view Small_CPU/Src/spi.c @ 106:d8dc8327f340 FlipDisplay

Starting 'FlipDisplay' branch - No update with regard to OSTC functionality itself - Added option to flip display - Some minor cleanups and code improvments
author Ideenmodellierer
date Tue, 01 Jan 2019 20:57:41 +0100
parents cd298de33783
children a6f0881074a4
line wrap: on
line source

/**
  ******************************************************************************
  * @file    spi.c 
  * @author  heinrichs weikamp gmbh
  * @version V0.0.1
  * @date    16-Sept-2014
  * @brief   Source code for spi control
  *           
  @verbatim                 
  ============================================================================== 
                        ##### How to use #####
  ============================================================================== 
  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2014 heinrichs weikamp</center></h2>
  *
  ******************************************************************************
  */ 

/* Includes ------------------------------------------------------------------*/
#include "spi.h"
//#include "gpio.h"

/* USER CODE BEGIN 0 */
#include "scheduler.h"

extern void GPIO_new_DEBUG_LOW(void);
extern void GPIO_new_DEBUG_HIGH(void);


uint8_t	data_error = 0;
uint32_t	data_error_time = 0;

static void SPI_Error_Handler(void);

/* USER CODE END 0 */

static uint8_t SPI_check_header_and_footer_ok(void);

SPI_HandleTypeDef hspi1;
SPI_HandleTypeDef hspi3;

DMA_HandleTypeDef hdma_tx;
DMA_HandleTypeDef hdma_rx;

// SPI3 init function
void MX_SPI3_Init(void)
{
  hspi3.Instance 								= SPI3;
  hspi3.Init.Mode 							= SPI_MODE_MASTER;
  hspi3.Init.Direction 					= SPI_DIRECTION_2LINES;
  hspi3.Init.DataSize 					= SPI_DATASIZE_8BIT;
  hspi3.Init.CLKPolarity 				= SPI_POLARITY_HIGH;
  hspi3.Init.CLKPhase 					= SPI_PHASE_1EDGE;
  hspi3.Init.NSS 								= SPI_NSS_SOFT;
  hspi3.Init.BaudRatePrescaler	= SPI_BAUDRATEPRESCALER_256;
  hspi3.Init.FirstBit 					= SPI_FIRSTBIT_MSB;
  hspi3.Init.TIMode 						= SPI_TIMODE_DISABLED;
  hspi3.Init.CRCCalculation 		= SPI_CRCCALCULATION_DISABLED;
  hspi3.Init.CRCPolynomial			= 7;
  HAL_SPI_Init(&hspi3);
}

void MX_SPI3_DeInit(void)
{
  HAL_SPI_DeInit(&hspi3);
}

uint8_t SPI3_ButtonAdjust(uint8_t *arrayInput, uint8_t *arrayOutput)
{
	HAL_StatusTypeDef status;
	uint8_t answer[10];
	uint8_t rework[10];

	rework[0] = 0xFF;
	for(int i = 0; i < 3; i++)
	{
		// limiter
		if(arrayInput[i] == 0xFF)
			arrayInput[i] = 0xFE;
		if(arrayInput[i] >= 15)
		{
			// copy - auslöse-schwelle
			rework[i+1] = arrayInput[i];
			// wieder-scharf-schalte-schwelle
			rework[i+3+1] = arrayInput[i] - 10;
		}
		else
		if(arrayInput[i] >= 10)
		{
			// copy - auslöse-schwelle
			rework[i+1] = arrayInput[i];
			// wieder-scharf-schalte-schwelle
			rework[i+3+1] = arrayInput[i] - 5;
		}
		else
		{
			// copy - auslöse-schwelle
			rework[i+1] = 7;
			// wieder-scharf-schalte-schwelle
			rework[i+3+1] = 6;
		}
	}

	status = HAL_OK; /* = 0 */
	HAL_GPIO_WritePin(GPIOC, GPIO_PIN_9,GPIO_PIN_SET);
	for(int i=0;i<7;i++)
	{
		HAL_Delay(10);
		HAL_GPIO_WritePin(GPIOC, GPIO_PIN_9,GPIO_PIN_RESET);
		HAL_Delay(10);
		status += HAL_SPI_TransmitReceive(&hspi3, &rework[i], &answer[i], 1,20);
		HAL_Delay(10);
		HAL_GPIO_WritePin(GPIOC, GPIO_PIN_9,GPIO_PIN_SET);
	}
	
	if(status == HAL_OK)
	{
		for(int i = 0; i < 3; i++)
		{
			arrayOutput[i] = answer[i+2]; // first not, return of 0xFF not
		}	
		return 1;
	}
	else
		
		return 0;
}


// SPI5 init function
void MX_SPI1_Init(void)
{
  hspi1.Instance 								= SPI1;
  hspi1.Init.Mode 							= SPI_MODE_SLAVE;
  hspi1.Init.Direction 					= SPI_DIRECTION_2LINES;
  hspi1.Init.DataSize 					= SPI_DATASIZE_8BIT;
  hspi1.Init.CLKPolarity 				= SPI_POLARITY_LOW;
  hspi1.Init.CLKPhase 					= SPI_PHASE_1EDGE;
  hspi1.Init.NSS 								= SPI_NSS_HARD_INPUT;//SPI_NSS_SOFT;
  hspi1.Init.BaudRatePrescaler	= SPI_BAUDRATEPRESCALER_128;
  hspi1.Init.FirstBit 					= SPI_FIRSTBIT_MSB;
  hspi1.Init.TIMode 						= SPI_TIMODE_DISABLED;
  hspi1.Init.CRCCalculation 		= SPI_CRCCALCULATION_DISABLED;//_DISABLED; _ENABLED;
  hspi1.Init.CRCPolynomial			= 7;
  HAL_SPI_Init(&hspi1);
}

void MX_SPI_DeInit(void)
{
  HAL_SPI_DeInit(&hspi1);
}


void HAL_SPI_MspInit(SPI_HandleTypeDef* hspi)
{

  GPIO_InitTypeDef GPIO_InitStruct;

  if(hspi->Instance==SPI1)
  {
    // Peripheral clock enable
    __SPI1_CLK_ENABLE();
    __GPIOA_CLK_ENABLE();
		//SPI1 GPIO Configuration  
		//PA4   ------> SPI1_CS 
		//PA5   ------> SPI1_SCK
		//PA6   ------> SPI1_MISO 
		//PA7   ------> SPI1_MOSI 
		
    GPIO_InitStruct.Pin = GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7;
//    GPIO_InitStruct.Pin = GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_PULLUP;
    GPIO_InitStruct.Speed = GPIO_SPEED_MEDIUM;
    GPIO_InitStruct.Alternate = GPIO_AF5_SPI1;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

		//##-3- Configure the DMA streams ##########################################
		// Configure the DMA handler for Transmission process 
		hdma_tx.Instance                 = DMA2_Stream3;
		hdma_tx.Init.Channel             = DMA_CHANNEL_3;
		hdma_tx.Init.Direction           = DMA_MEMORY_TO_PERIPH;
		hdma_tx.Init.PeriphInc           = DMA_PINC_DISABLE;
		hdma_tx.Init.MemInc              = DMA_MINC_ENABLE;
		hdma_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
		hdma_tx.Init.MemDataAlignment    = DMA_MDATAALIGN_BYTE;
		hdma_tx.Init.Mode                = DMA_NORMAL;
		hdma_tx.Init.Priority            = DMA_PRIORITY_LOW;
		hdma_tx.Init.FIFOMode            = DMA_FIFOMODE_DISABLE;         
		hdma_tx.Init.FIFOThreshold       = DMA_FIFO_THRESHOLD_FULL;
		hdma_tx.Init.MemBurst            = DMA_MBURST_INC4;
		hdma_tx.Init.PeriphBurst         = DMA_PBURST_INC4;
		
		HAL_DMA_Init(&hdma_tx);   
		
		// Associate the initialized DMA handle to the the SPI handle
		__HAL_LINKDMA(hspi, hdmatx, hdma_tx);
			
		// Configure the DMA handler for Transmission process
		hdma_rx.Instance                 = DMA2_Stream0;
		hdma_rx.Init.Channel             = DMA_CHANNEL_3;
		hdma_rx.Init.Direction           = DMA_PERIPH_TO_MEMORY;
		hdma_rx.Init.PeriphInc           = DMA_PINC_DISABLE;
		hdma_rx.Init.MemInc              = DMA_MINC_ENABLE;
		hdma_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
		hdma_rx.Init.MemDataAlignment    = DMA_MDATAALIGN_BYTE;
		hdma_rx.Init.Mode                = DMA_NORMAL;
		hdma_rx.Init.Priority            = DMA_PRIORITY_HIGH;
		hdma_rx.Init.FIFOMode            = DMA_FIFOMODE_DISABLE;         
		hdma_rx.Init.FIFOThreshold       = DMA_FIFO_THRESHOLD_FULL;
		hdma_rx.Init.MemBurst            = DMA_MBURST_INC4;
		hdma_rx.Init.PeriphBurst         = DMA_PBURST_INC4; 

		HAL_DMA_Init(&hdma_rx);
    
  // Associate the initialized DMA handle to the the SPI handle
  __HAL_LINKDMA(hspi, hdmarx, hdma_rx);
    
  //##-4- Configure the NVIC for DMA #########################################
  //NVIC configuration for DMA transfer complete interrupt (SPI3_RX)
  HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 1, 0);   
  HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);

	// NVIC configuration for DMA transfer complete interrupt (SPI1_TX)
  HAL_NVIC_SetPriority(DMA2_Stream3_IRQn, 1, 1);
  HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn);
	}
	else
  if(hspi->Instance==SPI3)
  {
    __GPIOC_CLK_ENABLE();
    __SPI3_CLK_ENABLE();

		//SPI1 GPIO Configuration  
		//PC10   ------> SPI3_SCK
		//PC11   ------> SPI3_MISO 
		//PC12   ------> SPI3_MOSI 
		//PA15   ------> SPI3_NSS (official)
		//PC9    ------> SPI3_NSS (hw)
		
    GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_PULLUP;
    GPIO_InitStruct.Speed = GPIO_SPEED_FAST;
    GPIO_InitStruct.Alternate = GPIO_AF6_SPI3;
    HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

		GPIO_InitStruct.Pin = GPIO_PIN_9;
		GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
		GPIO_InitStruct.Pull = GPIO_PULLUP;
		GPIO_InitStruct.Speed = GPIO_SPEED_LOW;
		HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); 

		HAL_GPIO_WritePin(GPIOC, GPIO_PIN_9,GPIO_PIN_SET);
	}
}

void HAL_SPI_MspDeInit(SPI_HandleTypeDef* hspi){
  if(hspi->Instance==SPI1)
  {
		__SPI1_FORCE_RESET();
		__SPI1_RELEASE_RESET();

		//SPI1 GPIO Configuration  
		//PA5   ------> SPI1_SCK
		//PA6   ------> SPI1_MISO 
		//PA7   ------> SPI1_MOSI 
		
			HAL_GPIO_DeInit(GPIOA, GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7);

		HAL_DMA_DeInit(&hdma_tx);
		HAL_DMA_DeInit(&hdma_rx);
		
		HAL_NVIC_DisableIRQ(DMA2_Stream3_IRQn);
		HAL_NVIC_DisableIRQ(DMA2_Stream0_IRQn);
	}
	else
  if(hspi->Instance==SPI3)
  {
		__SPI3_FORCE_RESET();
		__SPI3_RELEASE_RESET();

		//SPI1 GPIO Configuration  
		//PC10   ------> SPI3_SCK
		//PC11   ------> SPI3_MISO 
		//PC12   ------> SPI3_MOSI 
		//PA15   ------> SPI3_NSS (official)
		//PC9    ------> SPI3_NSS (hw)
		HAL_GPIO_DeInit(GPIOC, GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12);
	}
}

void SPI_synchronize_with_Master(void)
{
  GPIO_InitTypeDef GPIO_InitStruct;

		__GPIOA_CLK_ENABLE();
	/**SPI1 GPIO Configuration  
	PA5   ------> SPI1_SCK
	*/
	GPIO_InitStruct.Pin = GPIO_PIN_4|GPIO_PIN_5;
	GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
	GPIO_InitStruct.Pull = GPIO_PULLUP;
	GPIO_InitStruct.Speed = GPIO_SPEED_LOW;
	HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

	HAL_Delay(10);
	while(HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_4) == 0);
	HAL_Delay(10);
	while(HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_5) == 1);
	HAL_Delay(50);
}


void SPI_Start_single_TxRx_with_Master(void)
{
	uint8_t * pOutput;

	if(global.dataSendToSlave.getDeviceDataNow)
	{
		global.dataSendToSlave.getDeviceDataNow = 0;
		pOutput = (uint8_t*)&(global.deviceDataSendToMaster);
	}
	else
	{
		pOutput = (uint8_t*)&(global.dataSendToMaster);
	}

	if(HAL_SPI_TransmitReceive_DMA(&hspi1,pOutput, (uint8_t*)&(global.dataSendToSlave), EXCHANGE_BUFFERSIZE+1) != HAL_OK)
	{
		// Transfer error in transmission process 
		SPI_Error_Handler();
	}
}


void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
{
	global.check_sync_not_running = 0;
	/* stop data exchange? */
	if(global.mode == MODE_SHUTDOWN)
	{
		global.mode = MODE_SLEEP;
		global.dataSendToSlavePending = 0;
		global.dataSendToSlaveIsValid = 1;
		global.dataSendToSlaveIsNotValidCount = 0;
		return;
	}
	
	/* data consistent? */
	if(SPI_check_header_and_footer_ok())
	{
		GPIO_new_DEBUG_HIGH();
		global.dataSendToSlaveIsValid = 1;
		global.dataSendToSlaveIsNotValidCount = 0;
	}
	else
	{
		GPIO_new_DEBUG_LOW();
		global.dataSendToSlaveIsValid = 0;
		global.dataSendToSlaveIsNotValidCount++;
	}
	global.dataSendToMaster.power_on_reset = 0;
	global.deviceDataSendToMaster.power_on_reset = 0;
	/* no i2c or other time critical threads? */
	if(global.dataSendToSlaveIsValid)
	{
		if(!global.dataSendToSlaveStopEval)
		{
			scheduleSpecial_Evaluate_DataSendToSlave();
		}
		else
		{
			global.dataSendToSlavePending = 1;
		}
	}
	else
	{
		global.dataSendToSlavePending = 0;
	}
	
	/* restart SPI */
	if(hspi == &hspi1)
	{
		if(global.dataSendToSlaveIsValid)
			SPI_Start_single_TxRx_with_Master();
	}
}


static uint8_t SPI_check_header_and_footer_ok(void)
{
	if(global.dataSendToSlave.header.checkCode[0] != 0xBB)
		return 0;
	if(global.dataSendToSlave.header.checkCode[1] != 0x01)
		return 0;
	if(global.dataSendToSlave.header.checkCode[2] != 0x01)
		return 0;
	if(global.dataSendToSlave.header.checkCode[3] != 0xBB)
		return 0;
	if(global.dataSendToSlave.footer.checkCode[0] != 0xF4)
		return 0;
	if(global.dataSendToSlave.footer.checkCode[1] != 0xF3)
		return 0;
	if(global.dataSendToSlave.footer.checkCode[2] != 0xF2)
		return 0;
	if(global.dataSendToSlave.footer.checkCode[3] != 0xF1)
		return 0;

	return 1;
}

static void SPI_Error_Handler(void)
{
  while(1)
  {
  }
}

/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/