channel TIM Channel to be disabled. * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT (TIM_HandleTypeDef *htim, uint32_t Channel) { /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); switch (Channel) { case TIM_CHANNEL_1: { /* Disable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); } break; case TIM_CHANNEL_2: { /* Disable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); } break; case TIM_CHANNEL_3: { /* Disable the TIM Capture/Compare 3 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); } break; case TIM_CHANNEL_4: { /* Disable the TIM Capture/Compare 3 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); } break; default: break; } /* Disable the complementary PWM output */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); /* Disable the TIM Break interrupt (only if no more channel is active) */ if((READ_REG(htim->Instance->CCER) & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == RESET) { __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK); } /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM PWM signal generation in DMA mode on the * complementary output * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param Channel TIM Channel to be enabled. * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @param pData The source Buffer address. * @param Length The length of data to be transferred from memory to TIM peripheral * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) { /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); if((htim->State == HAL_TIM_STATE_BUSY)) { return HAL_BUSY; } else if((htim->State == HAL_TIM_STATE_READY)) { if(((uint32_t)pData == 0U) && (Length > 0)) { return HAL_ERROR; } else { htim->State = HAL_TIM_STATE_BUSY; } } switch (Channel) { case TIM_CHANNEL_1: { /* Set the DMA Period elapsed callback */ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA Stream */ HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length); /* Enable the TIM Capture/Compare 1 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); } break; case TIM_CHANNEL_2: { /* Set the DMA Period elapsed callback */ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA Stream */ HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length); /* Enable the TIM Capture/Compare 2 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); } break; case TIM_CHANNEL_3: { /* Set the DMA Period elapsed callback */ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA Stream */ HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length); /* Enable the TIM Capture/Compare 3 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); } break; case TIM_CHANNEL_4: { /* Set the DMA Period elapsed callback */ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA Stream */ HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length); /* Enable the TIM Capture/Compare 4 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); } break; default: break; } /* Enable the complementary PWM output */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); /* Enable the Main Output */ __HAL_TIM_MOE_ENABLE(htim); /* Enable the Peripheral */ __HAL_TIM_ENABLE(htim); /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM PWM signal generation in DMA mode on the complementary * output * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param Channel TIM Channel to be disabled. * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) { /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); switch (Channel) { case TIM_CHANNEL_1: { /* Disable the TIM Capture/Compare 1 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); } break; case TIM_CHANNEL_2: { /* Disable the TIM Capture/Compare 2 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); } break; case TIM_CHANNEL_3: { /* Disable the TIM Capture/Compare 3 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); } break; case TIM_CHANNEL_4: { /* Disable the TIM Capture/Compare 4 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); } break; default: break; } /* Disable the complementary PWM output */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Change the htim state */ htim->State = HAL_TIM_STATE_READY; /* Return function status */ return HAL_OK; } /** * @} */ /** @defgroup TIMEx_Exported_Functions_Group4 Timer Complementary One Pulse functions * @brief Timer Complementary One Pulse functions * @verbatim ============================================================================== ##### Timer Complementary One Pulse functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Start the Complementary One Pulse generation. (+) Stop the Complementary One Pulse. (+) Start the Complementary One Pulse and enable interrupts. (+) Stop the Complementary One Pulse and disable interrupts. @endverbatim * @{ */ /** * @brief Starts the TIM One Pulse signal generation on the complementary * output. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param OutputChannel TIM Channel to be enabled. * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) { /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); /* Enable the complementary One Pulse output */ TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); /* Enable the Main Output */ __HAL_TIM_MOE_ENABLE(htim); /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM One Pulse signal generation on the complementary * output. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param OutputChannel TIM Channel to be disabled. * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) { /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); /* Disable the complementary One Pulse output */ TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE); /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM One Pulse signal generation in interrupt mode on the * complementary channel. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param OutputChannel TIM Channel to be enabled. * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) { /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); /* Enable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); /* Enable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); /* Enable the complementary One Pulse output */ TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); /* Enable the Main Output */ __HAL_TIM_MOE_ENABLE(htim); /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM One Pulse signal generation in interrupt mode on the * complementary channel. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param OutputChannel TIM Channel to be disabled. * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) { /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); /* Disable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); /* Disable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); /* Disable the complementary One Pulse output */ TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE); /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Return function status */ return HAL_OK; } /** * @} */ /** @defgroup TIMEx_Exported_Functions_Group5 Peripheral Control functions * @brief Peripheral Control functions * @verbatim ============================================================================== ##### Peripheral Control functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode. (+) Configure External Clock source. (+) Configure Complementary channels, break features and dead time. (+) Configure Master and the Slave synchronization. (+) Configure the commutation event in case of use of the Hall sensor interface. (+) Configure the DMA Burst Mode. @endverbatim * @{ */ /** * @brief Configure the TIM commutation event sequence. * @note This function is mandatory to use the commutation event in order to * update the configuration at each commutation detection on the TRGI input of the Timer, * the typical use of this feature is with the use of another Timer(interface Timer) * configured in Hall sensor interface, this interface Timer will generate the * commutation at its TRGO output (connected to Timer used in this function) each time * the TI1 of the Interface Timer detect a commutation at its input TI1. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor. * This parameter can be one of the following values: * @arg TIM_TS_ITR0: Internal trigger 0 selected * @arg TIM_TS_ITR1: Internal trigger 1 selected * @arg TIM_TS_ITR2: Internal trigger 2 selected * @arg TIM_TS_ITR3: Internal trigger 3 selected * @arg TIM_TS_NONE: No trigger is needed * @param CommutationSource the Commutation Event source. * This parameter can be one of the following values: * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) { /* Check the parameters */ assert_param(IS_TIM_ADVANCED_INSTANCE(htim->Instance)); assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); __HAL_LOCK(htim); if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) { /* Select the Input trigger */ htim->Instance->SMCR &= ~TIM_SMCR_TS; htim->Instance->SMCR |= InputTrigger; } /* Select the Capture Compare preload feature */ htim->Instance->CR2 |= TIM_CR2_CCPC; /* Select the Commutation event source */ htim->Instance->CR2 &= ~TIM_CR2_CCUS; htim->Instance->CR2 |= CommutationSource; __HAL_UNLOCK(htim); return HAL_OK; } /** * @brief Configure the TIM commutation event sequence with interrupt. * @note This function is mandatory to use the commutation event in order to * update the configuration at each commutation detection on the TRGI input of the Timer, * the typical use of this feature is with the use of another Timer(interface Timer) * configured in Hall sensor interface, this interface Timer will generate the * commutation at its TRGO output (connected to Timer used in this function) each time * the TI1 of the Interface Timer detect a commutation at its input TI1. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor. * This parameter can be one of the following values: * @arg TIM_TS_ITR0: Internal trigger 0 selected * @arg TIM_TS_ITR1: Internal trigger 1 selected * @arg TIM_TS_ITR2: Internal trigger 2 selected * @arg TIM_TS_ITR3: Internal trigger 3 selected * @arg TIM_TS_NONE: No trigger is needed * @param CommutationSource the Commutation Event source. * This parameter can be one of the following values: * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) { /* Check the parameters */ assert_param(IS_TIM_ADVANCED_INSTANCE(htim->Instance)); assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); __HAL_LOCK(htim); if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) { /* Select the Input trigger */ htim->Instance->SMCR &= ~TIM_SMCR_TS; htim->Instance->SMCR |= InputTrigger; } /* Select the Capture Compare preload feature */ htim->Instance->CR2 |= TIM_CR2_CCPC; /* Select the Commutation event source */ htim->Instance->CR2 &= ~TIM_CR2_CCUS; htim->Instance->CR2 |= CommutationSource; /* Enable the Commutation Interrupt Request */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_COM); __HAL_UNLOCK(htim); return HAL_OK; } /** * @brief Configure the TIM commutation event sequence with DMA. * @note This function is mandatory to use the commutation event in order to * update the configuration at each commutation detection on the TRGI input of the Timer, * the typical use of this feature is with the use of another Timer(interface Timer) * configured in Hall sensor interface, this interface Timer will generate the * commutation at its TRGO output (connected to Timer used in this function) each time * the TI1 of the Interface Timer detect a commutation at its input TI1. * @note: The user should configure the DMA in his own software, in This function only the COMDE bit is set * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor. * This parameter can be one of the following values: * @arg TIM_TS_ITR0: Internal trigger 0 selected * @arg TIM_TS_ITR1: Internal trigger 1 selected * @arg TIM_TS_ITR2: Internal trigger 2 selected * @arg TIM_TS_ITR3: Internal trigger 3 selected * @arg TIM_TS_NONE: No trigger is needed * @param CommutationSource the Commutation Event source. * This parameter can be one of the following values: * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) { /* Check the parameters */ assert_param(IS_TIM_ADVANCED_INSTANCE(htim->Instance)); assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); __HAL_LOCK(htim); if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) { /* Select the Input trigger */ htim->Instance->SMCR &= ~TIM_SMCR_TS; htim->Instance->SMCR |= InputTrigger; } /* Select the Capture Compare preload feature */ htim->Instance->CR2 |= TIM_CR2_CCPC; /* Select the Commutation event source */ htim->Instance->CR2 &= ~TIM_CR2_CCUS; htim->Instance->CR2 |= CommutationSource; /* Enable the Commutation DMA Request */ /* Set the DMA Commutation Callback */ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError; /* Enable the Commutation DMA Request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_COM); __HAL_UNLOCK(htim); return HAL_OK; } /** * @brief Configures the TIM in master mode. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param sMasterConfig pointer to a TIM_MasterConfigTypeDef structure that * contains the selected trigger output (TRGO) and the Master/Slave * mode. * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, TIM_MasterConfigTypeDef * sMasterConfig) { /* Check the parameters */ assert_param(IS_TIM_MASTER_INSTANCE(htim->Instance)); assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger)); assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode)); __HAL_LOCK(htim); htim->State = HAL_TIM_STATE_BUSY; /* Reset the MMS Bits */ htim->Instance->CR2 &= ~TIM_CR2_MMS; /* Select the TRGO source */ htim->Instance->CR2 |= sMasterConfig->MasterOutputTrigger; /* Reset the MSM Bit */ htim->Instance->SMCR &= ~TIM_SMCR_MSM; /* Set or Reset the MSM Bit */ htim->Instance->SMCR |= sMasterConfig->MasterSlaveMode; htim->State = HAL_TIM_STATE_READY; __HAL_UNLOCK(htim); return HAL_OK; } /** * @brief Configures the Break feature, dead time, Lock level, OSSI/OSSR State * and the AOE(automatic output enable). * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param sBreakDeadTimeConfig pointer to a TIM_ConfigBreakDeadConfig_TypeDef structure that * contains the BDTR Register configuration information for the TIM peripheral. * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, TIM_BreakDeadTimeConfigTypeDef * sBreakDeadTimeConfig) { uint32_t tmpbdtr = 0U; /* Check the parameters */ assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance)); assert_param(IS_TIM_OSSR_STATE(sBreakDeadTimeConfig->OffStateRunMode)); assert_param(IS_TIM_OSSI_STATE(sBreakDeadTimeConfig->OffStateIDLEMode)); assert_param(IS_TIM_LOCK_LEVEL(sBreakDeadTimeConfig->LockLevel)); assert_param(IS_TIM_DEADTIME(sBreakDeadTimeConfig->DeadTime)); assert_param(IS_TIM_BREAK_STATE(sBreakDeadTimeConfig->BreakState)); assert_param(IS_TIM_BREAK_POLARITY(sBreakDeadTimeConfig->BreakPolarity)); assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(sBreakDeadTimeConfig->AutomaticOutput)); /* Check input state */ __HAL_LOCK(htim); /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State, the OSSI State, the dead time value and the Automatic Output Enable Bit */ /* Set the BDTR bits */ MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, sBreakDeadTimeConfig->DeadTime); MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, sBreakDeadTimeConfig->LockLevel); MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, sBreakDeadTimeConfig->OffStateIDLEMode); MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, sBreakDeadTimeConfig->OffStateRunMode); MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, sBreakDeadTimeConfig->BreakState); MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, sBreakDeadTimeConfig->BreakPolarity); MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, sBreakDeadTimeConfig->AutomaticOutput); MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, sBreakDeadTimeConfig->AutomaticOutput); /* Set TIMx_BDTR */ htim->Instance->BDTR = tmpbdtr; __HAL_UNLOCK(htim); return HAL_OK; } /** * @brief Configures the TIM2, TIM5 and TIM11 Remapping input capabilities. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @param Remap specifies the TIM input remapping source. * This parameter can be one of the following values: * @arg TIM_TIM2_TIM8_TRGO: TIM2 ITR1 input is connected to TIM8 Trigger output(default) * @arg TIM_TIM2_ETH_PTP: TIM2 ITR1 input is connected to ETH PTP trigger output. * @arg TIM_TIM2_USBFS_SOF: TIM2 ITR1 input is connected to USB FS SOF. * @arg TIM_TIM2_USBHS_SOF: TIM2 ITR1 input is connected to USB HS SOF. * @arg TIM_TIM5_GPIO: TIM5 CH4 input is connected to dedicated Timer pin(default) * @arg TIM_TIM5_LSI: TIM5 CH4 input is connected to LSI clock. * @arg TIM_TIM5_LSE: TIM5 CH4 input is connected to LSE clock. * @arg TIM_TIM5_RTC: TIM5 CH4 input is connected to RTC Output event. * @arg TIM_TIM11_GPIO: TIM11 CH4 input is connected to dedicated Timer pin(default) * @arg TIM_TIM11_HSE: TIM11 CH4 input is connected to HSE_RTC clock * (HSE divided by a programmable prescaler) * @arg TIM_TIM9_TIM3_TRGO: TIM9 ITR1 input is connected to TIM3 Trigger output(default) * @arg TIM_TIM9_LPTIM: TIM9 ITR1 input is connected to LPTIM. * @arg TIM_TIM5_TIM3_TRGO: TIM5 ITR1 input is connected to TIM3 Trigger output(default) * @arg TIM_TIM5_LPTIM: TIM5 ITR1 input is connected to LPTIM. * @arg TIM_TIM1_TIM3_TRGO: TIM1 ITR2 input is connected to TIM3 Trigger output(default) * @arg TIM_TIM1_LPTIM: TIM1 ITR2 input is connected to LPTIM. * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap) { __HAL_LOCK(htim); /* Check parameters */ assert_param(IS_TIM_REMAP_INSTANCE(htim->Instance)); assert_param(IS_TIM_REMAP(Remap)); #if defined(LPTIM_OR_TIM1_ITR2_RMP) if ((Remap == TIM_TIM9_TIM3_TRGO)|| (Remap == TIM_TIM9_LPTIM)||(Remap ==TIM_TIM5_TIM3_TRGO)||\ (Remap == TIM_TIM5_LPTIM)||(Remap == TIM_TIM1_TIM3_TRGO)|| (Remap == TIM_TIM1_LPTIM)) { __HAL_RCC_LPTIM1_CLK_ENABLE(); LPTIM1->OR = (Remap& 0xEFFFFFFFU); } else { /* Set the Timer remapping configuration */ htim->Instance->OR = Remap; } #else /* Set the Timer remapping configuration */ htim->Instance->OR = Remap; #endif htim->State = HAL_TIM_STATE_READY; __HAL_UNLOCK(htim); return HAL_OK; } /** * @} */ /** @defgroup TIMEx_Exported_Functions_Group6 Extension Callbacks functions * @brief Extension Callbacks functions * @verbatim ============================================================================== ##### Extension Callbacks functions ##### ============================================================================== [..] This section provides Extension TIM callback functions: (+) Timer Commutation callback (+) Timer Break callback @endverbatim * @{ */ /** * @brief Hall commutation changed callback in non blocking mode * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @retval None */ __weak void HAL_TIMEx_CommutationCallback(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_TIMEx_CommutationCallback could be implemented in the user file */ } /** * @brief Hall Break detection callback in non blocking mode * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @retval None */ __weak void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_TIMEx_BreakCallback could be implemented in the user file */ } /** * @} */ /** @defgroup TIMEx_Exported_Functions_Group7 Extension Peripheral State functions * @brief Extension Peripheral State functions * @verbatim ============================================================================== ##### Extension Peripheral State functions ##### ============================================================================== [..] This subsection permits to get in run-time the status of the peripheral and the data flow. @endverbatim * @{ */ /** * @brief Return the TIM Hall Sensor interface state * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @retval HAL state */ HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim) { return htim->State; } /** * @} */ /** * @brief TIM DMA Commutation callback. * @param hdma pointer to a DMA_HandleTypeDef structure that contains * the configuration information for the specified DMA module. * @retval None */ void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma) { TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; htim->State= HAL_TIM_STATE_READY; HAL_TIMEx_CommutationCallback(htim); } /** * @} */ /** * @brief Enables or disables the TIM Capture Compare Channel xN. * @param TIMx to select the TIM peripheral * @param Channel specifies the TIM Channel * This parameter can be one of the following values: * @arg TIM_Channel_1: TIM Channel 1 * @arg TIM_Channel_2: TIM Channel 2 * @arg TIM_Channel_3: TIM Channel 3 * @param ChannelNState specifies the TIM Channel CCxNE bit new state. * This parameter can be: TIM_CCxN_ENABLE or TIM_CCxN_Disable. * @retval None */ static void TIM_CCxNChannelCmd(TIM_TypeDef* TIMx, uint32_t Channel, uint32_t ChannelNState) { uint32_t tmp = 0U; /* Check the parameters */ assert_param(IS_TIM_CC4_INSTANCE(TIMx)); assert_param(IS_TIM_COMPLEMENTARY_CHANNELS(Channel)); tmp = TIM_CCER_CC1NE << Channel; /* Reset the CCxNE Bit */ TIMx->CCER &= ~tmp; /* Set or reset the CCxNE Bit */ TIMx->CCER |= (uint32_t)(ChannelNState << Channel); } /** * @} */ #endif /* HAL_TIM_MODULE_ENABLED */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/