Mercurial > public > ostc4
view Small_CPU/Src/uartProtocol_GNSS.c @ 901:e4e9acfde839 Evo_2_23
Bugfix simulator/planer:
For deco calculation two structures are used. The calculation structure and the input structure. During simulation fast forward (+5min) the input structure is manipulated. Especially for vpm calculation it could happen that the input structure was manipulated and then overwritten by the calculation structure => deco and tts may have wrong values. To avoid this thedeco calculation status is now checked before doing the FF manupulation. Based an calculation state deco or input structures are manipulated.
Surface time stamp in planer view:
The planer used its own (buggy) implementation for calculation of tts. The timestamp for the surface arrival did not match the bottom time + TTS. The new implementation uses the tts calculated by the deco loop for generation of surface time stamp.
author | Ideenmodellierer |
---|---|
date | Wed, 02 Oct 2024 22:07:13 +0200 |
parents | 2225c467f1e9 |
children | c0553dd70608 |
line wrap: on
line source
/** ****************************************************************************** * @file uartProtocol_GNSS.c * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 30-Sep-2024 * @brief Interface functionality operation of GNSS devices * @verbatim @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2024 heinrichs weikamp</center></h2> * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include <string.h> #include "scheduler.h" #include <uartProtocol_GNSS.h> #include "uart.h" #include "GNSS.h" #ifdef ENABLE_GNSS static uartGnssStatus_t gnssOpState = UART_GNSS_INIT; static receiveStateGnss_t rxState = GNSSRX_READY; void ConvertByteToHexString(uint8_t byte, char* str) { uint8_t worker = 0; uint8_t digit = 0; uint8_t digitCnt = 1; worker = byte; while((worker!=0) && (digitCnt != 255)) { digit = worker % 16; if( digit < 10) { digit += '0'; } else { digit += 'A' - 10; } str[digitCnt--]= digit; worker = worker / 16; } } void uartGnss_Control(void) { static uint32_t delayStartTick = 0; uint32_t tick = HAL_GetTick(); switch (gnssOpState) { case UART_GNSS_INIT: delayStartTick = tick; gnssOpState = UART_GNSS_LOAD; break; case UART_GNSS_LOAD: if(time_elapsed_ms(delayStartTick,HAL_GetTick()) > 1000) { GNSS_LoadConfig(&GNSS_Handle); gnssOpState = UART_GNSS_GET_ID; delayStartTick = tick; } break; case UART_GNSS_GET_ID: if(time_elapsed_ms(delayStartTick,HAL_GetTick()) > 250) { GNSS_GetUniqID(&GNSS_Handle); gnssOpState = UART_GNSS_IDLE; rxState = GNSSRX_RECEIVING; delayStartTick = tick; } break; case UART_GNSS_IDLE: if(time_elapsed_ms(delayStartTick,HAL_GetTick()) > 1000) { GNSS_GetPVTData(&GNSS_Handle); gnssOpState = UART_GNSS_OPERATING; rxState = GNSSRX_RECEIVING; delayStartTick = tick; } break; case UART_GNSS_OPERATING: if(time_elapsed_ms(delayStartTick,HAL_GetTick()) > 1000) { gnssOpState = UART_GNSS_IDLE; /* simple error handling => start next request */ rxState = GNSSRX_READY; } break; default: break; } } void uartGnss_ProcessData(void) { if(rxState == GNSSRX_RECEIVING) { if(GNSS_ParseBuffer(&GNSS_Handle)) { gnssOpState = UART_GNSS_IDLE; } } } #endif