Mercurial > public > ostc4
view Discovery/Src/logbook_miniLive.c @ 780:e40790a67165
Discovery<=>SmallCPU inferface update:
The sensor data struct is extended to store the data of up to three (three visible O2 sensors). To avoid unnecessary payload on the SPI only the last update sensor data item is transfered. The sender receiver uses the sensor ID which is provided in parallel to identify the correct storage location.
author | Ideenmodellierer |
---|---|
date | Tue, 23 May 2023 21:50:19 +0200 |
parents | bf574fb3efa0 |
children | 7bd347bdaa81 |
line wrap: on
line source
/** ****************************************************************************** * @copyright heinrichs weikamp * @file logbook_miniLive.c * @author heinrichs weikamp gmbh * @date 13-March-2015 * @version V0.0.1 * @since 13-March-2015 * @brief little logbook for during the dive * @bug * @warning ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2015 heinrichs weikamp</center></h2> * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include <string.h> #include "logbook_miniLive.h" #include "data_exchange.h" #include "logbook.h" #include "tHome.h" /* ****************************************************************************** * @brief t7_updateMiniLiveLogbook. / Create depth samples for view during dive * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 13-March-2015 ****************************************************************************** * */ #define MLLsize (296) static uint16_t MLLdataDepth[MLLsize]; static uint16_t MLLpointer = 0; static uint8_t MLLtickIntervallSeconds = 2; /* Replay Block data storage */ #define DEPTH_DATA_LENGTH (1800u) /* Resolution: 1 hours dive, sampling every 2 seconds */ uint16_t ReplayDepthData[DEPTH_DATA_LENGTH]; uint8_t ReplayMarkerData[DEPTH_DATA_LENGTH]; uint16_t liveDepthData[DEPTH_DATA_LENGTH]; uint16_t liveDepthDataMod[DEPTH_DATA_LENGTH]; /* live data modified to fit to marker checks */ uint16_t liveDecoData[DEPTH_DATA_LENGTH]; uint16_t liveDecoDataMod[DEPTH_DATA_LENGTH]; static uint16_t liveDataIndex = 0; static uint16_t liveDataIndexMod = 0; static uint8_t ReplayDataResolution = 2; /* Time represented by one sample (second) */ static uint16_t ReplayDataLength = 0; /* Number of data entries */ static uint16_t ReplayDataMaxDepth = 0; static uint16_t ReplayDataMinutes = 0; static uint16_t ReplayDataOffset = 0xFFFF; /* Stepbackwards format used by log functions */ static uint16_t ReplayMarkerIndex = 0; uint16_t *getMiniLiveLogbookPointerToData(void) { return MLLdataDepth; } uint16_t getMiniLiveLogbookActualDataLength(void) { return MLLpointer; } uint16_t MiniLiveLogbook_getNextMarkerIndex(uint16_t curIndex) { uint16_t index = 0; if((ReplayMarkerData[0] != 0xFF) && (curIndex < ReplayDataLength)) { index = curIndex; do { index++; if (index == ReplayDataLength) { index = 0; } if(ReplayMarkerData[index] != 0) { break; } }while (index != curIndex); } return index; } static uint16_t workdata[DEPTH_DATA_LENGTH]; static void compressMarkerData(uint16_t* pSource, uint16_t* pTarget, float step, uint16_t startIndex, uint16_t stopIndex) { uint16_t workIndex = startIndex; float nextStep = (float)workIndex; while (workIndex <= ReplayMarkerIndex) { workdata[workIndex] = *pSource++; nextStep += step; while(nextStep < workIndex + 1) { if(*pSource != 0xFFFF) /* do not average "ignore" value */ { if(workdata[workIndex] == 0xFFFF) /* first value to be shown */ { workdata[workIndex] = *pSource; } else { workdata[workIndex] += *pSource; workdata[workIndex] /= 2; } } pSource++; nextStep += step; } workIndex++; } memcpy(&pTarget[startIndex],&workdata[startIndex],(workIndex - startIndex -1) * 2); while(workIndex < DEPTH_DATA_LENGTH) { pTarget[workIndex] = 0xFFFF; workIndex++; } } static void stretchMarkerData(uint16_t* pSource, uint16_t* pTarget, float step, uint16_t startIndex, uint16_t stopIndex) { uint16_t workIndex = startIndex; float nextStep = (float)workIndex; while (workIndex <= stopIndex) { nextStep += step; if(nextStep > stopIndex) { nextStep = stopIndex; } while(workIndex <= (uint16_t)nextStep) { workdata[workIndex++] = *pSource; } pSource++; } memcpy(&pTarget[startIndex],&workdata[startIndex],(workIndex - startIndex) * 2); while(workIndex < DEPTH_DATA_LENGTH) { pTarget[workIndex] = 0xFFFF; workIndex++; } } void MiniLiveLogbook_checkMarker(void) { static uint16_t lastLifeIndex = 0; uint16_t* pDepthData; uint16_t* pDecoData; float step; uint16_t lastMarkerIndex = ReplayMarkerIndex; ReplayMarkerIndex = MiniLiveLogbook_getNextMarkerIndex(ReplayMarkerIndex); if(ReplayMarkerIndex <= lastMarkerIndex) /* no other marker found or last marker checked => reset marker to 0 to deactivate check function */ { ReplayMarkerIndex = 0; lastLifeIndex = 0; liveDataIndexMod = liveDataIndex; } else { if(lastMarkerIndex == 0) /* use real live data */ { pDepthData = &liveDepthData[0]; pDecoData = &liveDecoData[0]; lastLifeIndex = 0; } else { pDepthData = &liveDepthDataMod[lastMarkerIndex]; /* work with already modified data */ pDecoData = &liveDecoDataMod[lastMarkerIndex]; } if(lastLifeIndex == liveDataIndex) /* repeated button press before new data was generated => draw straight line */ { step = ReplayMarkerIndex-lastMarkerIndex; } else { step = (ReplayMarkerIndex-lastMarkerIndex) / (float)(liveDataIndex - lastLifeIndex); /* the live data shall be modified to match the history data */ } lastLifeIndex = liveDataIndex; if(step < 1) /* compression needed */ { compressMarkerData(pDepthData, liveDepthDataMod, step, lastMarkerIndex, ReplayMarkerIndex); compressMarkerData(pDecoData, liveDecoDataMod, step, lastMarkerIndex, ReplayMarkerIndex); } else /* stretch data */ { stretchMarkerData(pDepthData, liveDepthDataMod, step, lastMarkerIndex, ReplayMarkerIndex); stretchMarkerData(pDecoData, liveDecoDataMod, step, lastMarkerIndex, ReplayMarkerIndex); } liveDataIndexMod = ReplayMarkerIndex; } } void compressBuffer_uint16(uint16_t* pdata, uint16_t size) { uint16_t* pTarget = pdata; uint16_t* pSource = pdata; uint16_t result = 0; uint16_t index = 0; for(index = 0; index < size/2; index++) { *pTarget = *pSource++; *pTarget += *pSource++; result = *pTarget /= 2; if((*pTarget != 0) && (result == 0)) /* avoid termination of information by round up to 1 */ { *pTarget++ = 1; } else { *pTarget++ = result; } } memset(pTarget,0,size/2); } void updateMiniLiveLogbook( _Bool checkOncePerSecond) { static uint8_t bDiveMode = 0; static uint32_t last_second = 0; static uint8_t secondsCount = 0; static uint8_t lifesecondsCount = 0; const SDecoinfo* pDecoinfo; uint8_t stopDepth = 0; uint16_t stopTime = 0; if(checkOncePerSecond) { uint32_t now = current_second(); if( last_second == now) return; last_second = now; } secondsCount++; lifesecondsCount++; if(!bDiveMode) { if((stateUsed->mode == MODE_DIVE) && (stateUsed->lifeData.dive_time_seconds >= 5)) { secondsCount = 0; MLLtickIntervallSeconds = 2; bDiveMode = 1; MLLpointer = 1; for(int i=0;i<MLLsize;i++) MLLdataDepth[i] = 0; for(liveDataIndex = 0; liveDataIndex < DEPTH_DATA_LENGTH; liveDataIndex++) { liveDepthData[liveDataIndex] = 0xFFFF; liveDecoData[liveDataIndex] = 0xFFFF; } lifesecondsCount = 0; liveDataIndex = 0; liveDataIndexMod = 0; liveDepthData[liveDataIndex++] = 0; /* start at 0 */ } } else if(stateUsed->mode == MODE_DIVE) { bDiveMode = 3; // if(secondsCount >= MLLtickIntervallSeconds) { secondsCount = 0; /* in case of a buffer overrun the buffer is divided and the first half is filled with a compressed image of the complete buffer */ if((MLLpointer >= MLLsize) && (MLLtickIntervallSeconds < 127)) { MLLpointer = 0; MLLtickIntervallSeconds *= 2; compressBuffer_uint16(MLLdataDepth,MLLsize); MLLpointer = MLLsize/2; } if(MLLpointer < MLLsize) MLLdataDepth[MLLpointer++] = (int)(stateUsed->lifeData.depth_meter * 10); } if(lifesecondsCount >= ReplayDataResolution) { lifesecondsCount = 0; if(liveDataIndex >= DEPTH_DATA_LENGTH) /* compress data */ { ReplayDataResolution *= 2; compressBuffer_uint16(liveDepthData,DEPTH_DATA_LENGTH); compressBuffer_uint16(liveDepthDataMod, DEPTH_DATA_LENGTH); compressBuffer_uint16(ReplayDepthData,DEPTH_DATA_LENGTH); /* also compress Replay data to simplify mapping between live and replay data */ liveDataIndex = DEPTH_DATA_LENGTH / 2; liveDataIndexMod /= 2; } liveDepthData[liveDataIndex] = (int)(stateUsed->lifeData.depth_meter * 100); liveDepthDataMod[liveDataIndexMod] = liveDepthData[liveDataIndex]; if(stateUsed->diveSettings.deco_type.ub.standard == VPM_MODE) { pDecoinfo = &stateUsed->decolistVPM; } else { pDecoinfo = &stateUsed->decolistBuehlmann; } tHome_findNextStop(pDecoinfo->output_stop_length_seconds, &stopDepth, &stopTime); if(stopDepth) { liveDecoData[liveDataIndex] = stopDepth * 100; liveDecoDataMod[liveDataIndexMod] = stopDepth * 100; } else { liveDecoData[liveDataIndex] = 0xFFFF; liveDecoDataMod[liveDataIndexMod] = 0xFFFF; } liveDataIndex++; liveDataIndexMod++; } } else if(bDiveMode == 3) { //End of Dive for(int i=0;i<MLLsize;i++) MLLdataDepth[i] = 0; bDiveMode = 0; } } uint8_t prepareReplayLog(uint8_t StepBackwards) { uint8_t retVal = 0; uint16_t index = 0; uint16_t dataLength = 0; uint8_t markerDetected = 0; SLogbookHeader logbookHeader; if(ReplayDataOffset == StepBackwards) /* Entry already selected => reset selection */ { ReplayDataOffset = 0xFFFF; ReplayDataResolution = 2; ReplayDataLength = 0; ReplayDataMaxDepth = 0; ReplayDataMinutes = 0; retVal = 1; } else { ReplayDataOffset = StepBackwards; logbook_getHeader(StepBackwards ,&logbookHeader); dataLength = logbook_readSampleData(StepBackwards, DEPTH_DATA_LENGTH, ReplayDepthData,NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, ReplayMarkerData); /* check if a marker is provided. If not disable marker functionality for the replay block */ for(index = 0; index < dataLength; index++) { if(ReplayMarkerData[index] != 0) { markerDetected = 1; break; } } if(markerDetected == 0) { ReplayMarkerData[0] = 0xFF; } if( dataLength == DEPTH_DATA_LENGTH) /* log data has been compressed to fit into buffer */ { ReplayDataResolution = (logbookHeader.diveTimeMinutes * 60 + logbookHeader.diveTimeSeconds) / dataLength; } else { ReplayDataResolution = logbookHeader.samplingRate; } ReplayDataLength = dataLength; ReplayDataMaxDepth = logbookHeader.maxDepth; ReplayDataMinutes = logbookHeader.diveTimeMinutes; if(dataLength != 0) { retVal = 1; } } return retVal; } uint8_t getReplayInfo(uint16_t** pReplayData, uint8_t** pReplayMarker, uint16_t* DataLength, uint16_t* MaxDepth, uint16_t* diveMinutes) { uint8_t retVal = 0; if((ReplayDataOffset != 0xFFFF) && (pReplayData != NULL) && (DataLength != NULL) && (MaxDepth != NULL) && (pReplayMarker != 0)) { *pReplayData = ReplayDepthData; *pReplayMarker = ReplayMarkerData; *DataLength = ReplayDataLength; *MaxDepth = ReplayDataMaxDepth; *diveMinutes = ReplayDataMinutes; retVal = 1; } return retVal; } uint16_t *getMiniLiveReplayPointerToData(void) { if(ReplayMarkerIndex == 0) { return liveDepthData; } else { return liveDepthDataMod; } } uint16_t *getMiniLiveDecoPointerToData(void) { if(ReplayMarkerIndex == 0) { return liveDecoData; } else { return liveDecoDataMod; } } uint16_t getMiniLiveReplayLength(void) { return liveDataIndex; } uint16_t getReplayOffset(void) { return ReplayDataOffset; } uint16_t getReplayDataResolution(void) { return ReplayDataResolution; } /************************ (C) COPYRIGHT heinrichs weikamp *****END OF FILE****/