Mercurial > public > ostc4
view Common/Drivers/STM32F4xx_HAL_Driver/Inc/stm32f4xx_ll_usart.h @ 943:e7f87ade3037 Evo_2_23 tip
Added missing compile switches
author | Ideenmodellierer |
---|---|
date | Mon, 16 Dec 2024 19:33:20 +0100 |
parents | c78bcbd5deda |
children |
line wrap: on
line source
/** ****************************************************************************** * @file stm32f4xx_ll_usart.h * @author MCD Application Team * @brief Header file of USART LL module. ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F4xx_LL_USART_H #define __STM32F4xx_LL_USART_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "stm32f4xx.h" /** @addtogroup STM32F4xx_LL_Driver * @{ */ #if defined (USART1) || defined (USART2) || defined (USART3) || defined (USART6) || defined (UART4) || defined (UART5) || defined (UART7) || defined (UART8) || defined (UART9) || defined (UART10) /** @defgroup USART_LL USART * @{ */ /* Private types -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private constants ---------------------------------------------------------*/ /** @defgroup USART_LL_Private_Constants USART Private Constants * @{ */ /* Defines used for the bit position in the register and perform offsets*/ #define USART_POSITION_GTPR_GT USART_GTPR_GT_Pos /** * @} */ /* Private macros ------------------------------------------------------------*/ #if defined(USE_FULL_LL_DRIVER) /** @defgroup USART_LL_Private_Macros USART Private Macros * @{ */ /** * @} */ #endif /*USE_FULL_LL_DRIVER*/ /* Exported types ------------------------------------------------------------*/ #if defined(USE_FULL_LL_DRIVER) /** @defgroup USART_LL_ES_INIT USART Exported Init structures * @{ */ /** * @brief LL USART Init Structure definition */ typedef struct { uint32_t BaudRate; /*!< This field defines expected Usart communication baud rate. This feature can be modified afterwards using unitary function @ref LL_USART_SetBaudRate().*/ uint32_t DataWidth; /*!< Specifies the number of data bits transmitted or received in a frame. This parameter can be a value of @ref USART_LL_EC_DATAWIDTH. This feature can be modified afterwards using unitary function @ref LL_USART_SetDataWidth().*/ uint32_t StopBits; /*!< Specifies the number of stop bits transmitted. This parameter can be a value of @ref USART_LL_EC_STOPBITS. This feature can be modified afterwards using unitary function @ref LL_USART_SetStopBitsLength().*/ uint32_t Parity; /*!< Specifies the parity mode. This parameter can be a value of @ref USART_LL_EC_PARITY. This feature can be modified afterwards using unitary function @ref LL_USART_SetParity().*/ uint32_t TransferDirection; /*!< Specifies whether the Receive and/or Transmit mode is enabled or disabled. This parameter can be a value of @ref USART_LL_EC_DIRECTION. This feature can be modified afterwards using unitary function @ref LL_USART_SetTransferDirection().*/ uint32_t HardwareFlowControl; /*!< Specifies whether the hardware flow control mode is enabled or disabled. This parameter can be a value of @ref USART_LL_EC_HWCONTROL. This feature can be modified afterwards using unitary function @ref LL_USART_SetHWFlowCtrl().*/ uint32_t OverSampling; /*!< Specifies whether USART oversampling mode is 16 or 8. This parameter can be a value of @ref USART_LL_EC_OVERSAMPLING. This feature can be modified afterwards using unitary function @ref LL_USART_SetOverSampling().*/ } LL_USART_InitTypeDef; /** * @brief LL USART Clock Init Structure definition */ typedef struct { uint32_t ClockOutput; /*!< Specifies whether the USART clock is enabled or disabled. This parameter can be a value of @ref USART_LL_EC_CLOCK. USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_EnableSCLKOutput() or @ref LL_USART_DisableSCLKOutput(). For more details, refer to description of this function. */ uint32_t ClockPolarity; /*!< Specifies the steady state of the serial clock. This parameter can be a value of @ref USART_LL_EC_POLARITY. USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetClockPolarity(). For more details, refer to description of this function. */ uint32_t ClockPhase; /*!< Specifies the clock transition on which the bit capture is made. This parameter can be a value of @ref USART_LL_EC_PHASE. USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetClockPhase(). For more details, refer to description of this function. */ uint32_t LastBitClockPulse; /*!< Specifies whether the clock pulse corresponding to the last transmitted data bit (MSB) has to be output on the SCLK pin in synchronous mode. This parameter can be a value of @ref USART_LL_EC_LASTCLKPULSE. USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetLastClkPulseOutput(). For more details, refer to description of this function. */ } LL_USART_ClockInitTypeDef; /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /* Exported constants --------------------------------------------------------*/ /** @defgroup USART_LL_Exported_Constants USART Exported Constants * @{ */ /** @defgroup USART_LL_EC_GET_FLAG Get Flags Defines * @brief Flags defines which can be used with LL_USART_ReadReg function * @{ */ #define LL_USART_SR_PE USART_SR_PE /*!< Parity error flag */ #define LL_USART_SR_FE USART_SR_FE /*!< Framing error flag */ #define LL_USART_SR_NE USART_SR_NE /*!< Noise detected flag */ #define LL_USART_SR_ORE USART_SR_ORE /*!< Overrun error flag */ #define LL_USART_SR_IDLE USART_SR_IDLE /*!< Idle line detected flag */ #define LL_USART_SR_RXNE USART_SR_RXNE /*!< Read data register not empty flag */ #define LL_USART_SR_TC USART_SR_TC /*!< Transmission complete flag */ #define LL_USART_SR_TXE USART_SR_TXE /*!< Transmit data register empty flag */ #define LL_USART_SR_LBD USART_SR_LBD /*!< LIN break detection flag */ #define LL_USART_SR_CTS USART_SR_CTS /*!< CTS flag */ /** * @} */ /** @defgroup USART_LL_EC_IT IT Defines * @brief IT defines which can be used with LL_USART_ReadReg and LL_USART_WriteReg functions * @{ */ #define LL_USART_CR1_IDLEIE USART_CR1_IDLEIE /*!< IDLE interrupt enable */ #define LL_USART_CR1_RXNEIE USART_CR1_RXNEIE /*!< Read data register not empty interrupt enable */ #define LL_USART_CR1_TCIE USART_CR1_TCIE /*!< Transmission complete interrupt enable */ #define LL_USART_CR1_TXEIE USART_CR1_TXEIE /*!< Transmit data register empty interrupt enable */ #define LL_USART_CR1_PEIE USART_CR1_PEIE /*!< Parity error */ #define LL_USART_CR2_LBDIE USART_CR2_LBDIE /*!< LIN break detection interrupt enable */ #define LL_USART_CR3_EIE USART_CR3_EIE /*!< Error interrupt enable */ #define LL_USART_CR3_CTSIE USART_CR3_CTSIE /*!< CTS interrupt enable */ /** * @} */ /** @defgroup USART_LL_EC_DIRECTION Communication Direction * @{ */ #define LL_USART_DIRECTION_NONE 0x00000000U /*!< Transmitter and Receiver are disabled */ #define LL_USART_DIRECTION_RX USART_CR1_RE /*!< Transmitter is disabled and Receiver is enabled */ #define LL_USART_DIRECTION_TX USART_CR1_TE /*!< Transmitter is enabled and Receiver is disabled */ #define LL_USART_DIRECTION_TX_RX (USART_CR1_TE |USART_CR1_RE) /*!< Transmitter and Receiver are enabled */ /** * @} */ /** @defgroup USART_LL_EC_PARITY Parity Control * @{ */ #define LL_USART_PARITY_NONE 0x00000000U /*!< Parity control disabled */ #define LL_USART_PARITY_EVEN USART_CR1_PCE /*!< Parity control enabled and Even Parity is selected */ #define LL_USART_PARITY_ODD (USART_CR1_PCE | USART_CR1_PS) /*!< Parity control enabled and Odd Parity is selected */ /** * @} */ /** @defgroup USART_LL_EC_WAKEUP Wakeup * @{ */ #define LL_USART_WAKEUP_IDLELINE 0x00000000U /*!< USART wake up from Mute mode on Idle Line */ #define LL_USART_WAKEUP_ADDRESSMARK USART_CR1_WAKE /*!< USART wake up from Mute mode on Address Mark */ /** * @} */ /** @defgroup USART_LL_EC_DATAWIDTH Datawidth * @{ */ #define LL_USART_DATAWIDTH_8B 0x00000000U /*!< 8 bits word length : Start bit, 8 data bits, n stop bits */ #define LL_USART_DATAWIDTH_9B USART_CR1_M /*!< 9 bits word length : Start bit, 9 data bits, n stop bits */ /** * @} */ /** @defgroup USART_LL_EC_OVERSAMPLING Oversampling * @{ */ #define LL_USART_OVERSAMPLING_16 0x00000000U /*!< Oversampling by 16 */ #define LL_USART_OVERSAMPLING_8 USART_CR1_OVER8 /*!< Oversampling by 8 */ /** * @} */ #if defined(USE_FULL_LL_DRIVER) /** @defgroup USART_LL_EC_CLOCK Clock Signal * @{ */ #define LL_USART_CLOCK_DISABLE 0x00000000U /*!< Clock signal not provided */ #define LL_USART_CLOCK_ENABLE USART_CR2_CLKEN /*!< Clock signal provided */ /** * @} */ #endif /*USE_FULL_LL_DRIVER*/ /** @defgroup USART_LL_EC_LASTCLKPULSE Last Clock Pulse * @{ */ #define LL_USART_LASTCLKPULSE_NO_OUTPUT 0x00000000U /*!< The clock pulse of the last data bit is not output to the SCLK pin */ #define LL_USART_LASTCLKPULSE_OUTPUT USART_CR2_LBCL /*!< The clock pulse of the last data bit is output to the SCLK pin */ /** * @} */ /** @defgroup USART_LL_EC_PHASE Clock Phase * @{ */ #define LL_USART_PHASE_1EDGE 0x00000000U /*!< The first clock transition is the first data capture edge */ #define LL_USART_PHASE_2EDGE USART_CR2_CPHA /*!< The second clock transition is the first data capture edge */ /** * @} */ /** @defgroup USART_LL_EC_POLARITY Clock Polarity * @{ */ #define LL_USART_POLARITY_LOW 0x00000000U /*!< Steady low value on SCLK pin outside transmission window*/ #define LL_USART_POLARITY_HIGH USART_CR2_CPOL /*!< Steady high value on SCLK pin outside transmission window */ /** * @} */ /** @defgroup USART_LL_EC_STOPBITS Stop Bits * @{ */ #define LL_USART_STOPBITS_0_5 USART_CR2_STOP_0 /*!< 0.5 stop bit */ #define LL_USART_STOPBITS_1 0x00000000U /*!< 1 stop bit */ #define LL_USART_STOPBITS_1_5 (USART_CR2_STOP_0 | USART_CR2_STOP_1) /*!< 1.5 stop bits */ #define LL_USART_STOPBITS_2 USART_CR2_STOP_1 /*!< 2 stop bits */ /** * @} */ /** @defgroup USART_LL_EC_HWCONTROL Hardware Control * @{ */ #define LL_USART_HWCONTROL_NONE 0x00000000U /*!< CTS and RTS hardware flow control disabled */ #define LL_USART_HWCONTROL_RTS USART_CR3_RTSE /*!< RTS output enabled, data is only requested when there is space in the receive buffer */ #define LL_USART_HWCONTROL_CTS USART_CR3_CTSE /*!< CTS mode enabled, data is only transmitted when the nCTS input is asserted (tied to 0) */ #define LL_USART_HWCONTROL_RTS_CTS (USART_CR3_RTSE | USART_CR3_CTSE) /*!< CTS and RTS hardware flow control enabled */ /** * @} */ /** @defgroup USART_LL_EC_IRDA_POWER IrDA Power * @{ */ #define LL_USART_IRDA_POWER_NORMAL 0x00000000U /*!< IrDA normal power mode */ #define LL_USART_IRDA_POWER_LOW USART_CR3_IRLP /*!< IrDA low power mode */ /** * @} */ /** @defgroup USART_LL_EC_LINBREAK_DETECT LIN Break Detection Length * @{ */ #define LL_USART_LINBREAK_DETECT_10B 0x00000000U /*!< 10-bit break detection method selected */ #define LL_USART_LINBREAK_DETECT_11B USART_CR2_LBDL /*!< 11-bit break detection method selected */ /** * @} */ /** * @} */ /* Exported macro ------------------------------------------------------------*/ /** @defgroup USART_LL_Exported_Macros USART Exported Macros * @{ */ /** @defgroup USART_LL_EM_WRITE_READ Common Write and read registers Macros * @{ */ /** * @brief Write a value in USART register * @param __INSTANCE__ USART Instance * @param __REG__ Register to be written * @param __VALUE__ Value to be written in the register * @retval None */ #define LL_USART_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__)) /** * @brief Read a value in USART register * @param __INSTANCE__ USART Instance * @param __REG__ Register to be read * @retval Register value */ #define LL_USART_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__) /** * @} */ /** @defgroup USART_LL_EM_Exported_Macros_Helper Exported_Macros_Helper * @{ */ /** * @brief Compute USARTDIV value according to Peripheral Clock and * expected Baud Rate in 8 bits sampling mode (32 bits value of USARTDIV is returned) * @param __PERIPHCLK__ Peripheral Clock frequency used for USART instance * @param __BAUDRATE__ Baud rate value to achieve * @retval USARTDIV value to be used for BRR register filling in OverSampling_8 case */ #define __LL_USART_DIV_SAMPLING8_100(__PERIPHCLK__, __BAUDRATE__) (((__PERIPHCLK__)*25)/(2*(__BAUDRATE__))) #define __LL_USART_DIVMANT_SAMPLING8(__PERIPHCLK__, __BAUDRATE__) (__LL_USART_DIV_SAMPLING8_100((__PERIPHCLK__), (__BAUDRATE__))/100) #define __LL_USART_DIVFRAQ_SAMPLING8(__PERIPHCLK__, __BAUDRATE__) (((__LL_USART_DIV_SAMPLING8_100((__PERIPHCLK__), (__BAUDRATE__)) - (__LL_USART_DIVMANT_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) * 100)) * 8 + 50) / 100) /* UART BRR = mantissa + overflow + fraction = (UART DIVMANT << 4) + ((UART DIVFRAQ & 0xF8) << 1) + (UART DIVFRAQ & 0x07) */ #define __LL_USART_DIV_SAMPLING8(__PERIPHCLK__, __BAUDRATE__) (((__LL_USART_DIVMANT_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) << 4) + \ ((__LL_USART_DIVFRAQ_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) & 0xF8) << 1)) + \ (__LL_USART_DIVFRAQ_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) & 0x07)) /** * @brief Compute USARTDIV value according to Peripheral Clock and * expected Baud Rate in 16 bits sampling mode (32 bits value of USARTDIV is returned) * @param __PERIPHCLK__ Peripheral Clock frequency used for USART instance * @param __BAUDRATE__ Baud rate value to achieve * @retval USARTDIV value to be used for BRR register filling in OverSampling_16 case */ #define __LL_USART_DIV_SAMPLING16_100(__PERIPHCLK__, __BAUDRATE__) (((__PERIPHCLK__)*25)/(4*(__BAUDRATE__))) #define __LL_USART_DIVMANT_SAMPLING16(__PERIPHCLK__, __BAUDRATE__) (__LL_USART_DIV_SAMPLING16_100((__PERIPHCLK__), (__BAUDRATE__))/100) #define __LL_USART_DIVFRAQ_SAMPLING16(__PERIPHCLK__, __BAUDRATE__) (((__LL_USART_DIV_SAMPLING16_100((__PERIPHCLK__), (__BAUDRATE__)) - (__LL_USART_DIVMANT_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) * 100)) * 16 + 50) / 100) /* USART BRR = mantissa + overflow + fraction = (USART DIVMANT << 4) + (USART DIVFRAQ & 0xF0) + (USART DIVFRAQ & 0x0F) */ #define __LL_USART_DIV_SAMPLING16(__PERIPHCLK__, __BAUDRATE__) (((__LL_USART_DIVMANT_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) << 4) + \ (__LL_USART_DIVFRAQ_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) & 0xF0)) + \ (__LL_USART_DIVFRAQ_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) & 0x0F)) /** * @} */ /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @defgroup USART_LL_Exported_Functions USART Exported Functions * @{ */ /** @defgroup USART_LL_EF_Configuration Configuration functions * @{ */ /** * @brief USART Enable * @rmtoll CR1 UE LL_USART_Enable * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_Enable(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR1, USART_CR1_UE); } /** * @brief USART Disable (all USART prescalers and outputs are disabled) * @note When USART is disabled, USART prescalers and outputs are stopped immediately, * and current operations are discarded. The configuration of the USART is kept, but all the status * flags, in the USARTx_SR are set to their default values. * @rmtoll CR1 UE LL_USART_Disable * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_Disable(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR1, USART_CR1_UE); } /** * @brief Indicate if USART is enabled * @rmtoll CR1 UE LL_USART_IsEnabled * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabled(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR1, USART_CR1_UE) == (USART_CR1_UE)); } /** * @brief Receiver Enable (Receiver is enabled and begins searching for a start bit) * @rmtoll CR1 RE LL_USART_EnableDirectionRx * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableDirectionRx(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR1, USART_CR1_RE); } /** * @brief Receiver Disable * @rmtoll CR1 RE LL_USART_DisableDirectionRx * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableDirectionRx(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR1, USART_CR1_RE); } /** * @brief Transmitter Enable * @rmtoll CR1 TE LL_USART_EnableDirectionTx * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableDirectionTx(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR1, USART_CR1_TE); } /** * @brief Transmitter Disable * @rmtoll CR1 TE LL_USART_DisableDirectionTx * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableDirectionTx(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR1, USART_CR1_TE); } /** * @brief Configure simultaneously enabled/disabled states * of Transmitter and Receiver * @rmtoll CR1 RE LL_USART_SetTransferDirection\n * CR1 TE LL_USART_SetTransferDirection * @param USARTx USART Instance * @param TransferDirection This parameter can be one of the following values: * @arg @ref LL_USART_DIRECTION_NONE * @arg @ref LL_USART_DIRECTION_RX * @arg @ref LL_USART_DIRECTION_TX * @arg @ref LL_USART_DIRECTION_TX_RX * @retval None */ __STATIC_INLINE void LL_USART_SetTransferDirection(USART_TypeDef *USARTx, uint32_t TransferDirection) { MODIFY_REG(USARTx->CR1, USART_CR1_RE | USART_CR1_TE, TransferDirection); } /** * @brief Return enabled/disabled states of Transmitter and Receiver * @rmtoll CR1 RE LL_USART_GetTransferDirection\n * CR1 TE LL_USART_GetTransferDirection * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_DIRECTION_NONE * @arg @ref LL_USART_DIRECTION_RX * @arg @ref LL_USART_DIRECTION_TX * @arg @ref LL_USART_DIRECTION_TX_RX */ __STATIC_INLINE uint32_t LL_USART_GetTransferDirection(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_RE | USART_CR1_TE)); } /** * @brief Configure Parity (enabled/disabled and parity mode if enabled). * @note This function selects if hardware parity control (generation and detection) is enabled or disabled. * When the parity control is enabled (Odd or Even), computed parity bit is inserted at the MSB position * (9th or 8th bit depending on data width) and parity is checked on the received data. * @rmtoll CR1 PS LL_USART_SetParity\n * CR1 PCE LL_USART_SetParity * @param USARTx USART Instance * @param Parity This parameter can be one of the following values: * @arg @ref LL_USART_PARITY_NONE * @arg @ref LL_USART_PARITY_EVEN * @arg @ref LL_USART_PARITY_ODD * @retval None */ __STATIC_INLINE void LL_USART_SetParity(USART_TypeDef *USARTx, uint32_t Parity) { MODIFY_REG(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE, Parity); } /** * @brief Return Parity configuration (enabled/disabled and parity mode if enabled) * @rmtoll CR1 PS LL_USART_GetParity\n * CR1 PCE LL_USART_GetParity * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_PARITY_NONE * @arg @ref LL_USART_PARITY_EVEN * @arg @ref LL_USART_PARITY_ODD */ __STATIC_INLINE uint32_t LL_USART_GetParity(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE)); } /** * @brief Set Receiver Wake Up method from Mute mode. * @rmtoll CR1 WAKE LL_USART_SetWakeUpMethod * @param USARTx USART Instance * @param Method This parameter can be one of the following values: * @arg @ref LL_USART_WAKEUP_IDLELINE * @arg @ref LL_USART_WAKEUP_ADDRESSMARK * @retval None */ __STATIC_INLINE void LL_USART_SetWakeUpMethod(USART_TypeDef *USARTx, uint32_t Method) { MODIFY_REG(USARTx->CR1, USART_CR1_WAKE, Method); } /** * @brief Return Receiver Wake Up method from Mute mode * @rmtoll CR1 WAKE LL_USART_GetWakeUpMethod * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_WAKEUP_IDLELINE * @arg @ref LL_USART_WAKEUP_ADDRESSMARK */ __STATIC_INLINE uint32_t LL_USART_GetWakeUpMethod(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_WAKE)); } /** * @brief Set Word length (i.e. nb of data bits, excluding start and stop bits) * @rmtoll CR1 M LL_USART_SetDataWidth * @param USARTx USART Instance * @param DataWidth This parameter can be one of the following values: * @arg @ref LL_USART_DATAWIDTH_8B * @arg @ref LL_USART_DATAWIDTH_9B * @retval None */ __STATIC_INLINE void LL_USART_SetDataWidth(USART_TypeDef *USARTx, uint32_t DataWidth) { MODIFY_REG(USARTx->CR1, USART_CR1_M, DataWidth); } /** * @brief Return Word length (i.e. nb of data bits, excluding start and stop bits) * @rmtoll CR1 M LL_USART_GetDataWidth * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_DATAWIDTH_8B * @arg @ref LL_USART_DATAWIDTH_9B */ __STATIC_INLINE uint32_t LL_USART_GetDataWidth(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_M)); } /** * @brief Set Oversampling to 8-bit or 16-bit mode * @rmtoll CR1 OVER8 LL_USART_SetOverSampling * @param USARTx USART Instance * @param OverSampling This parameter can be one of the following values: * @arg @ref LL_USART_OVERSAMPLING_16 * @arg @ref LL_USART_OVERSAMPLING_8 * @retval None */ __STATIC_INLINE void LL_USART_SetOverSampling(USART_TypeDef *USARTx, uint32_t OverSampling) { MODIFY_REG(USARTx->CR1, USART_CR1_OVER8, OverSampling); } /** * @brief Return Oversampling mode * @rmtoll CR1 OVER8 LL_USART_GetOverSampling * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_OVERSAMPLING_16 * @arg @ref LL_USART_OVERSAMPLING_8 */ __STATIC_INLINE uint32_t LL_USART_GetOverSampling(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_OVER8)); } /** * @brief Configure if Clock pulse of the last data bit is output to the SCLK pin or not * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @rmtoll CR2 LBCL LL_USART_SetLastClkPulseOutput * @param USARTx USART Instance * @param LastBitClockPulse This parameter can be one of the following values: * @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT * @arg @ref LL_USART_LASTCLKPULSE_OUTPUT * @retval None */ __STATIC_INLINE void LL_USART_SetLastClkPulseOutput(USART_TypeDef *USARTx, uint32_t LastBitClockPulse) { MODIFY_REG(USARTx->CR2, USART_CR2_LBCL, LastBitClockPulse); } /** * @brief Retrieve Clock pulse of the last data bit output configuration * (Last bit Clock pulse output to the SCLK pin or not) * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @rmtoll CR2 LBCL LL_USART_GetLastClkPulseOutput * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT * @arg @ref LL_USART_LASTCLKPULSE_OUTPUT */ __STATIC_INLINE uint32_t LL_USART_GetLastClkPulseOutput(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_LBCL)); } /** * @brief Select the phase of the clock output on the SCLK pin in synchronous mode * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @rmtoll CR2 CPHA LL_USART_SetClockPhase * @param USARTx USART Instance * @param ClockPhase This parameter can be one of the following values: * @arg @ref LL_USART_PHASE_1EDGE * @arg @ref LL_USART_PHASE_2EDGE * @retval None */ __STATIC_INLINE void LL_USART_SetClockPhase(USART_TypeDef *USARTx, uint32_t ClockPhase) { MODIFY_REG(USARTx->CR2, USART_CR2_CPHA, ClockPhase); } /** * @brief Return phase of the clock output on the SCLK pin in synchronous mode * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @rmtoll CR2 CPHA LL_USART_GetClockPhase * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_PHASE_1EDGE * @arg @ref LL_USART_PHASE_2EDGE */ __STATIC_INLINE uint32_t LL_USART_GetClockPhase(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_CPHA)); } /** * @brief Select the polarity of the clock output on the SCLK pin in synchronous mode * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @rmtoll CR2 CPOL LL_USART_SetClockPolarity * @param USARTx USART Instance * @param ClockPolarity This parameter can be one of the following values: * @arg @ref LL_USART_POLARITY_LOW * @arg @ref LL_USART_POLARITY_HIGH * @retval None */ __STATIC_INLINE void LL_USART_SetClockPolarity(USART_TypeDef *USARTx, uint32_t ClockPolarity) { MODIFY_REG(USARTx->CR2, USART_CR2_CPOL, ClockPolarity); } /** * @brief Return polarity of the clock output on the SCLK pin in synchronous mode * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @rmtoll CR2 CPOL LL_USART_GetClockPolarity * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_POLARITY_LOW * @arg @ref LL_USART_POLARITY_HIGH */ __STATIC_INLINE uint32_t LL_USART_GetClockPolarity(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_CPOL)); } /** * @brief Configure Clock signal format (Phase Polarity and choice about output of last bit clock pulse) * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @note Call of this function is equivalent to following function call sequence : * - Clock Phase configuration using @ref LL_USART_SetClockPhase() function * - Clock Polarity configuration using @ref LL_USART_SetClockPolarity() function * - Output of Last bit Clock pulse configuration using @ref LL_USART_SetLastClkPulseOutput() function * @rmtoll CR2 CPHA LL_USART_ConfigClock\n * CR2 CPOL LL_USART_ConfigClock\n * CR2 LBCL LL_USART_ConfigClock * @param USARTx USART Instance * @param Phase This parameter can be one of the following values: * @arg @ref LL_USART_PHASE_1EDGE * @arg @ref LL_USART_PHASE_2EDGE * @param Polarity This parameter can be one of the following values: * @arg @ref LL_USART_POLARITY_LOW * @arg @ref LL_USART_POLARITY_HIGH * @param LBCPOutput This parameter can be one of the following values: * @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT * @arg @ref LL_USART_LASTCLKPULSE_OUTPUT * @retval None */ __STATIC_INLINE void LL_USART_ConfigClock(USART_TypeDef *USARTx, uint32_t Phase, uint32_t Polarity, uint32_t LBCPOutput) { MODIFY_REG(USARTx->CR2, USART_CR2_CPHA | USART_CR2_CPOL | USART_CR2_LBCL, Phase | Polarity | LBCPOutput); } /** * @brief Enable Clock output on SCLK pin * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @rmtoll CR2 CLKEN LL_USART_EnableSCLKOutput * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableSCLKOutput(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR2, USART_CR2_CLKEN); } /** * @brief Disable Clock output on SCLK pin * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @rmtoll CR2 CLKEN LL_USART_DisableSCLKOutput * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableSCLKOutput(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR2, USART_CR2_CLKEN); } /** * @brief Indicate if Clock output on SCLK pin is enabled * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @rmtoll CR2 CLKEN LL_USART_IsEnabledSCLKOutput * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledSCLKOutput(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR2, USART_CR2_CLKEN) == (USART_CR2_CLKEN)); } /** * @brief Set the length of the stop bits * @rmtoll CR2 STOP LL_USART_SetStopBitsLength * @param USARTx USART Instance * @param StopBits This parameter can be one of the following values: * @arg @ref LL_USART_STOPBITS_0_5 * @arg @ref LL_USART_STOPBITS_1 * @arg @ref LL_USART_STOPBITS_1_5 * @arg @ref LL_USART_STOPBITS_2 * @retval None */ __STATIC_INLINE void LL_USART_SetStopBitsLength(USART_TypeDef *USARTx, uint32_t StopBits) { MODIFY_REG(USARTx->CR2, USART_CR2_STOP, StopBits); } /** * @brief Retrieve the length of the stop bits * @rmtoll CR2 STOP LL_USART_GetStopBitsLength * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_STOPBITS_0_5 * @arg @ref LL_USART_STOPBITS_1 * @arg @ref LL_USART_STOPBITS_1_5 * @arg @ref LL_USART_STOPBITS_2 */ __STATIC_INLINE uint32_t LL_USART_GetStopBitsLength(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_STOP)); } /** * @brief Configure Character frame format (Datawidth, Parity control, Stop Bits) * @note Call of this function is equivalent to following function call sequence : * - Data Width configuration using @ref LL_USART_SetDataWidth() function * - Parity Control and mode configuration using @ref LL_USART_SetParity() function * - Stop bits configuration using @ref LL_USART_SetStopBitsLength() function * @rmtoll CR1 PS LL_USART_ConfigCharacter\n * CR1 PCE LL_USART_ConfigCharacter\n * CR1 M LL_USART_ConfigCharacter\n * CR2 STOP LL_USART_ConfigCharacter * @param USARTx USART Instance * @param DataWidth This parameter can be one of the following values: * @arg @ref LL_USART_DATAWIDTH_8B * @arg @ref LL_USART_DATAWIDTH_9B * @param Parity This parameter can be one of the following values: * @arg @ref LL_USART_PARITY_NONE * @arg @ref LL_USART_PARITY_EVEN * @arg @ref LL_USART_PARITY_ODD * @param StopBits This parameter can be one of the following values: * @arg @ref LL_USART_STOPBITS_0_5 * @arg @ref LL_USART_STOPBITS_1 * @arg @ref LL_USART_STOPBITS_1_5 * @arg @ref LL_USART_STOPBITS_2 * @retval None */ __STATIC_INLINE void LL_USART_ConfigCharacter(USART_TypeDef *USARTx, uint32_t DataWidth, uint32_t Parity, uint32_t StopBits) { MODIFY_REG(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE | USART_CR1_M, Parity | DataWidth); MODIFY_REG(USARTx->CR2, USART_CR2_STOP, StopBits); } /** * @brief Set Address of the USART node. * @note This is used in multiprocessor communication during Mute mode or Stop mode, * for wake up with address mark detection. * @rmtoll CR2 ADD LL_USART_SetNodeAddress * @param USARTx USART Instance * @param NodeAddress 4 bit Address of the USART node. * @retval None */ __STATIC_INLINE void LL_USART_SetNodeAddress(USART_TypeDef *USARTx, uint32_t NodeAddress) { MODIFY_REG(USARTx->CR2, USART_CR2_ADD, (NodeAddress & USART_CR2_ADD)); } /** * @brief Return 4 bit Address of the USART node as set in ADD field of CR2. * @note only 4bits (b3-b0) of returned value are relevant (b31-b4 are not relevant) * @rmtoll CR2 ADD LL_USART_GetNodeAddress * @param USARTx USART Instance * @retval Address of the USART node (Value between Min_Data=0 and Max_Data=255) */ __STATIC_INLINE uint32_t LL_USART_GetNodeAddress(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_ADD)); } /** * @brief Enable RTS HW Flow Control * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll CR3 RTSE LL_USART_EnableRTSHWFlowCtrl * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableRTSHWFlowCtrl(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_RTSE); } /** * @brief Disable RTS HW Flow Control * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll CR3 RTSE LL_USART_DisableRTSHWFlowCtrl * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableRTSHWFlowCtrl(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_RTSE); } /** * @brief Enable CTS HW Flow Control * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll CR3 CTSE LL_USART_EnableCTSHWFlowCtrl * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableCTSHWFlowCtrl(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_CTSE); } /** * @brief Disable CTS HW Flow Control * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll CR3 CTSE LL_USART_DisableCTSHWFlowCtrl * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableCTSHWFlowCtrl(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_CTSE); } /** * @brief Configure HW Flow Control mode (both CTS and RTS) * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll CR3 RTSE LL_USART_SetHWFlowCtrl\n * CR3 CTSE LL_USART_SetHWFlowCtrl * @param USARTx USART Instance * @param HardwareFlowControl This parameter can be one of the following values: * @arg @ref LL_USART_HWCONTROL_NONE * @arg @ref LL_USART_HWCONTROL_RTS * @arg @ref LL_USART_HWCONTROL_CTS * @arg @ref LL_USART_HWCONTROL_RTS_CTS * @retval None */ __STATIC_INLINE void LL_USART_SetHWFlowCtrl(USART_TypeDef *USARTx, uint32_t HardwareFlowControl) { MODIFY_REG(USARTx->CR3, USART_CR3_RTSE | USART_CR3_CTSE, HardwareFlowControl); } /** * @brief Return HW Flow Control configuration (both CTS and RTS) * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll CR3 RTSE LL_USART_GetHWFlowCtrl\n * CR3 CTSE LL_USART_GetHWFlowCtrl * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_HWCONTROL_NONE * @arg @ref LL_USART_HWCONTROL_RTS * @arg @ref LL_USART_HWCONTROL_CTS * @arg @ref LL_USART_HWCONTROL_RTS_CTS */ __STATIC_INLINE uint32_t LL_USART_GetHWFlowCtrl(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_RTSE | USART_CR3_CTSE)); } /** * @brief Enable One bit sampling method * @rmtoll CR3 ONEBIT LL_USART_EnableOneBitSamp * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableOneBitSamp(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_ONEBIT); } /** * @brief Disable One bit sampling method * @rmtoll CR3 ONEBIT LL_USART_DisableOneBitSamp * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableOneBitSamp(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_ONEBIT); } /** * @brief Indicate if One bit sampling method is enabled * @rmtoll CR3 ONEBIT LL_USART_IsEnabledOneBitSamp * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledOneBitSamp(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR3, USART_CR3_ONEBIT) == (USART_CR3_ONEBIT)); } /** * @brief Configure USART BRR register for achieving expected Baud Rate value. * @note Compute and set USARTDIV value in BRR Register (full BRR content) * according to used Peripheral Clock, Oversampling mode, and expected Baud Rate values * @note Peripheral clock and Baud rate values provided as function parameters should be valid * (Baud rate value != 0) * @rmtoll BRR BRR LL_USART_SetBaudRate * @param USARTx USART Instance * @param PeriphClk Peripheral Clock * @param OverSampling This parameter can be one of the following values: * @arg @ref LL_USART_OVERSAMPLING_16 * @arg @ref LL_USART_OVERSAMPLING_8 * @param BaudRate Baud Rate * @retval None */ __STATIC_INLINE void LL_USART_SetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t OverSampling, uint32_t BaudRate) { if (OverSampling == LL_USART_OVERSAMPLING_8) { USARTx->BRR = (uint16_t)(__LL_USART_DIV_SAMPLING8(PeriphClk, BaudRate)); } else { USARTx->BRR = (uint16_t)(__LL_USART_DIV_SAMPLING16(PeriphClk, BaudRate)); } } /** * @brief Return current Baud Rate value, according to USARTDIV present in BRR register * (full BRR content), and to used Peripheral Clock and Oversampling mode values * @note In case of non-initialized or invalid value stored in BRR register, value 0 will be returned. * @rmtoll BRR BRR LL_USART_GetBaudRate * @param USARTx USART Instance * @param PeriphClk Peripheral Clock * @param OverSampling This parameter can be one of the following values: * @arg @ref LL_USART_OVERSAMPLING_16 * @arg @ref LL_USART_OVERSAMPLING_8 * @retval Baud Rate */ __STATIC_INLINE uint32_t LL_USART_GetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t OverSampling) { register uint32_t usartdiv = 0x0U; register uint32_t brrresult = 0x0U; usartdiv = USARTx->BRR; if (OverSampling == LL_USART_OVERSAMPLING_8) { if ((usartdiv & 0xFFF7U) != 0U) { usartdiv = (uint16_t)((usartdiv & 0xFFF0U) | ((usartdiv & 0x0007U) << 1U)) ; brrresult = (PeriphClk * 2U) / usartdiv; } } else { if ((usartdiv & 0xFFFFU) != 0U) { brrresult = PeriphClk / usartdiv; } } return (brrresult); } /** * @} */ /** @defgroup USART_LL_EF_Configuration_IRDA Configuration functions related to Irda feature * @{ */ /** * @brief Enable IrDA mode * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not * IrDA feature is supported by the USARTx instance. * @rmtoll CR3 IREN LL_USART_EnableIrda * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableIrda(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_IREN); } /** * @brief Disable IrDA mode * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not * IrDA feature is supported by the USARTx instance. * @rmtoll CR3 IREN LL_USART_DisableIrda * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableIrda(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_IREN); } /** * @brief Indicate if IrDA mode is enabled * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not * IrDA feature is supported by the USARTx instance. * @rmtoll CR3 IREN LL_USART_IsEnabledIrda * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledIrda(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR3, USART_CR3_IREN) == (USART_CR3_IREN)); } /** * @brief Configure IrDA Power Mode (Normal or Low Power) * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not * IrDA feature is supported by the USARTx instance. * @rmtoll CR3 IRLP LL_USART_SetIrdaPowerMode * @param USARTx USART Instance * @param PowerMode This parameter can be one of the following values: * @arg @ref LL_USART_IRDA_POWER_NORMAL * @arg @ref LL_USART_IRDA_POWER_LOW * @retval None */ __STATIC_INLINE void LL_USART_SetIrdaPowerMode(USART_TypeDef *USARTx, uint32_t PowerMode) { MODIFY_REG(USARTx->CR3, USART_CR3_IRLP, PowerMode); } /** * @brief Retrieve IrDA Power Mode configuration (Normal or Low Power) * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not * IrDA feature is supported by the USARTx instance. * @rmtoll CR3 IRLP LL_USART_GetIrdaPowerMode * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_IRDA_POWER_NORMAL * @arg @ref LL_USART_PHASE_2EDGE */ __STATIC_INLINE uint32_t LL_USART_GetIrdaPowerMode(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_IRLP)); } /** * @brief Set Irda prescaler value, used for dividing the USART clock source * to achieve the Irda Low Power frequency (8 bits value) * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not * IrDA feature is supported by the USARTx instance. * @rmtoll GTPR PSC LL_USART_SetIrdaPrescaler * @param USARTx USART Instance * @param PrescalerValue Value between Min_Data=0x00 and Max_Data=0xFF * @retval None */ __STATIC_INLINE void LL_USART_SetIrdaPrescaler(USART_TypeDef *USARTx, uint32_t PrescalerValue) { MODIFY_REG(USARTx->GTPR, USART_GTPR_PSC, PrescalerValue); } /** * @brief Return Irda prescaler value, used for dividing the USART clock source * to achieve the Irda Low Power frequency (8 bits value) * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not * IrDA feature is supported by the USARTx instance. * @rmtoll GTPR PSC LL_USART_GetIrdaPrescaler * @param USARTx USART Instance * @retval Irda prescaler value (Value between Min_Data=0x00 and Max_Data=0xFF) */ __STATIC_INLINE uint32_t LL_USART_GetIrdaPrescaler(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_PSC)); } /** * @} */ /** @defgroup USART_LL_EF_Configuration_Smartcard Configuration functions related to Smartcard feature * @{ */ /** * @brief Enable Smartcard NACK transmission * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @rmtoll CR3 NACK LL_USART_EnableSmartcardNACK * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableSmartcardNACK(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_NACK); } /** * @brief Disable Smartcard NACK transmission * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @rmtoll CR3 NACK LL_USART_DisableSmartcardNACK * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableSmartcardNACK(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_NACK); } /** * @brief Indicate if Smartcard NACK transmission is enabled * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @rmtoll CR3 NACK LL_USART_IsEnabledSmartcardNACK * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledSmartcardNACK(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR3, USART_CR3_NACK) == (USART_CR3_NACK)); } /** * @brief Enable Smartcard mode * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @rmtoll CR3 SCEN LL_USART_EnableSmartcard * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableSmartcard(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_SCEN); } /** * @brief Disable Smartcard mode * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @rmtoll CR3 SCEN LL_USART_DisableSmartcard * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableSmartcard(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_SCEN); } /** * @brief Indicate if Smartcard mode is enabled * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @rmtoll CR3 SCEN LL_USART_IsEnabledSmartcard * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledSmartcard(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR3, USART_CR3_SCEN) == (USART_CR3_SCEN)); } /** * @brief Set Smartcard prescaler value, used for dividing the USART clock * source to provide the SMARTCARD Clock (5 bits value) * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @rmtoll GTPR PSC LL_USART_SetSmartcardPrescaler * @param USARTx USART Instance * @param PrescalerValue Value between Min_Data=0 and Max_Data=31 * @retval None */ __STATIC_INLINE void LL_USART_SetSmartcardPrescaler(USART_TypeDef *USARTx, uint32_t PrescalerValue) { MODIFY_REG(USARTx->GTPR, USART_GTPR_PSC, PrescalerValue); } /** * @brief Return Smartcard prescaler value, used for dividing the USART clock * source to provide the SMARTCARD Clock (5 bits value) * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @rmtoll GTPR PSC LL_USART_GetSmartcardPrescaler * @param USARTx USART Instance * @retval Smartcard prescaler value (Value between Min_Data=0 and Max_Data=31) */ __STATIC_INLINE uint32_t LL_USART_GetSmartcardPrescaler(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_PSC)); } /** * @brief Set Smartcard Guard time value, expressed in nb of baud clocks periods * (GT[7:0] bits : Guard time value) * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @rmtoll GTPR GT LL_USART_SetSmartcardGuardTime * @param USARTx USART Instance * @param GuardTime Value between Min_Data=0x00 and Max_Data=0xFF * @retval None */ __STATIC_INLINE void LL_USART_SetSmartcardGuardTime(USART_TypeDef *USARTx, uint32_t GuardTime) { MODIFY_REG(USARTx->GTPR, USART_GTPR_GT, GuardTime << USART_POSITION_GTPR_GT); } /** * @brief Return Smartcard Guard time value, expressed in nb of baud clocks periods * (GT[7:0] bits : Guard time value) * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @rmtoll GTPR GT LL_USART_GetSmartcardGuardTime * @param USARTx USART Instance * @retval Smartcard Guard time value (Value between Min_Data=0x00 and Max_Data=0xFF) */ __STATIC_INLINE uint32_t LL_USART_GetSmartcardGuardTime(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_GT) >> USART_POSITION_GTPR_GT); } /** * @} */ /** @defgroup USART_LL_EF_Configuration_HalfDuplex Configuration functions related to Half Duplex feature * @{ */ /** * @brief Enable Single Wire Half-Duplex mode * @note Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not * Half-Duplex mode is supported by the USARTx instance. * @rmtoll CR3 HDSEL LL_USART_EnableHalfDuplex * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableHalfDuplex(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_HDSEL); } /** * @brief Disable Single Wire Half-Duplex mode * @note Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not * Half-Duplex mode is supported by the USARTx instance. * @rmtoll CR3 HDSEL LL_USART_DisableHalfDuplex * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableHalfDuplex(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_HDSEL); } /** * @brief Indicate if Single Wire Half-Duplex mode is enabled * @note Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not * Half-Duplex mode is supported by the USARTx instance. * @rmtoll CR3 HDSEL LL_USART_IsEnabledHalfDuplex * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledHalfDuplex(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR3, USART_CR3_HDSEL) == (USART_CR3_HDSEL)); } /** * @} */ /** @defgroup USART_LL_EF_Configuration_LIN Configuration functions related to LIN feature * @{ */ /** * @brief Set LIN Break Detection Length * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @rmtoll CR2 LBDL LL_USART_SetLINBrkDetectionLen * @param USARTx USART Instance * @param LINBDLength This parameter can be one of the following values: * @arg @ref LL_USART_LINBREAK_DETECT_10B * @arg @ref LL_USART_LINBREAK_DETECT_11B * @retval None */ __STATIC_INLINE void LL_USART_SetLINBrkDetectionLen(USART_TypeDef *USARTx, uint32_t LINBDLength) { MODIFY_REG(USARTx->CR2, USART_CR2_LBDL, LINBDLength); } /** * @brief Return LIN Break Detection Length * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @rmtoll CR2 LBDL LL_USART_GetLINBrkDetectionLen * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_LINBREAK_DETECT_10B * @arg @ref LL_USART_LINBREAK_DETECT_11B */ __STATIC_INLINE uint32_t LL_USART_GetLINBrkDetectionLen(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_LBDL)); } /** * @brief Enable LIN mode * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @rmtoll CR2 LINEN LL_USART_EnableLIN * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableLIN(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR2, USART_CR2_LINEN); } /** * @brief Disable LIN mode * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @rmtoll CR2 LINEN LL_USART_DisableLIN * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableLIN(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR2, USART_CR2_LINEN); } /** * @brief Indicate if LIN mode is enabled * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @rmtoll CR2 LINEN LL_USART_IsEnabledLIN * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledLIN(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR2, USART_CR2_LINEN) == (USART_CR2_LINEN)); } /** * @} */ /** @defgroup USART_LL_EF_AdvancedConfiguration Advanced Configurations services * @{ */ /** * @brief Perform basic configuration of USART for enabling use in Asynchronous Mode (UART) * @note In UART mode, the following bits must be kept cleared: * - LINEN bit in the USART_CR2 register, * - CLKEN bit in the USART_CR2 register, * - SCEN bit in the USART_CR3 register, * - IREN bit in the USART_CR3 register, * - HDSEL bit in the USART_CR3 register. * @note Call of this function is equivalent to following function call sequence : * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function * @note Other remaining configurations items related to Asynchronous Mode * (as Baud Rate, Word length, Parity, ...) should be set using * dedicated functions * @rmtoll CR2 LINEN LL_USART_ConfigAsyncMode\n * CR2 CLKEN LL_USART_ConfigAsyncMode\n * CR3 SCEN LL_USART_ConfigAsyncMode\n * CR3 IREN LL_USART_ConfigAsyncMode\n * CR3 HDSEL LL_USART_ConfigAsyncMode * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ConfigAsyncMode(USART_TypeDef *USARTx) { /* In Asynchronous mode, the following bits must be kept cleared: - LINEN, CLKEN bits in the USART_CR2 register, - SCEN, IREN and HDSEL bits in the USART_CR3 register.*/ CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN | USART_CR3_HDSEL)); } /** * @brief Perform basic configuration of USART for enabling use in Synchronous Mode * @note In Synchronous mode, the following bits must be kept cleared: * - LINEN bit in the USART_CR2 register, * - SCEN bit in the USART_CR3 register, * - IREN bit in the USART_CR3 register, * - HDSEL bit in the USART_CR3 register. * This function also sets the USART in Synchronous mode. * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @note Call of this function is equivalent to following function call sequence : * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function * - Set CLKEN in CR2 using @ref LL_USART_EnableSCLKOutput() function * @note Other remaining configurations items related to Synchronous Mode * (as Baud Rate, Word length, Parity, Clock Polarity, ...) should be set using * dedicated functions * @rmtoll CR2 LINEN LL_USART_ConfigSyncMode\n * CR2 CLKEN LL_USART_ConfigSyncMode\n * CR3 SCEN LL_USART_ConfigSyncMode\n * CR3 IREN LL_USART_ConfigSyncMode\n * CR3 HDSEL LL_USART_ConfigSyncMode * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ConfigSyncMode(USART_TypeDef *USARTx) { /* In Synchronous mode, the following bits must be kept cleared: - LINEN bit in the USART_CR2 register, - SCEN, IREN and HDSEL bits in the USART_CR3 register.*/ CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN)); CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN | USART_CR3_HDSEL)); /* set the UART/USART in Synchronous mode */ SET_BIT(USARTx->CR2, USART_CR2_CLKEN); } /** * @brief Perform basic configuration of USART for enabling use in LIN Mode * @note In LIN mode, the following bits must be kept cleared: * - STOP and CLKEN bits in the USART_CR2 register, * - SCEN bit in the USART_CR3 register, * - IREN bit in the USART_CR3 register, * - HDSEL bit in the USART_CR3 register. * This function also set the UART/USART in LIN mode. * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @note Call of this function is equivalent to following function call sequence : * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function * - Clear STOP in CR2 using @ref LL_USART_SetStopBitsLength() function * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function * - Set LINEN in CR2 using @ref LL_USART_EnableLIN() function * @note Other remaining configurations items related to LIN Mode * (as Baud Rate, Word length, LIN Break Detection Length, ...) should be set using * dedicated functions * @rmtoll CR2 CLKEN LL_USART_ConfigLINMode\n * CR2 STOP LL_USART_ConfigLINMode\n * CR2 LINEN LL_USART_ConfigLINMode\n * CR3 IREN LL_USART_ConfigLINMode\n * CR3 SCEN LL_USART_ConfigLINMode\n * CR3 HDSEL LL_USART_ConfigLINMode * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ConfigLINMode(USART_TypeDef *USARTx) { /* In LIN mode, the following bits must be kept cleared: - STOP and CLKEN bits in the USART_CR2 register, - IREN, SCEN and HDSEL bits in the USART_CR3 register.*/ CLEAR_BIT(USARTx->CR2, (USART_CR2_CLKEN | USART_CR2_STOP)); CLEAR_BIT(USARTx->CR3, (USART_CR3_IREN | USART_CR3_SCEN | USART_CR3_HDSEL)); /* Set the UART/USART in LIN mode */ SET_BIT(USARTx->CR2, USART_CR2_LINEN); } /** * @brief Perform basic configuration of USART for enabling use in Half Duplex Mode * @note In Half Duplex mode, the following bits must be kept cleared: * - LINEN bit in the USART_CR2 register, * - CLKEN bit in the USART_CR2 register, * - SCEN bit in the USART_CR3 register, * - IREN bit in the USART_CR3 register, * This function also sets the UART/USART in Half Duplex mode. * @note Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not * Half-Duplex mode is supported by the USARTx instance. * @note Call of this function is equivalent to following function call sequence : * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function * - Set HDSEL in CR3 using @ref LL_USART_EnableHalfDuplex() function * @note Other remaining configurations items related to Half Duplex Mode * (as Baud Rate, Word length, Parity, ...) should be set using * dedicated functions * @rmtoll CR2 LINEN LL_USART_ConfigHalfDuplexMode\n * CR2 CLKEN LL_USART_ConfigHalfDuplexMode\n * CR3 HDSEL LL_USART_ConfigHalfDuplexMode\n * CR3 SCEN LL_USART_ConfigHalfDuplexMode\n * CR3 IREN LL_USART_ConfigHalfDuplexMode * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ConfigHalfDuplexMode(USART_TypeDef *USARTx) { /* In Half Duplex mode, the following bits must be kept cleared: - LINEN and CLKEN bits in the USART_CR2 register, - SCEN and IREN bits in the USART_CR3 register.*/ CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN)); /* set the UART/USART in Half Duplex mode */ SET_BIT(USARTx->CR3, USART_CR3_HDSEL); } /** * @brief Perform basic configuration of USART for enabling use in Smartcard Mode * @note In Smartcard mode, the following bits must be kept cleared: * - LINEN bit in the USART_CR2 register, * - IREN bit in the USART_CR3 register, * - HDSEL bit in the USART_CR3 register. * This function also configures Stop bits to 1.5 bits and * sets the USART in Smartcard mode (SCEN bit). * Clock Output is also enabled (CLKEN). * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @note Call of this function is equivalent to following function call sequence : * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function * - Configure STOP in CR2 using @ref LL_USART_SetStopBitsLength() function * - Set CLKEN in CR2 using @ref LL_USART_EnableSCLKOutput() function * - Set SCEN in CR3 using @ref LL_USART_EnableSmartcard() function * @note Other remaining configurations items related to Smartcard Mode * (as Baud Rate, Word length, Parity, ...) should be set using * dedicated functions * @rmtoll CR2 LINEN LL_USART_ConfigSmartcardMode\n * CR2 STOP LL_USART_ConfigSmartcardMode\n * CR2 CLKEN LL_USART_ConfigSmartcardMode\n * CR3 HDSEL LL_USART_ConfigSmartcardMode\n * CR3 SCEN LL_USART_ConfigSmartcardMode * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ConfigSmartcardMode(USART_TypeDef *USARTx) { /* In Smartcard mode, the following bits must be kept cleared: - LINEN bit in the USART_CR2 register, - IREN and HDSEL bits in the USART_CR3 register.*/ CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN)); CLEAR_BIT(USARTx->CR3, (USART_CR3_IREN | USART_CR3_HDSEL)); /* Configure Stop bits to 1.5 bits */ /* Synchronous mode is activated by default */ SET_BIT(USARTx->CR2, (USART_CR2_STOP_0 | USART_CR2_STOP_1 | USART_CR2_CLKEN)); /* set the UART/USART in Smartcard mode */ SET_BIT(USARTx->CR3, USART_CR3_SCEN); } /** * @brief Perform basic configuration of USART for enabling use in Irda Mode * @note In IRDA mode, the following bits must be kept cleared: * - LINEN bit in the USART_CR2 register, * - STOP and CLKEN bits in the USART_CR2 register, * - SCEN bit in the USART_CR3 register, * - HDSEL bit in the USART_CR3 register. * This function also sets the UART/USART in IRDA mode (IREN bit). * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not * IrDA feature is supported by the USARTx instance. * @note Call of this function is equivalent to following function call sequence : * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function * - Configure STOP in CR2 using @ref LL_USART_SetStopBitsLength() function * - Set IREN in CR3 using @ref LL_USART_EnableIrda() function * @note Other remaining configurations items related to Irda Mode * (as Baud Rate, Word length, Power mode, ...) should be set using * dedicated functions * @rmtoll CR2 LINEN LL_USART_ConfigIrdaMode\n * CR2 CLKEN LL_USART_ConfigIrdaMode\n * CR2 STOP LL_USART_ConfigIrdaMode\n * CR3 SCEN LL_USART_ConfigIrdaMode\n * CR3 HDSEL LL_USART_ConfigIrdaMode\n * CR3 IREN LL_USART_ConfigIrdaMode * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ConfigIrdaMode(USART_TypeDef *USARTx) { /* In IRDA mode, the following bits must be kept cleared: - LINEN, STOP and CLKEN bits in the USART_CR2 register, - SCEN and HDSEL bits in the USART_CR3 register.*/ CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN | USART_CR2_STOP)); CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL)); /* set the UART/USART in IRDA mode */ SET_BIT(USARTx->CR3, USART_CR3_IREN); } /** * @brief Perform basic configuration of USART for enabling use in Multi processor Mode * (several USARTs connected in a network, one of the USARTs can be the master, * its TX output connected to the RX inputs of the other slaves USARTs). * @note In MultiProcessor mode, the following bits must be kept cleared: * - LINEN bit in the USART_CR2 register, * - CLKEN bit in the USART_CR2 register, * - SCEN bit in the USART_CR3 register, * - IREN bit in the USART_CR3 register, * - HDSEL bit in the USART_CR3 register. * @note Call of this function is equivalent to following function call sequence : * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function * @note Other remaining configurations items related to Multi processor Mode * (as Baud Rate, Wake Up Method, Node address, ...) should be set using * dedicated functions * @rmtoll CR2 LINEN LL_USART_ConfigMultiProcessMode\n * CR2 CLKEN LL_USART_ConfigMultiProcessMode\n * CR3 SCEN LL_USART_ConfigMultiProcessMode\n * CR3 HDSEL LL_USART_ConfigMultiProcessMode\n * CR3 IREN LL_USART_ConfigMultiProcessMode * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ConfigMultiProcessMode(USART_TypeDef *USARTx) { /* In Multi Processor mode, the following bits must be kept cleared: - LINEN and CLKEN bits in the USART_CR2 register, - IREN, SCEN and HDSEL bits in the USART_CR3 register.*/ CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN)); } /** * @} */ /** @defgroup USART_LL_EF_FLAG_Management FLAG_Management * @{ */ /** * @brief Check if the USART Parity Error Flag is set or not * @rmtoll SR PE LL_USART_IsActiveFlag_PE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_PE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->SR, USART_SR_PE) == (USART_SR_PE)); } /** * @brief Check if the USART Framing Error Flag is set or not * @rmtoll SR FE LL_USART_IsActiveFlag_FE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_FE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->SR, USART_SR_FE) == (USART_SR_FE)); } /** * @brief Check if the USART Noise error detected Flag is set or not * @rmtoll SR NF LL_USART_IsActiveFlag_NE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_NE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->SR, USART_SR_NE) == (USART_SR_NE)); } /** * @brief Check if the USART OverRun Error Flag is set or not * @rmtoll SR ORE LL_USART_IsActiveFlag_ORE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_ORE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->SR, USART_SR_ORE) == (USART_SR_ORE)); } /** * @brief Check if the USART IDLE line detected Flag is set or not * @rmtoll SR IDLE LL_USART_IsActiveFlag_IDLE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_IDLE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->SR, USART_SR_IDLE) == (USART_SR_IDLE)); } /** * @brief Check if the USART Read Data Register Not Empty Flag is set or not * @rmtoll SR RXNE LL_USART_IsActiveFlag_RXNE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RXNE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->SR, USART_SR_RXNE) == (USART_SR_RXNE)); } /** * @brief Check if the USART Transmission Complete Flag is set or not * @rmtoll SR TC LL_USART_IsActiveFlag_TC * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TC(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->SR, USART_SR_TC) == (USART_SR_TC)); } /** * @brief Check if the USART Transmit Data Register Empty Flag is set or not * @rmtoll SR TXE LL_USART_IsActiveFlag_TXE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TXE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->SR, USART_SR_TXE) == (USART_SR_TXE)); } /** * @brief Check if the USART LIN Break Detection Flag is set or not * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @rmtoll SR LBD LL_USART_IsActiveFlag_LBD * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_LBD(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->SR, USART_SR_LBD) == (USART_SR_LBD)); } /** * @brief Check if the USART CTS Flag is set or not * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll SR CTS LL_USART_IsActiveFlag_nCTS * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_nCTS(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->SR, USART_SR_CTS) == (USART_SR_CTS)); } /** * @brief Check if the USART Send Break Flag is set or not * @rmtoll CR1 SBK LL_USART_IsActiveFlag_SBK * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_SBK(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR1, USART_CR1_SBK) == (USART_CR1_SBK)); } /** * @brief Check if the USART Receive Wake Up from mute mode Flag is set or not * @rmtoll CR1 RWU LL_USART_IsActiveFlag_RWU * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RWU(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR1, USART_CR1_RWU) == (USART_CR1_RWU)); } /** * @brief Clear Parity Error Flag * @note Clearing this flag is done by a read access to the USARTx_SR * register followed by a read access to the USARTx_DR register. * @note Please also consider that when clearing this flag, other flags as * NE, FE, ORE, IDLE would also be cleared. * @rmtoll SR PE LL_USART_ClearFlag_PE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ClearFlag_PE(USART_TypeDef *USARTx) { __IO uint32_t tmpreg; tmpreg = USARTx->SR; (void) tmpreg; tmpreg = USARTx->DR; (void) tmpreg; } /** * @brief Clear Framing Error Flag * @note Clearing this flag is done by a read access to the USARTx_SR * register followed by a read access to the USARTx_DR register. * @note Please also consider that when clearing this flag, other flags as * PE, NE, ORE, IDLE would also be cleared. * @rmtoll SR FE LL_USART_ClearFlag_FE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ClearFlag_FE(USART_TypeDef *USARTx) { __IO uint32_t tmpreg; tmpreg = USARTx->SR; (void) tmpreg; tmpreg = USARTx->DR; (void) tmpreg; } /** * @brief Clear Noise detected Flag * @note Clearing this flag is done by a read access to the USARTx_SR * register followed by a read access to the USARTx_DR register. * @note Please also consider that when clearing this flag, other flags as * PE, FE, ORE, IDLE would also be cleared. * @rmtoll SR NF LL_USART_ClearFlag_NE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ClearFlag_NE(USART_TypeDef *USARTx) { __IO uint32_t tmpreg; tmpreg = USARTx->SR; (void) tmpreg; tmpreg = USARTx->DR; (void) tmpreg; } /** * @brief Clear OverRun Error Flag * @note Clearing this flag is done by a read access to the USARTx_SR * register followed by a read access to the USARTx_DR register. * @note Please also consider that when clearing this flag, other flags as * PE, NE, FE, IDLE would also be cleared. * @rmtoll SR ORE LL_USART_ClearFlag_ORE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ClearFlag_ORE(USART_TypeDef *USARTx) { __IO uint32_t tmpreg; tmpreg = USARTx->SR; (void) tmpreg; tmpreg = USARTx->DR; (void) tmpreg; } /** * @brief Clear IDLE line detected Flag * @note Clearing this flag is done by a read access to the USARTx_SR * register followed by a read access to the USARTx_DR register. * @note Please also consider that when clearing this flag, other flags as * PE, NE, FE, ORE would also be cleared. * @rmtoll SR IDLE LL_USART_ClearFlag_IDLE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ClearFlag_IDLE(USART_TypeDef *USARTx) { __IO uint32_t tmpreg; tmpreg = USARTx->SR; (void) tmpreg; tmpreg = USARTx->DR; (void) tmpreg; } /** * @brief Clear Transmission Complete Flag * @rmtoll SR TC LL_USART_ClearFlag_TC * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ClearFlag_TC(USART_TypeDef *USARTx) { WRITE_REG(USARTx->SR , ~(USART_SR_TC)); } /** * @brief Clear RX Not Empty Flag * @rmtoll SR RXNE LL_USART_ClearFlag_RXNE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ClearFlag_RXNE(USART_TypeDef *USARTx) { WRITE_REG(USARTx->SR , ~(USART_SR_RXNE)); } /** * @brief Clear LIN Break Detection Flag * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @rmtoll SR LBD LL_USART_ClearFlag_LBD * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ClearFlag_LBD(USART_TypeDef *USARTx) { WRITE_REG(USARTx->SR , ~(USART_SR_LBD)); } /** * @brief Clear CTS Interrupt Flag * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll SR CTS LL_USART_ClearFlag_nCTS * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ClearFlag_nCTS(USART_TypeDef *USARTx) { WRITE_REG(USARTx->SR , ~(USART_SR_CTS)); } /** * @} */ /** @defgroup USART_LL_EF_IT_Management IT_Management * @{ */ /** * @brief Enable IDLE Interrupt * @rmtoll CR1 IDLEIE LL_USART_EnableIT_IDLE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableIT_IDLE(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR1, USART_CR1_IDLEIE); } /** * @brief Enable RX Not Empty Interrupt * @rmtoll CR1 RXNEIE LL_USART_EnableIT_RXNE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableIT_RXNE(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR1, USART_CR1_RXNEIE); } /** * @brief Enable Transmission Complete Interrupt * @rmtoll CR1 TCIE LL_USART_EnableIT_TC * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableIT_TC(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR1, USART_CR1_TCIE); } /** * @brief Enable TX Empty Interrupt * @rmtoll CR1 TXEIE LL_USART_EnableIT_TXE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableIT_TXE(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR1, USART_CR1_TXEIE); } /** * @brief Enable Parity Error Interrupt * @rmtoll CR1 PEIE LL_USART_EnableIT_PE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableIT_PE(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR1, USART_CR1_PEIE); } /** * @brief Enable LIN Break Detection Interrupt * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @rmtoll CR2 LBDIE LL_USART_EnableIT_LBD * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableIT_LBD(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR2, USART_CR2_LBDIE); } /** * @brief Enable Error Interrupt * @note When set, Error Interrupt Enable Bit is enabling interrupt generation in case of a framing * error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USARTx_SR register). * 0: Interrupt is inhibited * 1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USARTx_SR register. * @rmtoll CR3 EIE LL_USART_EnableIT_ERROR * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableIT_ERROR(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_EIE); } /** * @brief Enable CTS Interrupt * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll CR3 CTSIE LL_USART_EnableIT_CTS * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableIT_CTS(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_CTSIE); } /** * @brief Disable IDLE Interrupt * @rmtoll CR1 IDLEIE LL_USART_DisableIT_IDLE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableIT_IDLE(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR1, USART_CR1_IDLEIE); } /** * @brief Disable RX Not Empty Interrupt * @rmtoll CR1 RXNEIE LL_USART_DisableIT_RXNE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableIT_RXNE(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR1, USART_CR1_RXNEIE); } /** * @brief Disable Transmission Complete Interrupt * @rmtoll CR1 TCIE LL_USART_DisableIT_TC * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableIT_TC(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR1, USART_CR1_TCIE); } /** * @brief Disable TX Empty Interrupt * @rmtoll CR1 TXEIE LL_USART_DisableIT_TXE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableIT_TXE(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR1, USART_CR1_TXEIE); } /** * @brief Disable Parity Error Interrupt * @rmtoll CR1 PEIE LL_USART_DisableIT_PE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableIT_PE(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR1, USART_CR1_PEIE); } /** * @brief Disable LIN Break Detection Interrupt * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @rmtoll CR2 LBDIE LL_USART_DisableIT_LBD * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableIT_LBD(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR2, USART_CR2_LBDIE); } /** * @brief Disable Error Interrupt * @note When set, Error Interrupt Enable Bit is enabling interrupt generation in case of a framing * error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USARTx_SR register). * 0: Interrupt is inhibited * 1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USARTx_SR register. * @rmtoll CR3 EIE LL_USART_DisableIT_ERROR * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableIT_ERROR(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_EIE); } /** * @brief Disable CTS Interrupt * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll CR3 CTSIE LL_USART_DisableIT_CTS * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableIT_CTS(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_CTSIE); } /** * @brief Check if the USART IDLE Interrupt source is enabled or disabled. * @rmtoll CR1 IDLEIE LL_USART_IsEnabledIT_IDLE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_IDLE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR1, USART_CR1_IDLEIE) == (USART_CR1_IDLEIE)); } /** * @brief Check if the USART RX Not Empty Interrupt is enabled or disabled. * @rmtoll CR1 RXNEIE LL_USART_IsEnabledIT_RXNE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_RXNE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR1, USART_CR1_RXNEIE) == (USART_CR1_RXNEIE)); } /** * @brief Check if the USART Transmission Complete Interrupt is enabled or disabled. * @rmtoll CR1 TCIE LL_USART_IsEnabledIT_TC * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TC(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR1, USART_CR1_TCIE) == (USART_CR1_TCIE)); } /** * @brief Check if the USART TX Empty Interrupt is enabled or disabled. * @rmtoll CR1 TXEIE LL_USART_IsEnabledIT_TXE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TXE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR1, USART_CR1_TXEIE) == (USART_CR1_TXEIE)); } /** * @brief Check if the USART Parity Error Interrupt is enabled or disabled. * @rmtoll CR1 PEIE LL_USART_IsEnabledIT_PE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_PE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR1, USART_CR1_PEIE) == (USART_CR1_PEIE)); } /** * @brief Check if the USART LIN Break Detection Interrupt is enabled or disabled. * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @rmtoll CR2 LBDIE LL_USART_IsEnabledIT_LBD * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_LBD(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR2, USART_CR2_LBDIE) == (USART_CR2_LBDIE)); } /** * @brief Check if the USART Error Interrupt is enabled or disabled. * @rmtoll CR3 EIE LL_USART_IsEnabledIT_ERROR * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_ERROR(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR3, USART_CR3_EIE) == (USART_CR3_EIE)); } /** * @brief Check if the USART CTS Interrupt is enabled or disabled. * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll CR3 CTSIE LL_USART_IsEnabledIT_CTS * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_CTS(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR3, USART_CR3_CTSIE) == (USART_CR3_CTSIE)); } /** * @} */ /** @defgroup USART_LL_EF_DMA_Management DMA_Management * @{ */ /** * @brief Enable DMA Mode for reception * @rmtoll CR3 DMAR LL_USART_EnableDMAReq_RX * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableDMAReq_RX(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_DMAR); } /** * @brief Disable DMA Mode for reception * @rmtoll CR3 DMAR LL_USART_DisableDMAReq_RX * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableDMAReq_RX(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_DMAR); } /** * @brief Check if DMA Mode is enabled for reception * @rmtoll CR3 DMAR LL_USART_IsEnabledDMAReq_RX * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledDMAReq_RX(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR3, USART_CR3_DMAR) == (USART_CR3_DMAR)); } /** * @brief Enable DMA Mode for transmission * @rmtoll CR3 DMAT LL_USART_EnableDMAReq_TX * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableDMAReq_TX(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_DMAT); } /** * @brief Disable DMA Mode for transmission * @rmtoll CR3 DMAT LL_USART_DisableDMAReq_TX * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableDMAReq_TX(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_DMAT); } /** * @brief Check if DMA Mode is enabled for transmission * @rmtoll CR3 DMAT LL_USART_IsEnabledDMAReq_TX * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledDMAReq_TX(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR3, USART_CR3_DMAT) == (USART_CR3_DMAT)); } /** * @brief Get the data register address used for DMA transfer * @rmtoll DR DR LL_USART_DMA_GetRegAddr * @note Address of Data Register is valid for both Transmit and Receive transfers. * @param USARTx USART Instance * @retval Address of data register */ __STATIC_INLINE uint32_t LL_USART_DMA_GetRegAddr(USART_TypeDef *USARTx) { /* return address of DR register */ return ((uint32_t) &(USARTx->DR)); } /** * @} */ /** @defgroup USART_LL_EF_Data_Management Data_Management * @{ */ /** * @brief Read Receiver Data register (Receive Data value, 8 bits) * @rmtoll DR DR LL_USART_ReceiveData8 * @param USARTx USART Instance * @retval Value between Min_Data=0x00 and Max_Data=0xFF */ __STATIC_INLINE uint8_t LL_USART_ReceiveData8(USART_TypeDef *USARTx) { return (uint8_t)(READ_BIT(USARTx->DR, USART_DR_DR)); } /** * @brief Read Receiver Data register (Receive Data value, 9 bits) * @rmtoll DR DR LL_USART_ReceiveData9 * @param USARTx USART Instance * @retval Value between Min_Data=0x00 and Max_Data=0x1FF */ __STATIC_INLINE uint16_t LL_USART_ReceiveData9(USART_TypeDef *USARTx) { return (uint16_t)(READ_BIT(USARTx->DR, USART_DR_DR)); } /** * @brief Write in Transmitter Data Register (Transmit Data value, 8 bits) * @rmtoll DR DR LL_USART_TransmitData8 * @param USARTx USART Instance * @param Value between Min_Data=0x00 and Max_Data=0xFF * @retval None */ __STATIC_INLINE void LL_USART_TransmitData8(USART_TypeDef *USARTx, uint8_t Value) { USARTx->DR = Value; } /** * @brief Write in Transmitter Data Register (Transmit Data value, 9 bits) * @rmtoll DR DR LL_USART_TransmitData9 * @param USARTx USART Instance * @param Value between Min_Data=0x00 and Max_Data=0x1FF * @retval None */ __STATIC_INLINE void LL_USART_TransmitData9(USART_TypeDef *USARTx, uint16_t Value) { USARTx->DR = Value & 0x1FFU; } /** * @} */ /** @defgroup USART_LL_EF_Execution Execution * @{ */ /** * @brief Request Break sending * @rmtoll CR1 SBK LL_USART_RequestBreakSending * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_RequestBreakSending(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR1, USART_CR1_SBK); } /** * @brief Put USART in Mute mode * @rmtoll CR1 RWU LL_USART_RequestEnterMuteMode * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_RequestEnterMuteMode(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR1, USART_CR1_RWU); } /** * @brief Put USART in Active mode * @rmtoll CR1 RWU LL_USART_RequestExitMuteMode * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_RequestExitMuteMode(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR1, USART_CR1_RWU); } /** * @} */ #if defined(USE_FULL_LL_DRIVER) /** @defgroup USART_LL_EF_Init Initialization and de-initialization functions * @{ */ ErrorStatus LL_USART_DeInit(USART_TypeDef *USARTx); ErrorStatus LL_USART_Init(USART_TypeDef *USARTx, LL_USART_InitTypeDef *USART_InitStruct); void LL_USART_StructInit(LL_USART_InitTypeDef *USART_InitStruct); ErrorStatus LL_USART_ClockInit(USART_TypeDef *USARTx, LL_USART_ClockInitTypeDef *USART_ClockInitStruct); void LL_USART_ClockStructInit(LL_USART_ClockInitTypeDef *USART_ClockInitStruct); /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /** * @} */ /** * @} */ #endif /* USART1 || USART2 || USART3 || USART6 || UART4 || UART5 || UART7 || UART8 || UART9 || UART10 */ /** * @} */ #ifdef __cplusplus } #endif #endif /* __STM32F4xx_LL_USART_H */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/