view Common/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_can.c @ 780:e40790a67165

Discovery<=>SmallCPU inferface update: The sensor data struct is extended to store the data of up to three (three visible O2 sensors). To avoid unnecessary payload on the SPI only the last update sensor data item is transfered. The sender receiver uses the sensor ID which is provided in parallel to identify the correct storage location.
author Ideenmodellierer
date Tue, 23 May 2023 21:50:19 +0200
parents c78bcbd5deda
children
line wrap: on
line source

/**
  ******************************************************************************
  * @file    stm32f4xx_hal_can.c
  * @author  MCD Application Team
  * @brief   CAN HAL module driver.
  *          This file provides firmware functions to manage the following
  *          functionalities of the Controller Area Network (CAN) peripheral:
  *           + Initialization and de-initialization functions
  *           + Configuration functions
  *           + Control functions
  *           + Interrupts management
  *           + Callbacks functions
  *           + Peripheral State and Error functions
  *
  @verbatim
  ==============================================================================
                        ##### How to use this driver #####
  ==============================================================================
    [..]
      (#) Initialize the CAN low level resources by implementing the
          HAL_CAN_MspInit():
         (++) Enable the CAN interface clock using __HAL_RCC_CANx_CLK_ENABLE()
         (++) Configure CAN pins
             (+++) Enable the clock for the CAN GPIOs
             (+++) Configure CAN pins as alternate function open-drain
         (++) In case of using interrupts (e.g. HAL_CAN_ActivateNotification())
             (+++) Configure the CAN interrupt priority using
                   HAL_NVIC_SetPriority()
             (+++) Enable the CAN IRQ handler using HAL_NVIC_EnableIRQ()
             (+++) In CAN IRQ handler, call HAL_CAN_IRQHandler()

      (#) Initialize the CAN peripheral using HAL_CAN_Init() function. This
          function resorts to HAL_CAN_MspInit() for low-level initialization.

      (#) Configure the reception filters using the following configuration
          functions:
            (++) HAL_CAN_ConfigFilter()

      (#) Start the CAN module using HAL_CAN_Start() function. At this level
          the node is active on the bus: it receive messages, and can send
          messages.

      (#) To manage messages transmission, the following Tx control functions
          can be used:
            (++) HAL_CAN_AddTxMessage() to request transmission of a new
                 message.
            (++) HAL_CAN_AbortTxRequest() to abort transmission of a pending
                 message.
            (++) HAL_CAN_GetTxMailboxesFreeLevel() to get the number of free Tx
                 mailboxes.
            (++) HAL_CAN_IsTxMessagePending() to check if a message is pending
                 in a Tx mailbox.
            (++) HAL_CAN_GetTxTimestamp() to get the timestamp of Tx message
                 sent, if time triggered communication mode is enabled.

      (#) When a message is received into the CAN Rx FIFOs, it can be retrieved
          using the HAL_CAN_GetRxMessage() function. The function
          HAL_CAN_GetRxFifoFillLevel() allows to know how many Rx message are
          stored in the Rx Fifo.

      (#) Calling the HAL_CAN_Stop() function stops the CAN module.

      (#) The deinitialization is achieved with HAL_CAN_DeInit() function.


      *** Polling mode operation ***
      ==============================
    [..]
      (#) Reception:
            (++) Monitor reception of message using HAL_CAN_GetRxFifoFillLevel()
                 until at least one message is received.
            (++) Then get the message using HAL_CAN_GetRxMessage().

      (#) Transmission:
            (++) Monitor the Tx mailboxes availability until at least one Tx
                 mailbox is free, using HAL_CAN_GetTxMailboxesFreeLevel().
            (++) Then request transmission of a message using
                 HAL_CAN_AddTxMessage().


      *** Interrupt mode operation ***
      ================================
    [..]
      (#) Notifications are activated using HAL_CAN_ActivateNotification()
          function. Then, the process can be controlled through the
          available user callbacks: HAL_CAN_xxxCallback(), using same APIs
          HAL_CAN_GetRxMessage() and HAL_CAN_AddTxMessage().

      (#) Notifications can be deactivated using
          HAL_CAN_DeactivateNotification() function.

      (#) Special care should be taken for CAN_IT_RX_FIFO0_MSG_PENDING and
          CAN_IT_RX_FIFO1_MSG_PENDING notifications. These notifications trig
          the callbacks HAL_CAN_RxFIFO0MsgPendingCallback() and
          HAL_CAN_RxFIFO1MsgPendingCallback(). User has two possible options
          here.
            (++) Directly get the Rx message in the callback, using
                 HAL_CAN_GetRxMessage().
            (++) Or deactivate the notification in the callback without
                 getting the Rx message. The Rx message can then be got later
                 using HAL_CAN_GetRxMessage(). Once the Rx message have been
                 read, the notification can be activated again.


      *** Sleep mode ***
      ==================
    [..]
      (#) The CAN peripheral can be put in sleep mode (low power), using
          HAL_CAN_RequestSleep(). The sleep mode will be entered as soon as the
          current CAN activity (transmission or reception of a CAN frame) will
          be completed.

      (#) A notification can be activated to be informed when the sleep mode
          will be entered.

      (#) It can be checked if the sleep mode is entered using
          HAL_CAN_IsSleepActive().
          Note that the CAN state (accessible from the API HAL_CAN_GetState())
          is HAL_CAN_STATE_SLEEP_PENDING as soon as the sleep mode request is
          submitted (the sleep mode is not yet entered), and become
          HAL_CAN_STATE_SLEEP_ACTIVE when the sleep mode is effective.

      (#) The wake-up from sleep mode can be trigged by two ways:
            (++) Using HAL_CAN_WakeUp(). When returning from this function,
                 the sleep mode is exited (if return status is HAL_OK).
            (++) When a start of Rx CAN frame is detected by the CAN peripheral,
                 if automatic wake up mode is enabled.

  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"

/** @addtogroup STM32F4xx_HAL_Driver
  * @{
  */

#if defined(CAN1)

/** @defgroup CAN CAN
  * @brief CAN driver modules
  * @{
  */

#ifdef HAL_CAN_MODULE_ENABLED

#ifdef HAL_CAN_LEGACY_MODULE_ENABLED
  #error "The CAN driver cannot be used with its legacy, Please enable only one CAN module at once"
#endif

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup CAN_Private_Constants CAN Private Constants
  * @{
  */
#define CAN_TIMEOUT_VALUE 10U
/**
  * @}
  */
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/

/** @defgroup CAN_Exported_Functions CAN Exported Functions
  * @{
  */

/** @defgroup CAN_Exported_Functions_Group1 Initialization and de-initialization functions
 *  @brief    Initialization and Configuration functions
 *
@verbatim
  ==============================================================================
              ##### Initialization and de-initialization functions #####
  ==============================================================================
    [..]  This section provides functions allowing to:
      (+) HAL_CAN_Init                       : Initialize and configure the CAN.
      (+) HAL_CAN_DeInit                     : De-initialize the CAN.
      (+) HAL_CAN_MspInit                    : Initialize the CAN MSP.
      (+) HAL_CAN_MspDeInit                  : DeInitialize the CAN MSP.

@endverbatim
  * @{
  */

/**
  * @brief  Initializes the CAN peripheral according to the specified
  *         parameters in the CAN_InitStruct.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CAN_Init(CAN_HandleTypeDef *hcan)
{
  uint32_t tickstart = 0U;

  /* Check CAN handle */
  if (hcan == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the parameters */
  assert_param(IS_CAN_ALL_INSTANCE(hcan->Instance));
  assert_param(IS_FUNCTIONAL_STATE(hcan->Init.TimeTriggeredMode));
  assert_param(IS_FUNCTIONAL_STATE(hcan->Init.AutoBusOff));
  assert_param(IS_FUNCTIONAL_STATE(hcan->Init.AutoWakeUp));
  assert_param(IS_FUNCTIONAL_STATE(hcan->Init.AutoRetransmission));
  assert_param(IS_FUNCTIONAL_STATE(hcan->Init.ReceiveFifoLocked));
  assert_param(IS_FUNCTIONAL_STATE(hcan->Init.TransmitFifoPriority));
  assert_param(IS_CAN_MODE(hcan->Init.Mode));
  assert_param(IS_CAN_SJW(hcan->Init.SyncJumpWidth));
  assert_param(IS_CAN_BS1(hcan->Init.TimeSeg1));
  assert_param(IS_CAN_BS2(hcan->Init.TimeSeg2));
  assert_param(IS_CAN_PRESCALER(hcan->Init.Prescaler));

  if (hcan->State == HAL_CAN_STATE_RESET)
  {
    /* Init the low level hardware: CLOCK, NVIC */
    HAL_CAN_MspInit(hcan);
  }

  /* Exit from sleep mode */
  CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_SLEEP);

  /* Get tick */
  tickstart = HAL_GetTick();

  /* Check Sleep mode leave acknowledge */
  while ((hcan->Instance->MSR & CAN_MSR_SLAK) != RESET)
  {
    if ((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE)
    {
      /* Update error code */
      hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT;

      /* Change CAN state */
      hcan->State = HAL_CAN_STATE_ERROR;

      return HAL_ERROR;
    }
  }

  /* Request initialisation */
  SET_BIT(hcan->Instance->MCR, CAN_MCR_INRQ);

  /* Get tick */
  tickstart = HAL_GetTick();

  /* Wait initialisation acknowledge */
  while ((hcan->Instance->MSR & CAN_MSR_INAK) == RESET)
  {
    if ((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE)
    {
      /* Update error code */
      hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT;

      /* Change CAN state */
      hcan->State = HAL_CAN_STATE_ERROR;

      return HAL_ERROR;
    }
  }

  /* Set the time triggered communication mode */
  if (hcan->Init.TimeTriggeredMode == ENABLE)
  {
    SET_BIT(hcan->Instance->MCR, CAN_MCR_TTCM);
  }
  else
  {
    CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_TTCM);
  }

  /* Set the automatic bus-off management */
  if (hcan->Init.AutoBusOff == ENABLE)
  {
    SET_BIT(hcan->Instance->MCR, CAN_MCR_ABOM);
  }
  else
  {
    CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_ABOM);
  }

  /* Set the automatic wake-up mode */
  if (hcan->Init.AutoWakeUp == ENABLE)
  {
    SET_BIT(hcan->Instance->MCR, CAN_MCR_AWUM);
  }
  else
  {
    CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_AWUM);
  }

  /* Set the automatic retransmission */
  if (hcan->Init.AutoRetransmission == ENABLE)
  {
    CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_NART);
  }
  else
  {
    SET_BIT(hcan->Instance->MCR, CAN_MCR_NART);
  }

  /* Set the receive FIFO locked mode */
  if (hcan->Init.ReceiveFifoLocked == ENABLE)
  {
    SET_BIT(hcan->Instance->MCR, CAN_MCR_RFLM);
  }
  else
  {
    CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_RFLM);
  }

  /* Set the transmit FIFO priority */
  if (hcan->Init.TransmitFifoPriority == ENABLE)
  {
    SET_BIT(hcan->Instance->MCR, CAN_MCR_TXFP);
  }
  else
  {
    CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_TXFP);
  }

  /* Set the bit timing register */
  WRITE_REG(hcan->Instance->BTR, (uint32_t)(hcan->Init.Mode           |
                                            hcan->Init.SyncJumpWidth  |
                                            hcan->Init.TimeSeg1       |
                                            hcan->Init.TimeSeg2       |
                                            (hcan->Init.Prescaler - 1U)));

  /* Initialize the error code */
  hcan->ErrorCode = HAL_CAN_ERROR_NONE;

  /* Initialize the CAN state */
  hcan->State = HAL_CAN_STATE_READY;

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Deinitializes the CAN peripheral registers to their default
  *         reset values.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CAN_DeInit(CAN_HandleTypeDef *hcan)
{
  /* Check CAN handle */
  if (hcan == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the parameters */
  assert_param(IS_CAN_ALL_INSTANCE(hcan->Instance));

  /* Stop the CAN module */
  HAL_CAN_Stop(hcan);

  /* DeInit the low level hardware: CLOCK, NVIC */
  HAL_CAN_MspDeInit(hcan);

  /* Reset the CAN peripheral */
  SET_BIT(hcan->Instance->MCR, CAN_MCR_RESET);

  /* Reset the CAN ErrorCode */
  hcan->ErrorCode = HAL_CAN_ERROR_NONE;

  /* Change CAN state */
  hcan->State = HAL_CAN_STATE_RESET;

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Initializes the CAN MSP.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval None
  */
__weak void HAL_CAN_MspInit(CAN_HandleTypeDef *hcan)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hcan);

  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_CAN_MspInit could be implemented in the user file
   */
}

/**
  * @brief  DeInitializes the CAN MSP.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval None
  */
__weak void HAL_CAN_MspDeInit(CAN_HandleTypeDef *hcan)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hcan);

  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_CAN_MspDeInit could be implemented in the user file
   */
}


/**
  * @}
  */

/** @defgroup CAN_Exported_Functions_Group2 Configuration functions
 *  @brief    Configuration functions.
 *
@verbatim
  ==============================================================================
              ##### Configuration functions #####
  ==============================================================================
    [..]  This section provides functions allowing to:
      (+) HAL_CAN_ConfigFilter            : Configure the CAN reception filters

@endverbatim
  * @{
  */

/**
  * @brief  Configures the CAN reception filter according to the specified
  *         parameters in the CAN_FilterInitStruct.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @param  sFilterConfig pointer to a CAN_FilterTypeDef structure that
  *         contains the filter configuration information.
  * @retval None
  */
HAL_StatusTypeDef HAL_CAN_ConfigFilter(CAN_HandleTypeDef *hcan, CAN_FilterTypeDef *sFilterConfig)
{
  uint32_t filternbrbitpos = 0U;
  CAN_TypeDef *can_ip = hcan->Instance;

  if ((hcan->State == HAL_CAN_STATE_READY) ||
      (hcan->State == HAL_CAN_STATE_LISTENING))
  {
    /* Check the parameters */
    assert_param(IS_CAN_FILTER_ID_HALFWORD(sFilterConfig->FilterIdHigh));
    assert_param(IS_CAN_FILTER_ID_HALFWORD(sFilterConfig->FilterIdLow));
    assert_param(IS_CAN_FILTER_ID_HALFWORD(sFilterConfig->FilterMaskIdHigh));
    assert_param(IS_CAN_FILTER_ID_HALFWORD(sFilterConfig->FilterMaskIdLow));
    assert_param(IS_CAN_FILTER_MODE(sFilterConfig->FilterMode));
    assert_param(IS_CAN_FILTER_SCALE(sFilterConfig->FilterScale));
    assert_param(IS_CAN_FILTER_FIFO(sFilterConfig->FilterFIFOAssignment));
    assert_param(IS_FUNCTIONAL_STATE(sFilterConfig->FilterActivation));

#if defined(CAN3)
    /* Check the CAN instance */
    if (hcan->Instance == CAN3)
    {
      /* CAN3 is single instance with 14 dedicated filters banks */

      /* Check the parameters */
      assert_param(IS_CAN_FILTER_BANK_SINGLE(sFilterConfig->FilterBank));
    }
    else
    {
      /* CAN1 and CAN2 are dual instances with 28 common filters banks */
      /* Select master instance to access the filter banks */
      can_ip = CAN1;

      /* Check the parameters */
      assert_param(IS_CAN_FILTER_BANK_DUAL(sFilterConfig->FilterBank));
      assert_param(IS_CAN_FILTER_BANK_DUAL(sFilterConfig->SlaveStartFilterBank));
    }
#elif defined(CAN2)
    /* CAN1 and CAN2 are dual instances with 28 common filters banks */
    /* Select master instance to access the filter banks */
    can_ip = CAN1;

    /* Check the parameters */
    assert_param(IS_CAN_FILTER_BANK_DUAL(sFilterConfig->FilterBank));
    assert_param(IS_CAN_FILTER_BANK_DUAL(sFilterConfig->SlaveStartFilterBank));
#else
    /* CAN1 is single instance with 14 dedicated filters banks */

    /* Check the parameters */
    assert_param(IS_CAN_FILTER_BANK_SINGLE(sFilterConfig->FilterBank));
#endif

    /* Initialisation mode for the filter */
    SET_BIT(can_ip->FMR, CAN_FMR_FINIT);

#if defined(CAN3)
    /* Check the CAN instance */
    if (can_ip == CAN1)
    {
      /* Select the start filter number of CAN2 slave instance */
      CLEAR_BIT(can_ip->FMR, CAN_FMR_CAN2SB);
      SET_BIT(can_ip->FMR, sFilterConfig->SlaveStartFilterBank << CAN_FMR_CAN2SB_Pos);
    }

#elif defined(CAN2)
    /* Select the start filter number of CAN2 slave instance */
    CLEAR_BIT(can_ip->FMR, CAN_FMR_CAN2SB);
    SET_BIT(can_ip->FMR, sFilterConfig->SlaveStartFilterBank << CAN_FMR_CAN2SB_Pos);

#endif
    /* Convert filter number into bit position */
    filternbrbitpos = (1U) << sFilterConfig->FilterBank;

    /* Filter Deactivation */
    CLEAR_BIT(can_ip->FA1R, filternbrbitpos);

    /* Filter Scale */
    if (sFilterConfig->FilterScale == CAN_FILTERSCALE_16BIT)
    {
      /* 16-bit scale for the filter */
      CLEAR_BIT(can_ip->FS1R, filternbrbitpos);

      /* First 16-bit identifier and First 16-bit mask */
      /* Or First 16-bit identifier and Second 16-bit identifier */
      can_ip->sFilterRegister[sFilterConfig->FilterBank].FR1 =
        ((0x0000FFFFU & (uint32_t)sFilterConfig->FilterMaskIdLow) << 16U) |
        (0x0000FFFFU & (uint32_t)sFilterConfig->FilterIdLow);

      /* Second 16-bit identifier and Second 16-bit mask */
      /* Or Third 16-bit identifier and Fourth 16-bit identifier */
      can_ip->sFilterRegister[sFilterConfig->FilterBank].FR2 =
        ((0x0000FFFFU & (uint32_t)sFilterConfig->FilterMaskIdHigh) << 16U) |
        (0x0000FFFFU & (uint32_t)sFilterConfig->FilterIdHigh);
    }

    if (sFilterConfig->FilterScale == CAN_FILTERSCALE_32BIT)
    {
      /* 32-bit scale for the filter */
      SET_BIT(can_ip->FS1R, filternbrbitpos);

      /* 32-bit identifier or First 32-bit identifier */
      can_ip->sFilterRegister[sFilterConfig->FilterBank].FR1 =
        ((0x0000FFFFU & (uint32_t)sFilterConfig->FilterIdHigh) << 16U) |
        (0x0000FFFFU & (uint32_t)sFilterConfig->FilterIdLow);

      /* 32-bit mask or Second 32-bit identifier */
      can_ip->sFilterRegister[sFilterConfig->FilterBank].FR2 =
        ((0x0000FFFFU & (uint32_t)sFilterConfig->FilterMaskIdHigh) << 16U) |
        (0x0000FFFFU & (uint32_t)sFilterConfig->FilterMaskIdLow);
    }

    /* Filter Mode */
    if (sFilterConfig->FilterMode == CAN_FILTERMODE_IDMASK)
    {
      /* Id/Mask mode for the filter*/
      CLEAR_BIT(can_ip->FM1R, filternbrbitpos);
    }
    else /* CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdList */
    {
      /* Identifier list mode for the filter*/
      SET_BIT(can_ip->FM1R, filternbrbitpos);
    }

    /* Filter FIFO assignment */
    if (sFilterConfig->FilterFIFOAssignment == CAN_FILTER_FIFO0)
    {
      /* FIFO 0 assignation for the filter */
      CLEAR_BIT(can_ip->FFA1R, filternbrbitpos);
    }
    else
    {
      /* FIFO 1 assignation for the filter */
      SET_BIT(can_ip->FFA1R, filternbrbitpos);
    }

    /* Filter activation */
    if (sFilterConfig->FilterActivation == ENABLE)
    {
      SET_BIT(can_ip->FA1R, filternbrbitpos);
    }

    /* Leave the initialisation mode for the filter */
    CLEAR_BIT(can_ip->FMR, CAN_FMR_FINIT);

    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Update error code */
    hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;

    return HAL_ERROR;
  }
}

/**
  * @}
  */

/** @defgroup CAN_Exported_Functions_Group3 Control functions
 *  @brief    Control functions
 *
@verbatim
  ==============================================================================
                      ##### Control functions #####
  ==============================================================================
    [..]  This section provides functions allowing to:
      (+) HAL_CAN_Start                    : Start the CAN module
      (+) HAL_CAN_Stop                     : Stop the CAN module
      (+) HAL_CAN_RequestSleep             : Request sleep mode entry.
      (+) HAL_CAN_WakeUp                   : Wake up from sleep mode.
      (+) HAL_CAN_IsSleepActive            : Check is sleep mode is active.
      (+) HAL_CAN_AddTxMessage             : Add a message to the Tx mailboxes
                                             and activate the corresponding
                                             transmission request
      (+) HAL_CAN_AbortTxRequest           : Abort transmission request
      (+) HAL_CAN_GetTxMailboxesFreeLevel  : Return Tx mailboxes free level
      (+) HAL_CAN_IsTxMessagePending       : Check if a transmission request is
                                             pending on the selected Tx mailbox
      (+) HAL_CAN_GetRxMessage             : Get a CAN frame from the Rx FIFO
      (+) HAL_CAN_GetRxFifoFillLevel       : Return Rx FIFO fill level

@endverbatim
  * @{
  */

/**
  * @brief  Start the CAN module.
  * @param  hcan pointer to an CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CAN_Start(CAN_HandleTypeDef *hcan)
{
  uint32_t tickstart = 0U;

  if (hcan->State == HAL_CAN_STATE_READY)
  {
    /* Change CAN peripheral state */
    hcan->State = HAL_CAN_STATE_LISTENING;

    /* Request leave initialisation */
    CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_INRQ);

    /* Get tick */
    tickstart = HAL_GetTick();

    /* Wait the acknowledge */
    while ((hcan->Instance->MSR & CAN_MSR_INAK) != RESET)
    {
      /* Check for the Timeout */
      if ((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE)
      {
        /* Update error code */
        hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT;

        /* Change CAN state */
        hcan->State = HAL_CAN_STATE_ERROR;

        return HAL_ERROR;
      }
    }

    /* Reset the CAN ErrorCode */
    hcan->ErrorCode = HAL_CAN_ERROR_NONE;

    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Update error code */
    hcan->ErrorCode |= HAL_CAN_ERROR_NOT_READY;

    return HAL_ERROR;
  }
}

/**
  * @brief  Stop the CAN module and enable access to configuration registers.
  * @param  hcan pointer to an CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CAN_Stop(CAN_HandleTypeDef *hcan)
{
  uint32_t tickstart = 0U;

  if (hcan->State == HAL_CAN_STATE_LISTENING)
  {
    /* Request initialisation */
    SET_BIT(hcan->Instance->MCR, CAN_MCR_INRQ);

    /* Get tick */
    tickstart = HAL_GetTick();

    /* Wait the acknowledge */
    while ((hcan->Instance->MSR & CAN_MSR_INAK) == RESET)
    {
      /* Check for the Timeout */
      if ((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE)
      {
        /* Update error code */
        hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT;

        /* Change CAN state */
        hcan->State = HAL_CAN_STATE_ERROR;

        return HAL_ERROR;
      }
    }

    /* Exit from sleep mode */
    CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_SLEEP);

    /* Change CAN peripheral state */
    hcan->State = HAL_CAN_STATE_READY;

    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Update error code */
    hcan->ErrorCode |= HAL_CAN_ERROR_NOT_STARTED;

    return HAL_ERROR;
  }
}

/**
  * @brief  Request the sleep mode (low power) entry.
  *         When returning from this function, Sleep mode will be entered
  *         as soon as the current CAN activity (transmission or reception
  *         of a CAN frame) has been completed.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_CAN_RequestSleep(CAN_HandleTypeDef *hcan)
{
  if ((hcan->State == HAL_CAN_STATE_READY) ||
      (hcan->State == HAL_CAN_STATE_LISTENING))
  {
    /* Request Sleep mode */
    SET_BIT(hcan->Instance->MCR, CAN_MCR_SLEEP);

    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Update error code */
    hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;

    /* Return function status */
    return HAL_ERROR;
  }
}

/**
  * @brief  Wake up from sleep mode.
  *         When returning with HAL_OK status from this function, Sleep mode
  *         is exited.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_CAN_WakeUp(CAN_HandleTypeDef *hcan)
{
  __IO uint32_t count = 0;
  uint32_t timeout = 1000000U;

  if ((hcan->State == HAL_CAN_STATE_READY) ||
      (hcan->State == HAL_CAN_STATE_LISTENING))
  {
    /* Wake up request */
    CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_SLEEP);

    /* Wait sleep mode is exited */
    do
    {
      /* Check if timeout is reached */
      if (++count > timeout)
      {
        /* Update error code */
        hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT;

        return HAL_ERROR;
      }
    }
    while ((hcan->Instance->MSR & CAN_MSR_SLAK) != RESET);

    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Update error code */
    hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;

    return HAL_ERROR;
  }
}

/**
  * @brief  Check is sleep mode is active.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval Status
  *          - 0 : Sleep mode is not active.
  *          - 1 : Sleep mode is active.
  */
uint32_t HAL_CAN_IsSleepActive(CAN_HandleTypeDef *hcan)
{
  uint32_t status = 0U;

  if ((hcan->State == HAL_CAN_STATE_READY) ||
      (hcan->State == HAL_CAN_STATE_LISTENING))
  {
    /* Check Sleep mode */
    if ((hcan->Instance->MSR & CAN_MSR_SLAK) != RESET)
    {
      status = 1U;
    }
  }

  /* Return function status */
  return status;
}

/**
  * @brief  Add a message to the first free Tx mailbox and activate the
  *         corresponding transmission request.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @param  pHeader pointer to a CAN_TxHeaderTypeDef structure.
  * @param  aData array containing the payload of the Tx frame.
  * @param  pTxMailbox pointer to a variable where the function will return
  *         the TxMailbox used to store the Tx message.
  *         This parameter can be a value of @arg CAN_Tx_Mailboxes.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CAN_AddTxMessage(CAN_HandleTypeDef *hcan, CAN_TxHeaderTypeDef *pHeader, uint8_t aData[], uint32_t *pTxMailbox)
{
  uint32_t transmitmailbox;

  /* Check the parameters */
  assert_param(IS_CAN_IDTYPE(pHeader->IDE));
  assert_param(IS_CAN_RTR(pHeader->RTR));
  assert_param(IS_CAN_DLC(pHeader->DLC));
  if (pHeader->IDE == CAN_ID_STD)
  {
    assert_param(IS_CAN_STDID(pHeader->StdId));
  }
  else
  {
    assert_param(IS_CAN_EXTID(pHeader->ExtId));
  }
  assert_param(IS_FUNCTIONAL_STATE(pHeader->TransmitGlobalTime));

  if ((hcan->State == HAL_CAN_STATE_READY) ||
      (hcan->State == HAL_CAN_STATE_LISTENING))
  {
    /* Check that all the Tx mailboxes are not full */
    if (((hcan->Instance->TSR & CAN_TSR_TME0) != RESET) ||
        ((hcan->Instance->TSR & CAN_TSR_TME1) != RESET) ||
        ((hcan->Instance->TSR & CAN_TSR_TME2) != RESET))
    {
      /* Select an empty transmit mailbox */
      transmitmailbox = (hcan->Instance->TSR & CAN_TSR_CODE) >> CAN_TSR_CODE_Pos;

      /* Store the Tx mailbox */
      *pTxMailbox = 1U << transmitmailbox;

      /* Set up the Id */
      if (pHeader->IDE == CAN_ID_STD)
      {
        hcan->Instance->sTxMailBox[transmitmailbox].TIR = ((pHeader->StdId << CAN_TI0R_STID_Pos) |
                                                           pHeader->RTR);
      }
      else
      {
        hcan->Instance->sTxMailBox[transmitmailbox].TIR = ((pHeader->ExtId << CAN_TI0R_EXID_Pos) |
                                                           pHeader->IDE |
                                                           pHeader->RTR);
      }

      /* Set up the DLC */
      hcan->Instance->sTxMailBox[transmitmailbox].TDTR = (pHeader->DLC);

      /* Set up the Transmit Global Time mode */
      if (pHeader->TransmitGlobalTime == ENABLE)
      {
        SET_BIT(hcan->Instance->sTxMailBox[transmitmailbox].TDTR, CAN_TDT0R_TGT);
      }

      /* Set up the data field */
      WRITE_REG(hcan->Instance->sTxMailBox[transmitmailbox].TDHR,
                ((uint32_t)aData[7] << CAN_TDH0R_DATA7_Pos) |
                ((uint32_t)aData[6] << CAN_TDH0R_DATA6_Pos) |
                ((uint32_t)aData[5] << CAN_TDH0R_DATA5_Pos) |
                ((uint32_t)aData[4] << CAN_TDH0R_DATA4_Pos));
      WRITE_REG(hcan->Instance->sTxMailBox[transmitmailbox].TDLR,
                ((uint32_t)aData[3] << CAN_TDL0R_DATA3_Pos) |
                ((uint32_t)aData[2] << CAN_TDL0R_DATA2_Pos) |
                ((uint32_t)aData[1] << CAN_TDL0R_DATA1_Pos) |
                ((uint32_t)aData[0] << CAN_TDL0R_DATA0_Pos));

      /* Request transmission */
      SET_BIT(hcan->Instance->sTxMailBox[transmitmailbox].TIR, CAN_TI0R_TXRQ);

      /* Return function status */
      return HAL_OK;
    }
    else
    {
      /* Update error code */
      hcan->ErrorCode |= HAL_CAN_ERROR_PARAM;

      return HAL_ERROR;
    }
  }
  else
  {
    /* Update error code */
    hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;

    return HAL_ERROR;
  }
}

/**
  * @brief  Abort transmission requests
  * @param  hcan pointer to an CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @param  TxMailboxes List of the Tx Mailboxes to abort.
  *         This parameter can be any combination of @arg CAN_Tx_Mailboxes.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CAN_AbortTxRequest(CAN_HandleTypeDef *hcan, uint32_t TxMailboxes)
{
  /* Check function parameters */
  assert_param(IS_CAN_TX_MAILBOX_LIST(TxMailboxes));

  if ((hcan->State == HAL_CAN_STATE_READY) ||
      (hcan->State == HAL_CAN_STATE_LISTENING))
  {
    /* Check Tx Mailbox 0 */
    if ((TxMailboxes & CAN_TX_MAILBOX0) != RESET)
    {
      /* Add cancellation request for Tx Mailbox 0 */
      SET_BIT(hcan->Instance->TSR, CAN_TSR_ABRQ0);
    }

    /* Check Tx Mailbox 1 */
    if ((TxMailboxes & CAN_TX_MAILBOX1) != RESET)
    {
      /* Add cancellation request for Tx Mailbox 1 */
      SET_BIT(hcan->Instance->TSR, CAN_TSR_ABRQ1);
    }

    /* Check Tx Mailbox 2 */
    if ((TxMailboxes & CAN_TX_MAILBOX2) != RESET)
    {
      /* Add cancellation request for Tx Mailbox 2 */
      SET_BIT(hcan->Instance->TSR, CAN_TSR_ABRQ2);
    }

    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Update error code */
    hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;

    return HAL_ERROR;
  }
}

/**
  * @brief  Return Tx Mailboxes free level: number of free Tx Mailboxes.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval Number of free Tx Mailboxes.
  */
uint32_t HAL_CAN_GetTxMailboxesFreeLevel(CAN_HandleTypeDef *hcan)
{
  uint32_t freelevel = 0U;

  if ((hcan->State == HAL_CAN_STATE_READY) ||
      (hcan->State == HAL_CAN_STATE_LISTENING))
  {
    /* Check Tx Mailbox 0 status */
    if ((hcan->Instance->TSR & CAN_TSR_TME0) != RESET)
    {
      freelevel++;
    }

    /* Check Tx Mailbox 1 status */
    if ((hcan->Instance->TSR & CAN_TSR_TME1) != RESET)
    {
      freelevel++;
    }

    /* Check Tx Mailbox 2 status */
    if ((hcan->Instance->TSR & CAN_TSR_TME2) != RESET)
    {
      freelevel++;
    }
  }

  /* Return Tx Mailboxes free level */
  return freelevel;
}

/**
  * @brief  Check if a transmission request is pending on the selected Tx
  *         Mailboxes.
  * @param  hcan pointer to an CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @param  TxMailboxes List of Tx Mailboxes to check.
  *         This parameter can be any combination of @arg CAN_Tx_Mailboxes.
  * @retval Status
  *          - 0 : No pending transmission request on any selected Tx Mailboxes.
  *          - 1 : Pending transmission request on at least one of the selected
  *                Tx Mailbox.
  */
uint32_t HAL_CAN_IsTxMessagePending(CAN_HandleTypeDef *hcan, uint32_t TxMailboxes)
{
  uint32_t status = 0U;

  /* Check function parameters */
  assert_param(IS_CAN_TX_MAILBOX_LIST(TxMailboxes));

  if ((hcan->State == HAL_CAN_STATE_READY) ||
      (hcan->State == HAL_CAN_STATE_LISTENING))
  {
    /* Check pending transmission request on the selected Tx Mailboxes */
    if ((hcan->Instance->TSR & (TxMailboxes << CAN_TSR_TME0_Pos)) != (TxMailboxes << CAN_TSR_TME0_Pos))
    {
      status = 1U;
    }
  }

  /* Return status */
  return status;
}

/**
  * @brief  Return timestamp of Tx message sent, if time triggered communication
            mode is enabled.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @param  TxMailbox Tx Mailbox where the timestamp of message sent will be
  *         read.
  *         This parameter can be one value of @arg CAN_Tx_Mailboxes.
  * @retval Timestamp of message sent from Tx Mailbox.
  */
uint32_t HAL_CAN_GetTxTimestamp(CAN_HandleTypeDef *hcan, uint32_t TxMailbox)
{
  uint32_t timestamp = 0U;
  uint32_t transmitmailbox;

  /* Check function parameters */
  assert_param(IS_CAN_TX_MAILBOX(TxMailbox));

  if ((hcan->State == HAL_CAN_STATE_READY) ||
      (hcan->State == HAL_CAN_STATE_LISTENING))
  {
    /* Select the Tx mailbox */
    transmitmailbox = POSITION_VAL(TxMailbox);

    /* Get timestamp */
    timestamp = (hcan->Instance->sTxMailBox[transmitmailbox].TDTR & CAN_TDT0R_TIME) >> CAN_TDT0R_TIME_Pos;
  }

  /* Return the timestamp */
  return timestamp;
}

/**
  * @brief  Get an CAN frame from the Rx FIFO zone into the message RAM.
  * @param  hcan pointer to an CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @param  RxFifo Fifo number of the received message to be read.
  *         This parameter can be a value of @arg CAN_receive_FIFO_number.
  * @param  pHeader pointer to a CAN_RxHeaderTypeDef structure where the header
  *         of the Rx frame will be stored.
  * @param  aData array where the payload of the Rx frame will be stored.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CAN_GetRxMessage(CAN_HandleTypeDef *hcan, uint32_t RxFifo, CAN_RxHeaderTypeDef *pHeader, uint8_t aData[])
{
  assert_param(IS_CAN_RX_FIFO(RxFifo));

  if ((hcan->State == HAL_CAN_STATE_READY) ||
      (hcan->State == HAL_CAN_STATE_LISTENING))
  {
    /* Check the Rx FIFO */
    if (RxFifo == CAN_RX_FIFO0) /* Rx element is assigned to Rx FIFO 0 */
    {
      /* Check that the Rx FIFO 0 is not empty */
      if ((hcan->Instance->RF0R & CAN_RF0R_FMP0) == RESET)
      {
        /* Update error code */
        hcan->ErrorCode |= HAL_CAN_ERROR_PARAM;

        return HAL_ERROR;
      }
    }
    else if (RxFifo == CAN_RX_FIFO1) /* Rx element is assigned to Rx FIFO 1 */
    {
      /* Check that the Rx FIFO 1 is not empty */
      if ((hcan->Instance->RF1R & CAN_RF1R_FMP1) == RESET)
      {
        /* Update error code */
        hcan->ErrorCode |= HAL_CAN_ERROR_PARAM;

        return HAL_ERROR;
      }
    }

    /* Get the header */
    pHeader->IDE = CAN_RI0R_IDE & hcan->Instance->sFIFOMailBox[RxFifo].RIR;
    if (pHeader->IDE == CAN_ID_STD)
    {
      pHeader->StdId = (CAN_RI0R_STID & hcan->Instance->sFIFOMailBox[RxFifo].RIR) >> CAN_TI0R_STID_Pos;
    }
    else
    {
      pHeader->ExtId = ((CAN_RI0R_EXID | CAN_RI0R_STID) & hcan->Instance->sFIFOMailBox[RxFifo].RIR) >> CAN_RI0R_EXID_Pos;
    }
    pHeader->RTR = (CAN_RI0R_RTR & hcan->Instance->sFIFOMailBox[RxFifo].RIR) >> CAN_RI0R_RTR_Pos;
    pHeader->DLC = (CAN_RDT0R_DLC & hcan->Instance->sFIFOMailBox[RxFifo].RDTR) >> CAN_RDT0R_DLC_Pos;
    pHeader->FilterMatchIndex = (CAN_RDT0R_FMI & hcan->Instance->sFIFOMailBox[RxFifo].RDTR) >> CAN_RDT0R_FMI_Pos;
    pHeader->Timestamp = (CAN_RDT0R_TIME & hcan->Instance->sFIFOMailBox[RxFifo].RDTR) >> CAN_RDT0R_TIME_Pos;

    /* Get the data */
    aData[0] = (CAN_RDL0R_DATA0 & hcan->Instance->sFIFOMailBox[RxFifo].RDLR) >> CAN_RDL0R_DATA0_Pos;
    aData[1] = (CAN_RDL0R_DATA1 & hcan->Instance->sFIFOMailBox[RxFifo].RDLR) >> CAN_RDL0R_DATA1_Pos;
    aData[2] = (CAN_RDL0R_DATA2 & hcan->Instance->sFIFOMailBox[RxFifo].RDLR) >> CAN_RDL0R_DATA2_Pos;
    aData[3] = (CAN_RDL0R_DATA3 & hcan->Instance->sFIFOMailBox[RxFifo].RDLR) >> CAN_RDL0R_DATA3_Pos;
    aData[4] = (CAN_RDH0R_DATA4 & hcan->Instance->sFIFOMailBox[RxFifo].RDHR) >> CAN_RDH0R_DATA4_Pos;
    aData[5] = (CAN_RDH0R_DATA5 & hcan->Instance->sFIFOMailBox[RxFifo].RDHR) >> CAN_RDH0R_DATA5_Pos;
    aData[6] = (CAN_RDH0R_DATA6 & hcan->Instance->sFIFOMailBox[RxFifo].RDHR) >> CAN_RDH0R_DATA6_Pos;
    aData[7] = (CAN_RDH0R_DATA7 & hcan->Instance->sFIFOMailBox[RxFifo].RDHR) >> CAN_RDH0R_DATA7_Pos;

    /* Release the FIFO */
    if (RxFifo == CAN_RX_FIFO0) /* Rx element is assigned to Rx FIFO 0 */
    {
      /* Release RX FIFO 0 */
      SET_BIT(hcan->Instance->RF0R, CAN_RF0R_RFOM0);
    }
    else if (RxFifo == CAN_RX_FIFO1) /* Rx element is assigned to Rx FIFO 1 */
    {
      /* Release RX FIFO 1 */
      SET_BIT(hcan->Instance->RF1R, CAN_RF1R_RFOM1);
    }

    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Update error code */
    hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;

    return HAL_ERROR;
  }
}

/**
  * @brief  Return Rx FIFO fill level.
  * @param  hcan pointer to an CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @param  RxFifo Rx FIFO.
  *         This parameter can be a value of @arg CAN_receive_FIFO_number.
  * @retval Number of messages available in Rx FIFO.
  */
uint32_t HAL_CAN_GetRxFifoFillLevel(CAN_HandleTypeDef *hcan, uint32_t RxFifo)
{
  uint32_t filllevel = 0U;

  /* Check function parameters */
  assert_param(IS_CAN_RX_FIFO(RxFifo));

  if ((hcan->State == HAL_CAN_STATE_READY) ||
      (hcan->State == HAL_CAN_STATE_LISTENING))
  {
    if (RxFifo == CAN_RX_FIFO0)
    {
      filllevel = hcan->Instance->RF0R & CAN_RF0R_FMP0;
    }
    else /* RxFifo == CAN_RX_FIFO1 */
    {
      filllevel = hcan->Instance->RF1R & CAN_RF1R_FMP1;
    }
  }

  /* Return Rx FIFO fill level */
  return filllevel;
}

/**
  * @}
  */

/** @defgroup CAN_Exported_Functions_Group4 Interrupts management
 *  @brief    Interrupts management
 *
@verbatim
  ==============================================================================
                       ##### Interrupts management #####
  ==============================================================================
    [..]  This section provides functions allowing to:
      (+) HAL_CAN_ActivateNotification      : Enable interrupts
      (+) HAL_CAN_DeactivateNotification    : Disable interrupts
      (+) HAL_CAN_IRQHandler                : Handles CAN interrupt request

@endverbatim
  * @{
  */

/**
  * @brief  Enable interrupts.
  * @param  hcan pointer to an CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @param  ActiveITs indicates which interrupts will be enabled.
  *         This parameter can be any combination of @arg CAN_Interrupts.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CAN_ActivateNotification(CAN_HandleTypeDef *hcan, uint32_t ActiveITs)
{
  /* Check function parameters */
  assert_param(IS_CAN_IT(ActiveITs));

  if ((hcan->State == HAL_CAN_STATE_READY) ||
      (hcan->State == HAL_CAN_STATE_LISTENING))
  {
    /* Enable the selected interrupts */
    __HAL_CAN_ENABLE_IT(hcan, ActiveITs);

    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Update error code */
    hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;

    return HAL_ERROR;
  }
}

/**
  * @brief  Disable interrupts.
  * @param  hcan pointer to an CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @param  InactiveITs indicates which interrupts will be disabled.
  *         This parameter can be any combination of @arg CAN_Interrupts.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CAN_DeactivateNotification(CAN_HandleTypeDef *hcan, uint32_t InactiveITs)
{
  /* Check function parameters */
  assert_param(IS_CAN_IT(InactiveITs));

  if ((hcan->State == HAL_CAN_STATE_READY) ||
      (hcan->State == HAL_CAN_STATE_LISTENING))
  {
    /* Disable the selected interrupts */
    __HAL_CAN_DISABLE_IT(hcan, InactiveITs);

    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Update error code */
    hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;

    return HAL_ERROR;
  }
}

/**
  * @brief  Handles CAN interrupt request
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval None
  */
void HAL_CAN_IRQHandler(CAN_HandleTypeDef *hcan)
{
  uint32_t errorcode = HAL_CAN_ERROR_NONE;
  uint32_t interrupts = READ_REG(hcan->Instance->IER);
  uint32_t msrflags = READ_REG(hcan->Instance->MSR);
  uint32_t tsrflags = READ_REG(hcan->Instance->TSR);
  uint32_t rf0rflags = READ_REG(hcan->Instance->RF0R);
  uint32_t rf1rflags = READ_REG(hcan->Instance->RF1R);
  uint32_t esrflags = READ_REG(hcan->Instance->ESR);

  /* Transmit Mailbox empty interrupt management *****************************/
  if ((interrupts & CAN_IT_TX_MAILBOX_EMPTY) != RESET)
  {
    /* Transmit Mailbox 0 management *****************************************/
    if ((tsrflags & CAN_TSR_RQCP0) != RESET)
    {
      /* Clear the Transmission Complete flag (and TXOK0,ALST0,TERR0 bits) */
      __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_RQCP0);

      if ((tsrflags & CAN_TSR_TXOK0) != RESET)
      {
        /* Transmission Mailbox 0 complete callback */
        /* Call weak (surcharged) callback */
        HAL_CAN_TxMailbox0CompleteCallback(hcan);
      }
      else
      {
        if ((tsrflags & CAN_TSR_ALST0) != RESET)
        {
          /* Update error code */
          errorcode |= HAL_CAN_ERROR_TX_ALST0;
        }
        else if ((tsrflags & CAN_TSR_TERR0) != RESET)
        {
          /* Update error code */
          errorcode |= HAL_CAN_ERROR_TX_TERR0;
        }
        else
        {
          /* Transmission Mailbox 0 abort callback */
          /* Call weak (surcharged) callback */
          HAL_CAN_TxMailbox0AbortCallback(hcan);
        }
      }
    }

    /* Transmit Mailbox 1 management *****************************************/
    if ((tsrflags & CAN_TSR_RQCP1) != RESET)
    {
      /* Clear the Transmission Complete flag (and TXOK1,ALST1,TERR1 bits) */
      __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_RQCP1);

      if ((tsrflags & CAN_TSR_TXOK1) != RESET)
      {
        /* Transmission Mailbox 1 complete callback */
        /* Call weak (surcharged) callback */
        HAL_CAN_TxMailbox1CompleteCallback(hcan);
      }
      else
      {
        if ((tsrflags & CAN_TSR_ALST1) != RESET)
        {
          /* Update error code */
          errorcode |= HAL_CAN_ERROR_TX_ALST1;
        }
        else if ((tsrflags & CAN_TSR_TERR1) != RESET)
        {
          /* Update error code */
          errorcode |= HAL_CAN_ERROR_TX_TERR1;
        }
        else
        {
          /* Transmission Mailbox 1 abort callback */
          /* Call weak (surcharged) callback */
          HAL_CAN_TxMailbox1AbortCallback(hcan);
        }
      }
    }

    /* Transmit Mailbox 2 management *****************************************/
    if ((tsrflags & CAN_TSR_RQCP2) != RESET)
    {
      /* Clear the Transmission Complete flag (and TXOK2,ALST2,TERR2 bits) */
      __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_RQCP2);

      if ((tsrflags & CAN_TSR_TXOK2) != RESET)
      {
        /* Transmission Mailbox 2 complete callback */
        /* Call weak (surcharged) callback */
        HAL_CAN_TxMailbox2CompleteCallback(hcan);
      }
      else
      {
        if ((tsrflags & CAN_TSR_ALST2) != RESET)
        {
          /* Update error code */
          errorcode |= HAL_CAN_ERROR_TX_ALST2;
        }
        else if ((tsrflags & CAN_TSR_TERR2) != RESET)
        {
          /* Update error code */
          errorcode |= HAL_CAN_ERROR_TX_TERR2;
        }
        else
        {
          /* Transmission Mailbox 2 abort callback */
          /* Call weak (surcharged) callback */
          HAL_CAN_TxMailbox2AbortCallback(hcan);
        }
      }
    }
  }

  /* Receive FIFO 0 overrun interrupt management *****************************/
  if ((interrupts & CAN_IT_RX_FIFO0_OVERRUN) != RESET)
  {
    if ((rf0rflags & CAN_RF0R_FOVR0) != RESET)
    {
      /* Set CAN error code to Rx Fifo 0 overrun error */
      errorcode |= HAL_CAN_ERROR_RX_FOV0;

      /* Clear FIFO0 Overrun Flag */
      __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV0);
    }
  }

  /* Receive FIFO 0 full interrupt management ********************************/
  if ((interrupts & CAN_IT_RX_FIFO0_FULL) != RESET)
  {
    if ((rf0rflags & CAN_RF0R_FULL0) != RESET)
    {
      /* Clear FIFO 0 full Flag */
      __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF0);

      /* Receive FIFO 0 full Callback */
      /* Call weak (surcharged) callback */
      HAL_CAN_RxFifo0FullCallback(hcan);
    }
  }

  /* Receive FIFO 0 message pending interrupt management *********************/
  if ((interrupts & CAN_IT_RX_FIFO0_MSG_PENDING) != RESET)
  {
    /* Check if message is still pending */
    if ((hcan->Instance->RF0R & CAN_RF0R_FMP0) != RESET)
    {
      /* Receive FIFO 0 mesage pending Callback */
      /* Call weak (surcharged) callback */
      HAL_CAN_RxFifo0MsgPendingCallback(hcan);
    }
  }

  /* Receive FIFO 1 overrun interrupt management *****************************/
  if ((interrupts & CAN_IT_RX_FIFO1_OVERRUN) != RESET)
  {
    if ((rf1rflags & CAN_RF1R_FOVR1) != RESET)
    {
      /* Set CAN error code to Rx Fifo 1 overrun error */
      errorcode |= HAL_CAN_ERROR_RX_FOV1;

      /* Clear FIFO1 Overrun Flag */
      __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV1);
    }
  }

  /* Receive FIFO 1 full interrupt management ********************************/
  if ((interrupts & CAN_IT_RX_FIFO1_FULL) != RESET)
  {
    if ((rf1rflags & CAN_RF1R_FULL1) != RESET)
    {
      /* Clear FIFO 1 full Flag */
      __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF1);

      /* Receive FIFO 1 full Callback */
      /* Call weak (surcharged) callback */
      HAL_CAN_RxFifo1FullCallback(hcan);
    }
  }

  /* Receive FIFO 1 message pending interrupt management *********************/
  if ((interrupts & CAN_IT_RX_FIFO1_MSG_PENDING) != RESET)
  {
    /* Check if message is still pending */
    if ((hcan->Instance->RF1R & CAN_RF1R_FMP1) != RESET)
    {
      /* Receive FIFO 1 mesage pending Callback */
      /* Call weak (surcharged) callback */
      HAL_CAN_RxFifo1MsgPendingCallback(hcan);
    }
  }

  /* Sleep interrupt management *********************************************/
  if ((interrupts & CAN_IT_SLEEP_ACK) != RESET)
  {
    if ((msrflags & CAN_MSR_SLAKI) != RESET)
    {
      /* Clear Sleep interrupt Flag */
      __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_SLAKI);

      /* Sleep Callback */
      /* Call weak (surcharged) callback */
      HAL_CAN_SleepCallback(hcan);
    }
  }

  /* WakeUp interrupt management *********************************************/
  if ((interrupts & CAN_IT_WAKEUP) != RESET)
  {
    if ((msrflags & CAN_MSR_WKUI) != RESET)
    {
      /* Clear WakeUp Flag */
      __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_WKU);

      /* WakeUp Callback */
      /* Call weak (surcharged) callback */
      HAL_CAN_WakeUpFromRxMsgCallback(hcan);
    }
  }

  /* Error interrupts management *********************************************/
  if ((interrupts & CAN_IT_ERROR) != RESET)
  {
    if ((msrflags & CAN_MSR_ERRI) != RESET)
    {
      /* Check Error Warning Flag */
      if (((interrupts & CAN_IT_ERROR_WARNING) != RESET) &&
          ((esrflags & CAN_ESR_EWGF) != RESET))
      {
        /* Set CAN error code to Error Warning */
        errorcode |= HAL_CAN_ERROR_EWG;

        /* No need for clear of Error Warning Flag as read-only */
      }

      /* Check Error Passive Flag */
      if (((interrupts & CAN_IT_ERROR_PASSIVE) != RESET) &&
          ((esrflags & CAN_ESR_EPVF) != RESET))
      {
        /* Set CAN error code to Error Passive */
        errorcode |= HAL_CAN_ERROR_EPV;

        /* No need for clear of Error Passive Flag as read-only */
      }

      /* Check Bus-off Flag */
      if (((interrupts & CAN_IT_BUSOFF) != RESET) &&
          ((esrflags & CAN_ESR_BOFF) != RESET))
      {
        /* Set CAN error code to Bus-Off */
        errorcode |= HAL_CAN_ERROR_BOF;

        /* No need for clear of Error Bus-Off as read-only */
      }

      /* Check Last Error Code Flag */
      if (((interrupts & CAN_IT_LAST_ERROR_CODE) != RESET) &&
          ((esrflags & CAN_ESR_LEC) != RESET))
      {
        switch (esrflags & CAN_ESR_LEC)
        {
          case (CAN_ESR_LEC_0):
            /* Set CAN error code to Stuff error */
            errorcode |= HAL_CAN_ERROR_STF;
            break;
          case (CAN_ESR_LEC_1):
            /* Set CAN error code to Form error */
            errorcode |= HAL_CAN_ERROR_FOR;
            break;
          case (CAN_ESR_LEC_1 | CAN_ESR_LEC_0):
            /* Set CAN error code to Acknowledgement error */
            errorcode |= HAL_CAN_ERROR_ACK;
            break;
          case (CAN_ESR_LEC_2):
            /* Set CAN error code to Bit recessive error */
            errorcode |= HAL_CAN_ERROR_BR;
            break;
          case (CAN_ESR_LEC_2 | CAN_ESR_LEC_0):
            /* Set CAN error code to Bit Dominant error */
            errorcode |= HAL_CAN_ERROR_BD;
            break;
          case (CAN_ESR_LEC_2 | CAN_ESR_LEC_1):
            /* Set CAN error code to CRC error */
            errorcode |= HAL_CAN_ERROR_CRC;
            break;
          default:
            break;
        }

        /* Clear Last error code Flag */
        CLEAR_BIT(hcan->Instance->ESR, CAN_ESR_LEC);
      }
    }

    /* Clear ERRI Flag */
    __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_ERRI);
  }

  /* Call the Error call Back in case of Errors */
  if (errorcode != HAL_CAN_ERROR_NONE)
  {
    /* Update error code in handle */
    hcan->ErrorCode |= errorcode;

    /* Call Error callback function */
    /* Call weak (surcharged) callback */
    HAL_CAN_ErrorCallback(hcan);
  }
}

/**
  * @}
  */

/** @defgroup CAN_Exported_Functions_Group5 Callback functions
 *  @brief   CAN Callback functions
 *
@verbatim
  ==============================================================================
                          ##### Callback functions #####
  ==============================================================================
    [..]
    This subsection provides the following callback functions:
      (+) HAL_CAN_TxMailbox0CompleteCallback
      (+) HAL_CAN_TxMailbox1CompleteCallback
      (+) HAL_CAN_TxMailbox2CompleteCallback
      (+) HAL_CAN_TxMailbox0AbortCallback
      (+) HAL_CAN_TxMailbox1AbortCallback
      (+) HAL_CAN_TxMailbox2AbortCallback
      (+) HAL_CAN_RxFifo0MsgPendingCallback
      (+) HAL_CAN_RxFifo0FullCallback
      (+) HAL_CAN_RxFifo1MsgPendingCallback
      (+) HAL_CAN_RxFifo1FullCallback
      (+) HAL_CAN_SleepCallback
      (+) HAL_CAN_WakeUpFromRxMsgCallback
      (+) HAL_CAN_ErrorCallback

@endverbatim
  * @{
  */

/**
  * @brief  Transmission Mailbox 0 complete callback.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval None
  */
__weak void HAL_CAN_TxMailbox0CompleteCallback(CAN_HandleTypeDef *hcan)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hcan);

  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_CAN_TxMailbox0CompleteCallback could be implemented in the
            user file
   */
}

/**
  * @brief  Transmission Mailbox 1 complete callback.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval None
  */
__weak void HAL_CAN_TxMailbox1CompleteCallback(CAN_HandleTypeDef *hcan)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hcan);

  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_CAN_TxMailbox1CompleteCallback could be implemented in the
            user file
   */
}

/**
  * @brief  Transmission Mailbox 2 complete callback.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval None
  */
__weak void HAL_CAN_TxMailbox2CompleteCallback(CAN_HandleTypeDef *hcan)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hcan);

  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_CAN_TxMailbox2CompleteCallback could be implemented in the
            user file
   */
}

/**
  * @brief  Transmission Mailbox 0 Cancellation callback.
  * @param  hcan pointer to an CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval None
  */
__weak void HAL_CAN_TxMailbox0AbortCallback(CAN_HandleTypeDef *hcan)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hcan);

  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_CAN_TxMailbox0AbortCallback could be implemented in the
            user file
   */
}

/**
  * @brief  Transmission Mailbox 1 Cancellation callback.
  * @param  hcan pointer to an CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval None
  */
__weak void HAL_CAN_TxMailbox1AbortCallback(CAN_HandleTypeDef *hcan)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hcan);

  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_CAN_TxMailbox1AbortCallback could be implemented in the
            user file
   */
}

/**
  * @brief  Transmission Mailbox 2 Cancellation callback.
  * @param  hcan pointer to an CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval None
  */
__weak void HAL_CAN_TxMailbox2AbortCallback(CAN_HandleTypeDef *hcan)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hcan);

  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_CAN_TxMailbox2AbortCallback could be implemented in the
            user file
   */
}

/**
  * @brief  Rx FIFO 0 message pending callback.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval None
  */
__weak void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hcan);

  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_CAN_RxFifo0MsgPendingCallback could be implemented in the
            user file
   */
}

/**
  * @brief  Rx FIFO 0 full callback.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval None
  */
__weak void HAL_CAN_RxFifo0FullCallback(CAN_HandleTypeDef *hcan)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hcan);

  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_CAN_RxFifo0FullCallback could be implemented in the user
            file
   */
}

/**
  * @brief  Rx FIFO 1 message pending callback.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval None
  */
__weak void HAL_CAN_RxFifo1MsgPendingCallback(CAN_HandleTypeDef *hcan)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hcan);

  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_CAN_RxFifo1MsgPendingCallback could be implemented in the
            user file
   */
}

/**
  * @brief  Rx FIFO 1 full callback.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval None
  */
__weak void HAL_CAN_RxFifo1FullCallback(CAN_HandleTypeDef *hcan)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hcan);

  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_CAN_RxFifo1FullCallback could be implemented in the user
            file
   */
}

/**
  * @brief  Sleep callback.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval None
  */
__weak void HAL_CAN_SleepCallback(CAN_HandleTypeDef *hcan)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hcan);

  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_CAN_SleepCallback could be implemented in the user file
   */
}

/**
  * @brief  WakeUp from Rx message callback.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval None
  */
__weak void HAL_CAN_WakeUpFromRxMsgCallback(CAN_HandleTypeDef *hcan)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hcan);

  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_CAN_WakeUpFromRxMsgCallback could be implemented in the
            user file
   */
}

/**
  * @brief  Error CAN callback.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval None
  */
__weak void HAL_CAN_ErrorCallback(CAN_HandleTypeDef *hcan)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hcan);

  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_CAN_ErrorCallback could be implemented in the user file
   */
}

/**
  * @}
  */

/** @defgroup CAN_Exported_Functions_Group6 Peripheral State and Error functions
 *  @brief   CAN Peripheral State functions
 *
@verbatim
  ==============================================================================
            ##### Peripheral State and Error functions #####
  ==============================================================================
    [..]
    This subsection provides functions allowing to :
      (+) HAL_CAN_GetState()  : Return the CAN state.
      (+) HAL_CAN_GetError()  : Return the CAN error codes if any.
      (+) HAL_CAN_ResetError(): Reset the CAN error codes if any.

@endverbatim
  * @{
  */

/**
  * @brief  Return the CAN state.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval HAL state
  */
HAL_CAN_StateTypeDef HAL_CAN_GetState(CAN_HandleTypeDef *hcan)
{
  HAL_CAN_StateTypeDef state = hcan->State;

  if ((hcan->State == HAL_CAN_STATE_READY) ||
      (hcan->State == HAL_CAN_STATE_LISTENING))
  {
    /* Check sleep mode acknowledge flag */
    if ((hcan->Instance->MSR & CAN_MSR_SLAK) != RESET)
    {
      /* Sleep mode is active */
      state = HAL_CAN_STATE_SLEEP_ACTIVE;
    }
    /* Check sleep mode request flag */
    else if ((hcan->Instance->MCR & CAN_MCR_SLEEP) != RESET)
    {
      /* Sleep mode request is pending */
      state = HAL_CAN_STATE_SLEEP_PENDING;
    }
  }

  /* Return CAN state */
  return state;
}

/**
  * @brief  Return the CAN error code.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval CAN Error Code
  */
uint32_t HAL_CAN_GetError(CAN_HandleTypeDef *hcan)
{
  /* Return CAN error code */
  return hcan->ErrorCode;
}

/**
  * @brief  Reset the CAN error code.
  * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
  *         the configuration information for the specified CAN.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CAN_ResetError(CAN_HandleTypeDef *hcan)
{
  HAL_StatusTypeDef status = HAL_OK;

  if ((hcan->State == HAL_CAN_STATE_READY) ||
      (hcan->State == HAL_CAN_STATE_LISTENING))
  {
    /* Reset CAN error code */
    hcan->ErrorCode = 0U;
  }
  else
  {
    /* Update error code */
    hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;

    status = HAL_ERROR;
  }

  /* Return the status */
  return status;
}

/**
  * @}
  */

/**
  * @}
  */

#endif /* HAL_CAN_MODULE_ENABLED */

/**
  * @}
  */

#endif /* CAN1 */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/