Mercurial > public > ostc4
view BootLoader/Src/base_bootlader.c @ 953:d565812061f4 Evo_2_23
Bugfix ascent graph in simulator:
The ascent graph in simulator mode was not show if a depth < 5m was reached. Rootcause was a wrong source for current depth. This has be fixed now.
author | Ideenmodellierer |
---|---|
date | Wed, 01 Jan 2025 17:28:36 +0100 |
parents | f012fcd7f465 |
children | a8c0e6d07b8e |
line wrap: on
line source
/////////////////////////////////////////////////////////////////////////////// /// -*- coding: UTF-8 -*- /// /// \file BootLoader/Src/base_bootlader.c /// \brief he beginning of it all. main() is part of this. /// \author heinrichs weikamp gmbh /// \date 26-February-2014 /// /// $Id$ /////////////////////////////////////////////////////////////////////////////// /// \par Copyright (c) 2014-2018 Heinrichs Weikamp gmbh /// /// This program is free software: you can redistribute it and/or modify /// it under the terms of the GNU General Public License as published by /// the Free Software Foundation, either version 3 of the License, or /// (at your option) any later version. /// /// This program is distributed in the hope that it will be useful, /// but WITHOUT ANY WARRANTY; without even the implied warranty of /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the /// GNU General Public License for more details. /// /// You should have received a copy of the GNU General Public License /// along with this program. If not, see <http://www.gnu.org/licenses/>. ////////////////////////////////////////////////////////////////////////////// /** * @detail The beginning of it all. main() is part of this. * + Do the inits for hardware * + check for button press or update process reset trigger * + Do the inits for sub-systems like menu, dive screen etc. * + Start IRQs * + Start MainTasks not in IRQs * @bug * @warning @verbatim ============================================================================== ##### bootloader specific ##### ============================================================================== 151130 hw sleep on button3 (MX_tell_reset_logik_alles_ok() + DataEX_call() in endlos loop) ============================================================================== ##### bootloader specific ##### ============================================================================== Bootloader info is set right here in this file. The location is 0x0800A000 instead of 0x08050000 (firmware) on system reset (Menu Start Bootloader in firmware) the update process is started automatically if no button is pressed if the right button is pressed the bootloader menu is started after update process (with update or empty) cleaning of EEPROM is started afterwards the watchdog reset starts without activating the update process bluetooth chip is started in tComm on start of the mini bootloader firmware SMALLCPU_CSB_PIN must be re-set to 0 to communicate with small CPU / CPU2 / RTE for RealTerm to send file / firmware, Delays has to be increased to 0 RTE update / SPI1 with DMA gave IBUSERR, now it is working fine :-) 150828 ============================================================================== from standard firmware, parts might be invalid here: ============================================================================== ##### IRQs ##### ============================================================================== [..] The IRQs are very important and most functions should only run there. PreemptPriority are as follows (#) 2 (low) sprintf _only_ here. Don't use in maintask or anywhere else. Called by Buttons und Timer3 Timer3 is 1/10 second (#) 1 (mid) anything that should work while in IRQ2 like HalDelay(), VSYNC and DMA2D Transfer Complete for housekeepingFrame(); (#) 0 (high) _very very short_ interrupts like The HAL hardware part for spi, uart, i2c. SubPriority within PreemptPriority give the order to execute. Introduced 30.Oct.14 as it used by several HAL examples. Three levelAmbients are available (2 low,1 mid,0 high) The STM32F4 has 4bits for IRQ levelAmbients, divided 2/2 in this code with the NVIC_PRIORITYGROUP_2 setting. ============================================================================== ##### MainTask ##### ============================================================================== [..] For everthing slow without importance to be 'in time'. Like VPM and Buehlmann. No sprintf and probably no GFX_SetFramesTopBottom() stuff neither. If sprintf is called while sprintf is executed it blows up everything. ============================================================================== ##### Frames / the external SDRAM ##### ============================================================================== [..] The SDRAM is handled by getFrame() and releaseFrame(). Each frame with 800*480*2 Bytes. Be carefull to release every frame otherwise there will be a memory leakage over time. housekeepingFrame() in the MainTask takes care of cleaning the frames. All frames are filled with 0x00. This will be transparent with color of CLUT_Font020 (is CLUT 0) if the alpha is set for a 16bit pair. housekeepingFrame() delays the cleaning of frames still used as screen buffer to prevent flickering. ============================================================================== ##### Display ##### ============================================================================== [..] There is a Top layer, Bottom layer and background color. All are perfectly alpha-blended by hardware. (#) top layer has 800x480 option function calls only as it is not used for cursors here (#) bottom layer has free size and start option to be used for cursors (or sprites in the future ;-) (#) background only black in the moment. ToDo: Could be anything else for warnings etc. if needed [..] Frame updates, switching and cursors is done with (#) GFX_SetFramesTopBottom() and the subset GFX_SetFrameTop() + GFX_SetFrameBottom() Those do not change anything on the display but give commands to.. (#) GFX_change_LTDC() The only place that changes the pointer. This prevents erratic behaviour if several changes are made within one refresh rate of the screen. Is called in IRQ by PD4 and HAL_GPIO_EXTI_IRQHandler from VSYNC signal. [..] Content (#) Colors by LookupTable only. This could be modified by system settings in the future. (gfx_color.h/.c) (#) Text by text_multilinguage.h/.c with one char necessary only starting from '\x80' with automatic language switch by selected_language in SSettings see openEdit_Language() in tMenuEditSystem.c Therefore there are differnent functions for example: write_label_fix() for single char multilanguage write_label_var() for strings that could include multilanguage as well see GFX_write_string() to get an overview of the controls as well as the command list in gfx_engine.h There is no clear before writing, text overlay is always on. Many options to have LargeFont.SmallFont for numbers etc. ============================================================================== ##### Update, DualBoot and build-in FLASH memory usage ##### ============================================================================== [..] Boot0 pin, Boot1/PB2 pin and BFB2 software bit control the behaviour. PB2 should be tied to GND. Boot0 == VDD -> bootloader on start, otherwise boot from Bank1 or Bank2 depending on BFB2. Bank2 contains the Fonts and should contain a proper test code in future Bank1 is the main code (Bank1 is 1 MB too, usage as of Oct. 14 is 200 KB) [..] Bootloader should be either UART or USB (on FS pins _only_) USB HS to FS like on the Eval board does not work. [..] Bootloader for the smaller CPU2 is implemented via the SPI used for DMA copy. ============================================================================== ##### Connection to CPU2 (STM32F411 as of Oct.14 ##### ============================================================================== [..] Connected via SPI and DMA for every purpose. two entire arrays are transfered for data security reasons with respect to master (STM32F429) might interrupt internal data copy in CPU2 (like hi byte, low byte, etc.). [..] The entire life data is calculated in CPU2. Like tissues, CNS,... Therefore the main unit is _not_ necessarily a Real Time system. Simulation on the main unit can be executed without disrupting life data. [..] SPI is triggered and timed by calling DataEX_call() in data_exchange_main.c DataEX_copy_to_LifeData() does the transfer from buffer to variables used. ============================================================================== ##### Menu, MenuEdit, Info ##### ============================================================================== [..] tMenu.c, tMenuEdit.c and tInfo.c is the system used. logbook is part of Info not Menu. The Info Menu is accessed by button 'Back' The regular Menu is accessed by button 'Enter' [..] Menu content is kept in frame memory for fast access. There is no need to build pages if the 'Enter' button is pressed. This is in contrast to MenuEdit pages. [..] Button control for new pages (and pages in general) have to implemented in tMenu.c, tMenuEdit.c or tInfo.c [..] ToDo (Oct. 14) Timeout for menus via Timer3 / IRQ 2 ============================================================================== ##### specials ##### ============================================================================== [..] There was code for vector graphics from great demos (peridiummmm and jupiter) that can be fitted again @endverbatim ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "base_bootloader.h" // From Bootloader/Inc: #include "tInfoBootloader.h" // ? #include "externLogbookFlash.h" #include "firmwareEraseProgram.h" #include "firmwareJumpToApplication.h" // From Common/Inc: #include "FirmwareData.h" // From Common/Drivers: #include "stm32f4xx_hal.h" #include "stm32f4xx_hal_rcc.h" #include "stm32f4xx_hal_flash_ex.h" #include "stm32f4xx_hal_wwdg.h" #ifdef BOOTLOADER_STANDALONE #include "Fonts/Font_T144_plus.h" #include "Fonts/Font_T84.h" #include "Fonts/Font_T105.h" #include "Fonts/Font_T54.h" #include "Fonts/Font_T48_plus.h" #include "Fonts/Font_T24.h" #include "Fonts/Font_T42.h" #include "Fonts/image_battery.h" #include "Fonts/image_heinrichs_weikamp.h" #include "Fonts/image_ostc.h" #endif // From Discovery/Inc (shall be shared...) #include "data_exchange_main.h" #include "display.h" #include "gfx_engine.h" #include "ostc.h" #include "tComm.h" #include "tStructure.h" // From AC6 support: #include <stdio.h> #include <string.h> // for memcopy /* Private define ------------------------------------------------------------*/ #define BUFFER_SIZE ((uint32_t)0x00177000) #define WRITE_READ_ADDR ((uint32_t)0x0000) #define REFRESH_COUNT ((uint32_t)0x0569) /* SDRAM refresh counter (90Mhz SD clock) */ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ uint8_t returnFromCommCleanUpRequest = 0; const SFirmwareData bootloader_FirmwareData __attribute__(( section(".bootloader_firmware_data") )) = { .versionFirst = 1, .versionSecond = 0, .versionThird = 1, .versionBeta = 1, /* 4 bytes with trailing 0 */ .signature = "cw", .release_year = 16, .release_month = 4, .release_day = 8, .release_sub = 0, /* max 48 with trailing 0 */ .release_info ="tComm with all", /* for safety reasons and coming functions*/ .magic[0] = FIRMWARE_MAGIC_FIRST, .magic[1] = FIRMWARE_MAGIC_SECOND, .magic[2] = FIRMWARE_MAGIC_FIRMWARE, /* the magic byte */ .magic[3] = FIRMWARE_MAGIC_END }; #if 0 const SHardwareData HardwareData __attribute__((at(HARDWAREDATA_ADDRESS))) = { // first 52 bytes .primarySerial = 0xFFFF, .primaryLicence = 0xFF, .revision8bit = 0xFF, .production_year = 0xFF, .production_month = 0xFF, .production_day = 0xFF, .production_bluetooth_name_set = 0xFF, .production_info = { 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF}, // other 12 bytes (64 in total) .secondarySerial = 0xFFFF, .secondaryLicence = 0xFF, .secondaryReason8bit = 0xFF, .secondary_year = 0xFF, .secondary_month = 0xFF, .secondary_day = 0xFF, .secondary_bluetooth_name_set = 0xFF, .secondary_info = {0xFF,0xFF,0xFF,0xFF} }; #endif RTC_HandleTypeDef RtcHandle; TIM_HandleTypeDef TimHandle; /* used in stm32f4xx_it.c too */ TIM_HandleTypeDef TimBacklightHandle; /* used in stm32f4xx_it.c too */ uint32_t time_before; uint32_t time_between; uint32_t time_after; /* SDRAM handler declaration */ SDRAM_HandleTypeDef hsdram; FMC_SDRAM_TimingTypeDef SDRAM_Timing; FMC_SDRAM_CommandTypeDef command; FLASH_OBProgramInitTypeDef OBInit; FLASH_AdvOBProgramInitTypeDef AdvOBInit; /* Private variables with external access ------------------------------------*/ uint32_t globalStateID = 0; uint8_t globalModeID = SURFMODE; uint32_t time_without_button_pressed_deciseconds = 0; uint8_t bootToBootloader = 0; /* Private function prototypes -----------------------------------------------*/ //static void LCD_ToggleFramebuffer(GFX_DrawCfgTypeDef *hconfig); //static void LCD_Config(GFX_DrawCfgTypeDef *hconfig); static void SystemClock_Config(void); static void Error_Handler(void); static void SDRAM_Initialization_Sequence(SDRAM_HandleTypeDef *hsdram, FMC_SDRAM_CommandTypeDef *Command); static void SDRAM_Config(void); //static void DualBoot(void); static void EXTILine_Buttons_Config(void); //static void RTC_init(void); static void TIM_init(void); static void TIM_BACKLIGHT_init(void); //static void TIM_BACKLIGHT_adjust(void); static void gotoSleep(void); uint8_t checkResetForFirmwareUpdate(void); void DeleteResetToFirmwareUpdateRegister(void); void reset_to_firmware_using_Watchdog(void); void reset_to_update_using_system_reset(void); //static void DualBootToBootloader(void); /* ITM Trace-------- ---------------------------------------------------------*/ /* #define ITM_Port8(n) (*((volatile unsigned char *)(0xE0000000+4*n))) #define ITM_Port16(n) (*((volatile unsigned short*)(0xE0000000+4*n))) #define ITM_Port32(n) (*((volatile unsigned long *)(0xE0000000+4*n))) #define DEMCR (*((volatile unsigned long *)(0xE000EDFC))) #define TRCENA 0x01000000 struct __FILE { int handle; }; FILE __stdout; FILE __stdin; int fputc(int ch, FILE *f) { if (DEMCR & TRCENA) { while (ITM_Port32(0) == 0); ITM_Port8(0) = ch; } return(ch); } */ /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ void GPIO_test_I2C_lines(void) { GPIO_InitTypeDef GPIO_InitStructure; __GPIOA_CLK_ENABLE(); __GPIOG_CLK_ENABLE(); GPIO_InitStructure.Pin = GPIO_PIN_7; GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStructure.Pull = GPIO_PULLUP; GPIO_InitStructure.Speed = GPIO_SPEED_LOW; HAL_GPIO_Init(GPIOG, &GPIO_InitStructure); GPIO_InitStructure.Pin = GPIO_PIN_3; HAL_GPIO_Init(GPIOA, &GPIO_InitStructure); while(1) { HAL_GPIO_WritePin(GPIOG,GPIO_PIN_7,GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOA,GPIO_PIN_3,GPIO_PIN_RESET); HAL_Delay(10); HAL_GPIO_WritePin(GPIOG,GPIO_PIN_7,GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOA,GPIO_PIN_3,GPIO_PIN_SET); HAL_Delay(10); } } int main(void) { /* HAL_Init(); SystemClock_Config(); GPIO_test_I2C_lines(); */ uint32_t pLayerInvisible; uint32_t firmware_load_result; uint8_t magicbyte = 0; uint8_t callForUpdate; uint8_t status = 0; char textVersion[32]; uint8_t ptr; uint32_t pOffset; const SHardwareData* HardwareData = hardwareDataGetPointer(); set_globalState(StBoot0); HAL_Init(); HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_2); SystemClock_Config(); MX_GPIO_Init(); /* feedback for the user * aber sehr unsch�n beim Warmstart * da das letzte Bild noch lange nachleuchtet */ // MX_GPIO_Backlight_max_static_only_Init(); /* button press is only 40 to 50 us low */ MX_GPIO_One_Button_only_Init(); uint32_t i = 500000; callForUpdate = __HAL_RCC_GET_FLAG(RCC_FLAG_SFTRST); if(callForUpdate) { i = 0; } else if( (firmware_MainCodeIsProgammed() == 0) || (HardwareData->primarySerial == 0xFFFF) || (HardwareData->production_bluetooth_name_set == 0xFF)) { i = 1; } else { while(MX_GPIO_Read_The_One_Button() && i) { i--; __NOP(); } if(i) { i = 200000; while(!MX_GPIO_Read_The_One_Button() && i) { i--; __NOP(); } if(i) { i = 200000; while(MX_GPIO_Read_The_One_Button() && i) { i--; __NOP(); } if(i) { i = 200000; while(!MX_GPIO_Read_The_One_Button() && i) { i--; __NOP(); } if(i) { i = 200000; while(MX_GPIO_Read_The_One_Button() && i) { i--; __NOP(); } } } } } } if((i == 0) && (callForUpdate == 0)) firmware_JumpTo_Application(); MX_SPI_Init(); SDRAM_Config(); HAL_Delay(100); GFX_init1_no_DMA(&pLayerInvisible, 2); TIM_BACKLIGHT_init(); // ----------------------------- display_power_on__1_of_2__pre_RGB(); GFX_LTDC_Init(); GFX_LTDC_LayerDefaultInit(TOP_LAYER, pLayerInvisible); GFX_LTDC_LayerDefaultInit(BACKGRD_LAYER, pLayerInvisible); GFX_SetFramesTopBottom(pLayerInvisible,pLayerInvisible,480); HAL_Delay(20); display_power_on__2_of_2__post_RGB(); // ----------------------------- GFX_change_LTDC(); GFX_hwBackgroundOn(); GFX_change_LTDC(); // ----------------------------- tInfoBootloader_init(); // ----------------------------- if(i == 0) { tInfo_newpage("load firmware data"); uint8_t* pBuffer = (uint8_t*)((uint32_t)0xD0000000); /* blocked via GFX_init1_no_DMA */ firmware_load_result = ext_flash_read_firmware(pBuffer,768000, &magicbyte); if((firmware_load_result > 0) && (firmware_load_result < 768000) && (magicbyte == 0xEE)) { ptr = ext_flash_read_firmware_version(textVersion); textVersion[ptr++] = 'f'; textVersion[ptr++] = 'o'; textVersion[ptr++] = 'u'; textVersion[ptr++] = 'n'; textVersion[ptr++] = 'd'; textVersion[ptr] = 0; tInfo_newpage(textVersion); tInfo_write("erase flash"); status = firmware_eraseFlashMemory(); if(status != HAL_OK) { tInfo_newpage("error. try again."); status = firmware_eraseFlashMemory(); if(status != HAL_OK) { tInfo_newpage("error. skip update."); HAL_Delay(1000); } } if(status == HAL_OK) { tInfo_write("program flash"); status = firmware_programFlashMemory(pBuffer,firmware_load_result); if(status != HAL_OK) { tInfo_newpage("error. try again."); status = firmware_programFlashMemory(pBuffer,firmware_load_result); if(status != HAL_OK) { tInfo_newpage("error. skip update."); HAL_Delay(1000); } } } } } /* here comes the variable upper firmware loader */ if((i == 0) && (status == HAL_OK)) { tInfo_newpage("load firmware2 data"); uint8_t* pBuffer = (uint8_t*)((uint32_t)0xD0000000); /* blocked via GFX_init1_no_DMA */ firmware_load_result = ext_flash_read_firmware2(&pOffset, pBuffer,768000*2,0,0); if((firmware_load_result > 0) && (firmware_load_result + pOffset <= 1024000)) { ptr = 0; ptr += gfx_number_to_string(7,0,&textVersion[ptr],firmware_load_result); textVersion[ptr++] = ' '; textVersion[ptr++] = 'b'; textVersion[ptr++] = 'y'; textVersion[ptr++] = 't'; textVersion[ptr++] = 'e'; textVersion[ptr++] = 's'; textVersion[ptr++] = ' '; textVersion[ptr++] = 'w'; textVersion[ptr++] = 'i'; textVersion[ptr++] = 't'; textVersion[ptr++] = 'h'; textVersion[ptr++] = ' '; ptr += gfx_number_to_string(7,0,&textVersion[ptr],pOffset); textVersion[ptr++] = ' '; textVersion[ptr++] = 'o'; textVersion[ptr++] = 'f'; textVersion[ptr++] = 'f'; textVersion[ptr++] = 's'; textVersion[ptr++] = 'e'; textVersion[ptr++] = 't'; textVersion[ptr] = 0; tInfo_newpage(textVersion); ptr = 0; textVersion[ptr++] = 'f'; textVersion[ptr++] = 'o'; textVersion[ptr++] = 'u'; textVersion[ptr++] = 'n'; textVersion[ptr++] = 'd'; textVersion[ptr] = 0; tInfo_write(textVersion); tInfo_write("erase flash"); status = firmware2_variable_upperpart_eraseFlashMemory(firmware_load_result,pOffset); if(status != HAL_OK) { tInfo_newpage("error. try again."); status = firmware2_variable_upperpart_eraseFlashMemory(firmware_load_result,pOffset); if(status != HAL_OK) { tInfo_newpage("error. skip update."); HAL_Delay(1000); } } if(status == HAL_OK) { tInfo_write("program flash"); status = firmware2_variable_upperpart_programFlashMemory(firmware_load_result,pOffset,pBuffer,firmware_load_result,0); if(status != HAL_OK) { tInfo_newpage("error. try again."); status = firmware2_variable_upperpart_programFlashMemory(firmware_load_result,pOffset,pBuffer,firmware_load_result,0); if(status != HAL_OK) { tInfo_newpage("error. skip update."); HAL_Delay(1000); } } } } } if((i == 0) && (status == HAL_OK)) { tInfo_newpage("Done."); tInfo_write("Cleaning."); ext_flash_erase_firmware_if_not_empty(); ext_flash_erase_firmware2_if_not_empty(); tInfo_write("Reset device."); reset_to_firmware_using_Watchdog(); } ptr = 0; textVersion[ptr++] = '\020'; textVersion[ptr++] = 's'; textVersion[ptr++] = 'e'; textVersion[ptr++] = 'r'; textVersion[ptr++] = 'i'; textVersion[ptr++] = 'a'; textVersion[ptr++] = 'l'; textVersion[ptr++] = ' '; if(HardwareData->primarySerial == 0xFFFF) { textVersion[ptr++] = 'n'; textVersion[ptr++] = 'o'; textVersion[ptr++] = 't'; textVersion[ptr++] = ' '; textVersion[ptr++] = 's'; textVersion[ptr++] = 'e'; textVersion[ptr++] = 't'; } else if(HardwareData->secondarySerial == 0xFFFF) { textVersion[ptr++] = '#'; ptr += gfx_number_to_string(5,1,&textVersion[ptr],HardwareData->primarySerial); } else { textVersion[ptr++] = '#'; ptr += gfx_number_to_string(5,1,&textVersion[ptr],HardwareData->secondarySerial); textVersion[ptr++] = ' '; textVersion[ptr++] = '('; ptr += gfx_number_to_string(5,1,&textVersion[ptr],HardwareData->primarySerial); textVersion[ptr++] = ')'; } textVersion[ptr++] = '\020'; textVersion[ptr] = 0; TIM_init(); MX_UART_Init(); MX_Bluetooth_PowerOn(); tComm_init(); tInfo_button_text("Exit","","Sleep"); tInfo_newpage("Bootloader 240812"); tInfo_write("start bluetooth"); tInfo_write(""); tInfo_write(textVersion); if(tComm_Set_Bluetooth_Name(0) == 0xFF) { tInfo_write("Init bluetooth"); tComm_StartBlueModBaseInit(); } else { tInfo_write("Bluetooth set"); tComm_StartBlueModConfig(); } set_globalState_Base(); GFX_start_VSYNC_IRQ(); EXTILine_Buttons_Config(); /* uint8_t* pBuffer1 = (uint8_t*)getFrame(20); firmware_load_result = ext_flash_read_firmware(pBuffer1,768000); if((firmware_load_result > 0) && (firmware_load_result < 768000)) { firmware_eraseFlashMemory(); firmware_programFlashMemory(pBuffer1,firmware_load_result); // not for testing //ext_flash_erase_firmware_if_not_empty(); reset_to_firmware_using_Watchdog(); } */ while(1) { // if(bootToBootloader) // DualBootToBootloader(); if(bootToBootloader) reset_to_update_using_system_reset(); tComm_control(); // will stop while loop if tComm Mode started until exit from UART }; } void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { SStateList status; get_globalStateList(&status); switch(status.base) { default: // TIM_BACKLIGHT_adjust(); break; } if(returnFromCommCleanUpRequest) { tComm_exit(); returnFromCommCleanUpRequest = 0; GFX_hwBackgroundOn(); tInfo_button_text("Exit","","Sleep"); tInfo_newpage("bluetooth disonnected"); tInfo_write(""); tInfo_write(""); tInfo_write(""); tInfo_write(""); } get_globalStateList(&status); switch(status.base) { case BaseComm: if(get_globalState() == StUART_STANDARD) tComm_refresh(); break; default: break; } } void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { uint8_t action; SStateList status; static uint8_t counterToPreventSleep = 0; if(GPIO_Pin == VSYNC_IRQ_PIN) // rechts, unten { GFX_change_LTDC(); housekeepingFrame(); if(counterToPreventSleep < 250) counterToPreventSleep++; else if(counterToPreventSleep != 255) { counterToPreventSleep = 255; } return; } time_without_button_pressed_deciseconds = 0; if(GFX_logoStatus() != 0) return; if(GPIO_Pin == BUTTON_BACK_PIN) // links action = ACTION_BUTTON_BACK; else if(GPIO_Pin == BUTTON_ENTER_PIN) // mitte action = ACTION_BUTTON_ENTER; else if(GPIO_Pin == BUTTON_NEXT_PIN) // rechts action = ACTION_BUTTON_NEXT; #ifdef BUTTON_CUSTOM_PIN else if(GPIO_Pin == BUTTON_CUSTOM_PIN) // extra action = ACTION_BUTTON_CUSTOM; #endif else action = 0; get_globalStateList(&status); switch(status.base) { case BaseComm: if(action == ACTION_BUTTON_BACK) { reset_to_firmware_using_Watchdog(); } break; default: if((action == ACTION_BUTTON_NEXT) && (counterToPreventSleep == 255) && (get_globalState() == StS)) { while(1) { MX_tell_reset_logik_alles_ok(); DataEX_call(); HAL_Delay(100); } } else if(action == ACTION_BUTTON_BACK) { reset_to_firmware_using_Watchdog(); } else if(action == ACTION_BUTTON_CUSTOM) { if(get_globalState() == StS) gotoSleep(); } else if(action == ACTION_BUTTON_ENTER) { reset_to_update_using_system_reset(); } break; } } void gotoSleep(void) { ext_flash_erase_firmware_if_not_empty(); set_globalState(StStop); } // ----------------------------- void MainBootLoaderInit(void) { void (*SysMemBootJump)(void); SysMemBootJump=(void (*)(void)) (*((uint32_t *) 0x1fff0004)); // DMA, SPI, UART, TIM, ExtIRQ, graphics DMA, LTDC HAL_RCC_DeInit(); SysTick->CTRL = 0; SysTick->LOAD = 0; SysTick->VAL = 0; __set_PRIMASK(1); __set_MSP(0x20002318); SysMemBootJump(); } uint32_t get_globalState(void) { return globalStateID; } void get_globalStateList(SStateList *output) { output->base = (uint8_t)((globalStateID >> 28) & 0x0F); output->page = (uint8_t)((globalStateID >> 24) & 0x0F); output->line = (uint8_t)((globalStateID >> 16) & 0xFF); output->field = (uint8_t)((globalStateID >> 8) & 0xFF); output->mode = (uint8_t)((globalStateID ) & 0xFF); } void get_idSpecificStateList(uint32_t id, SStateList *output) { output->base = (uint8_t)((id >> 28) & 0x0F); output->page = (uint8_t)((id >> 24) & 0x0F); output->line = (uint8_t)((id >> 16) & 0xFF); output->field = (uint8_t)((id >> 8) & 0xFF); output->mode = (uint8_t)((id ) & 0xFF); } void set_globalState_Base(void) { set_globalState(StS); } void set_globalState_Menu_Page(uint8_t page) { globalStateID = ((BaseMenu << 28) + (page << 24)); } void set_globalState_Log_Page(uint8_t pageIsLine) { globalStateID = StILOGLIST + (pageIsLine << 16); } void set_globalState_Menu_Line(uint8_t line) { globalStateID = ((globalStateID & MaskLineFieldDigit) + (line << 16)); } void set_globalState(uint32_t newID) { globalStateID = newID; } void delayMicros(uint32_t micros) { micros = micros * (168/4) - 10; while(micros--); } void get_RTC_DateTime(RTC_DateTypeDef * sdatestructureget, RTC_TimeTypeDef * stimestructureget) { /* Get the RTC current Time */ if(sdatestructureget) HAL_RTC_GetTime(&RtcHandle, stimestructureget, FORMAT_BIN); /* Get the RTC current Date */ if(stimestructureget) HAL_RTC_GetDate(&RtcHandle, sdatestructureget, FORMAT_BIN); } void set_RTC_DateTime(RTC_DateTypeDef * sdatestructure, RTC_TimeTypeDef * stimestructure) { if(sdatestructure) if(HAL_RTC_SetDate(&RtcHandle,sdatestructure,FORMAT_BCD) != HAL_OK) { /* Initialization Error */ Error_Handler(); } if(stimestructure) if(HAL_RTC_SetTime(&RtcHandle,stimestructure,FORMAT_BCD) != HAL_OK) { /* Initialization Error */ Error_Handler(); } } static void TIM_init(void) { uint16_t uwPrescalerValue = 0; uwPrescalerValue = (uint32_t) ((SystemCoreClock /2) / 10000) - 1; /* Set TIMx instance */ TimHandle.Instance = TIMx; /* Initialize TIM3 peripheral as follows: + Period = 10000 - 1 + Prescaler = ((SystemCoreClock/2)/10000) - 1 + ClockDivision = 0 + Counter direction = Up */ TimHandle.Init.Period = 1000 - 1; TimHandle.Init.Prescaler = uwPrescalerValue; TimHandle.Init.ClockDivision = 0; TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; if(HAL_TIM_Base_Init(&TimHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /*##-2- Start the TIM Base generation in interrupt mode ####################*/ /* Start Channel1 */ if(HAL_TIM_Base_Start_IT(&TimHandle) != HAL_OK) { /* Starting Error */ Error_Handler(); } } #ifndef TIM_BACKLIGHT /* static void TIM_BACKLIGHT_adjust(void) { } */ static void TIM_BACKLIGHT_init(void) { } #else /* static void TIM_BACKLIGHT_adjust(void) { TIM_OC_InitTypeDef sConfig; sConfig.OCMode = TIM_OCMODE_PWM1; sConfig.OCPolarity = TIM_OCPOLARITY_HIGH; sConfig.OCFastMode = TIM_OCFAST_DISABLE; sConfig.Pulse = 600; HAL_TIM_PWM_ConfigChannel(&TimBacklightHandle, &sConfig, TIM_BACKLIGHT_CHANNEL); HAL_TIM_PWM_Start(&TimBacklightHandle, TIM_BACKLIGHT_CHANNEL); } */ static void TIM_BACKLIGHT_init(void) { uint32_t uwPrescalerValue = 0; TIM_OC_InitTypeDef sConfig; uwPrescalerValue = (uint32_t) ((SystemCoreClock /2) / 18000000) - 1; TimBacklightHandle.Instance = TIM_BACKLIGHT; // Initialize TIM3 peripheral as follows: 30 kHz TimBacklightHandle.Init.Period = 600 - 1; TimBacklightHandle.Init.Prescaler = uwPrescalerValue; TimBacklightHandle.Init.ClockDivision = 0; TimBacklightHandle.Init.CounterMode = TIM_COUNTERMODE_UP; HAL_TIM_PWM_Init(&TimBacklightHandle); sConfig.OCMode = TIM_OCMODE_PWM1; sConfig.OCPolarity = TIM_OCPOLARITY_HIGH; sConfig.OCFastMode = TIM_OCFAST_DISABLE; sConfig.Pulse = 50 * 6; HAL_TIM_PWM_ConfigChannel(&TimBacklightHandle, &sConfig, TIM_BACKLIGHT_CHANNEL); HAL_TIM_PWM_Start(&TimBacklightHandle, TIM_BACKLIGHT_CHANNEL); } #endif /* Configure RTC prescaler and RTC data registers */ /* RTC configured as follow: - Hour Format = Format 24 - Asynch Prediv = Value according to source clock - Synch Prediv = Value according to source clock - OutPut = Output Disable - OutPutPolarity = High Polarity - OutPutType = Open Drain */ /*#define RTC_ASYNCH_PREDIV 0x7F LSE as RTC clock */ /*LSE: #define RTC_SYNCH_PREDIV 0x00FF LSE as RTC clock */ /*LSI: #define RTC_SYNCH_PREDIV 0x0130 LSI as RTC clock */ /* static void RTC_init(void) { RtcHandle.Instance = RTC; RtcHandle.Init.HourFormat = RTC_HOURFORMAT_24; RtcHandle.Init.AsynchPrediv = 0x7F; RtcHandle.Init.SynchPrediv = 0x0130; RtcHandle.Init.OutPut = RTC_OUTPUT_DISABLE; RtcHandle.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; RtcHandle.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN; if(HAL_RTC_Init(&RtcHandle) != HAL_OK) { Error_Handler(); } } */ static void EXTILine_Buttons_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; BUTTON_ENTER_GPIO_ENABLE(); BUTTON_NEXT_GPIO_ENABLE(); BUTTON_BACK_GPIO_ENABLE(); /* Configure pin as weak PULLUP input */ /* buttons */ GPIO_InitStructure.Mode = GPIO_MODE_IT_RISING; GPIO_InitStructure.Pull = GPIO_NOPULL; GPIO_InitStructure.Speed = GPIO_SPEED_LOW; GPIO_InitStructure.Pin = BUTTON_ENTER_PIN; HAL_GPIO_Init(BUTTON_ENTER_GPIO_PORT, &GPIO_InitStructure); GPIO_InitStructure.Pin = BUTTON_NEXT_PIN; HAL_GPIO_Init(BUTTON_NEXT_GPIO_PORT, &GPIO_InitStructure); GPIO_InitStructure.Pin = BUTTON_BACK_PIN; HAL_GPIO_Init(BUTTON_BACK_GPIO_PORT, &GPIO_InitStructure); /* Enable and set EXTI Line0 Interrupt to the lowest priority */ HAL_NVIC_SetPriority(BUTTON_ENTER_EXTI_IRQn, 2, 0); HAL_NVIC_SetPriority(BUTTON_NEXT_EXTI_IRQn, 2, 0); HAL_NVIC_SetPriority(BUTTON_BACK_EXTI_IRQn, 2, 0); HAL_NVIC_EnableIRQ(BUTTON_ENTER_EXTI_IRQn); HAL_NVIC_EnableIRQ(BUTTON_NEXT_EXTI_IRQn); HAL_NVIC_EnableIRQ(BUTTON_BACK_EXTI_IRQn); #ifdef BUTTON_CUSTOM_PIN BUTTON_CUSTOM_GPIO_ENABLE(); GPIO_InitStructure.Pin = BUTTON_CUSTOM_PIN; HAL_GPIO_Init(BUTTON_CUSTOM_GPIO_PORT, &GPIO_InitStructure); HAL_NVIC_SetPriority(BUTTON_CUSTOM_EXTI_IRQn, 2, 0); HAL_NVIC_EnableIRQ(BUTTON_CUSTOM_EXTI_IRQn); #endif } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 180000000 * HCLK(Hz) = 180000000 * AHB Prescaler = 1 * APB1 Prescaler = 4 * APB2 Prescaler = 2 * HSE Frequency(Hz) = 8000000 * PLL_M = 8 * PLL_N = 360 * PLL_P = 2 * PLL_Q = 7 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 5 * The LTDC Clock is configured as follow : * PLLSAIN = 192 * PLLSAIR = 4 * PLLSAIDivR = 8 * @param None * @retval None */ static void SystemClock_Config(void) { /* Enable Power Control clock */ __PWR_CLK_ENABLE(); /* The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency, to update the voltage scaling value regarding system frequency refer to product datasheet. */ __HAL_PWR_VOLTAGESCALING_CONFIG( PWR_REGULATOR_VOLTAGE_SCALE1 ); /*##-1- System Clock Configuration #########################################*/ /* Enable HighSpeed Oscillator and activate PLL with HSE/HSI as source */ RCC_OscInitTypeDef RCC_OscInitStruct = { 0 }; #ifdef DISC1_BOARD // Use High Speed Internal (HSI) oscillator, running at 16MHz. RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = 0x10; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 16; // HSI/16 is 1Mhz. #else // Use High Speed External oscillator, running at 8MHz RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; // HSE/8 is 1Mhz. #endif // System clock = PLL (1MHz) * N/p = 180 MHz. RCC_OscInitStruct.PLL.PLLN = 360; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; HAL_RCC_OscConfig( &RCC_OscInitStruct ); // HAL_PWREx_ActivateOverDrive(); HAL_PWREx_DeactivateOverDrive(); /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitTypeDef RCC_ClkInitStruct = { 0 }; RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; HAL_RCC_ClockConfig( &RCC_ClkInitStruct, FLASH_LATENCY_8 ); //FLASH_LATENCY_5); /*##-2- LTDC Clock Configuration ###########################################*/ /* LCD clock configuration */ /* PLLSAI_VCO Input = HSE_VALUE/PLL_M = 1 Mhz */ /* PLLSAI_VCO Output = PLLSAI_VCO Input * PLLSAIN = 192 Mhz */ /* PLLLCDCLK = PLLSAI_VCO Output/PLLSAIR = 192/4 = 48 Mhz */ /* LTDC clock frequency = PLLLCDCLK / RCC_PLLSAIDIVR_8 = 48/8 = 6 Mhz */ /* neu: 8MHz/8*300/5/8 = 7,5 MHz = 19,5 Hz bei 800 x 480 */ RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0}; PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_LTDC; PeriphClkInitStruct.PLLSAI.PLLSAIN = 300; //192; PeriphClkInitStruct.PLLSAI.PLLSAIR = 5; //4; PeriphClkInitStruct.PLLSAIDivR = RCC_PLLSAIDIVR_8;//RCC_PLLSAIDIVR_4;// RCC_PLLSAIDIVR_2; // RCC_PLLSAIDIVR_8 HAL_RCCEx_PeriphCLKConfig( &PeriphClkInitStruct ); } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None */ static void Error_Handler(void) { /* Turn LED3 on */ // BSP_LED_On(LED3); while(1) { } } /** * @brief Perform the SDRAM exernal memory inialization sequence * @param hsdram: SDRAM handle * @param Command: Pointer to SDRAM command structure * @retval None */ static void SDRAM_Initialization_Sequence(SDRAM_HandleTypeDef *hsdram, FMC_SDRAM_CommandTypeDef *Command) { __IO uint32_t tmpmrd =0; /* Step 3: Configure a clock configuration enable command */ Command->CommandMode = FMC_SDRAM_CMD_CLK_ENABLE; Command->CommandTarget = FMC_SDRAM_CMD_TARGET_BANK2; Command->AutoRefreshNumber = 1; Command->ModeRegisterDefinition = 0; /* Send the command */ HAL_SDRAM_SendCommand(hsdram, Command, 0x1000); /* Step 4: Insert 100 ms delay */ HAL_Delay(100); /* Step 5: Configure a PALL (precharge all) command */ Command->CommandMode = FMC_SDRAM_CMD_PALL; Command->CommandTarget = FMC_SDRAM_CMD_TARGET_BANK2; Command->AutoRefreshNumber = 1; Command->ModeRegisterDefinition = 0; /* Send the command */ HAL_SDRAM_SendCommand(hsdram, Command, 0x1000); /* Step 6 : Configure a Auto-Refresh command */ Command->CommandMode = FMC_SDRAM_CMD_AUTOREFRESH_MODE; Command->CommandTarget = FMC_SDRAM_CMD_TARGET_BANK2; Command->AutoRefreshNumber = 4; Command->ModeRegisterDefinition = 0; /* Send the command */ HAL_SDRAM_SendCommand(hsdram, Command, 0x1000); /* Step 7: Program the external memory mode register */ tmpmrd = (uint32_t)SDRAM_MODEREG_BURST_LENGTH_2 | SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL | SDRAM_MODEREG_CAS_LATENCY_3 | SDRAM_MODEREG_OPERATING_MODE_STANDARD | SDRAM_MODEREG_WRITEBURST_MODE_SINGLE; Command->CommandMode = FMC_SDRAM_CMD_LOAD_MODE; Command->CommandTarget = FMC_SDRAM_CMD_TARGET_BANK2; Command->AutoRefreshNumber = 1; Command->ModeRegisterDefinition = tmpmrd; /* Send the command */ HAL_SDRAM_SendCommand(hsdram, Command, 0x1000); /* Step 8: Set the refresh rate counter */ /* (15.62 us x Freq) - 20 */ /* neu: (8 us x Freq) - 20 */ /* Set the device refresh counter */ HAL_SDRAM_ProgramRefreshRate(hsdram, REFRESH_COUNT); } /* static void DualBoot(void) { // Set BFB2 bit to enable boot from Flash Bank2 // Allow Access to Flash control registers and user Falsh HAL_FLASH_Unlock(); // Allow Access to option bytes sector HAL_FLASH_OB_Unlock(); // Get the Dual boot configuration status AdvOBInit.OptionType = OBEX_BOOTCONFIG; HAL_FLASHEx_AdvOBGetConfig(&AdvOBInit); // Enable/Disable dual boot feature if (((AdvOBInit.BootConfig) & (FLASH_OPTCR_BFB2)) == FLASH_OPTCR_BFB2) { AdvOBInit.BootConfig = OB_DUAL_BOOT_DISABLE; HAL_FLASHEx_AdvOBProgram (&AdvOBInit); } else { AdvOBInit.BootConfig = OB_DUAL_BOOT_ENABLE; HAL_FLASHEx_AdvOBProgram (&AdvOBInit); } // Start the Option Bytes programming process if (HAL_FLASH_OB_Launch() != HAL_OK) { // User can add here some code to deal with this error while (1) { } } // Prevent Access to option bytes sector HAL_FLASH_OB_Lock(); // Disable the Flash option control register access (recommended to protect // the option Bytes against possible unwanted operations) HAL_FLASH_Lock(); // Initiates a system reset request to reset the MCU reset_to_firmware_using_Watchdog(); } */ /** ****************************************************************************** ****************************************************************************** ****************************************************************************** */ /** * @brief DMA2D configuration. * @note This function Configure tha DMA2D peripheral : * 1) Configure the transfer mode : memory to memory W/ pixel format conversion * 2) Configure the output color mode as ARGB4444 * 3) Configure the output memory address at SRAM memory * 4) Configure the data size : 320x120 (pixels) * 5) Configure the input color mode as ARGB8888 * 6) Configure the input memory address at FLASH memory * @retval * None */ static void SDRAM_Config(void) { /*##-1- Configure the SDRAM device #########################################*/ /* SDRAM device configuration */ hsdram.Instance = FMC_SDRAM_DEVICE; /* Timing configuration for 90 Mhz of SD clock frequency (180Mhz/2) */ /* TMRD: 2 Clock cycles */ SDRAM_Timing.LoadToActiveDelay = 2; /* TXSR: min=70ns (6x11.90ns) */ SDRAM_Timing.ExitSelfRefreshDelay = 7; /* TRAS: min=42ns (4x11.90ns) max=120k (ns) */ SDRAM_Timing.SelfRefreshTime = 4; /* TRC: min=63 (6x11.90ns) */ SDRAM_Timing.RowCycleDelay = 7; /* TWR: 2 Clock cycles */ SDRAM_Timing.WriteRecoveryTime = 2; /* TRP: 15ns => 2x11.90ns */ SDRAM_Timing.RPDelay = 2; /* TRCD: 15ns => 2x11.90ns */ SDRAM_Timing.RCDDelay = 2; hsdram.Init.SDBank = FMC_SDRAM_BANK2; hsdram.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_9; hsdram.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_13; hsdram.Init.MemoryDataWidth = SDRAM_MEMORY_WIDTH; hsdram.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4; hsdram.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_3; hsdram.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE; hsdram.Init.SDClockPeriod = SDCLOCK_PERIOD; hsdram.Init.ReadBurst = FMC_SDRAM_RBURST_DISABLE; hsdram.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_1; /* Initialize the SDRAM controller */ if(HAL_SDRAM_Init(&hsdram, &SDRAM_Timing) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /* Program the SDRAM external device */ SDRAM_Initialization_Sequence(&hsdram, &command); } uint8_t checkResetForFirmwareUpdate(void) { uint32_t backupRegisterContent; RTC_HandleTypeDef RtcHandle; RtcHandle.Instance = RTC; backupRegisterContent = HAL_RTCEx_BKUPRead(&RtcHandle,RTC_BKP_DR0); if(backupRegisterContent == 0x12345678) return 1; else return 0; } void DeleteResetToFirmwareUpdateRegister(void) { RTC_HandleTypeDef RtcHandle; RtcHandle.Instance = RTC; __HAL_RTC_WRITEPROTECTION_DISABLE(&RtcHandle); HAL_RTCEx_BKUPWrite(&RtcHandle,RTC_BKP_DR0,0x00); __HAL_RTC_WRITEPROTECTION_ENABLE(&RtcHandle); } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t* file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /* static void DualBootToBootloader(void) { // Set BFB2 bit to enable boot from Flash Bank2 // Allow Access to Flash control registers and user Falsh HAL_FLASH_Unlock(); // Allow Access to option bytes sector HAL_FLASH_OB_Unlock(); // Get the Dual boot configuration status AdvOBInit.OptionType = OPTIONBYTE_BOOTCONFIG; HAL_FLASHEx_AdvOBGetConfig(&AdvOBInit); // Enable/Disable dual boot feature if (((AdvOBInit.BootConfig) & (FLASH_OPTCR_BFB2)) == FLASH_OPTCR_BFB2) { AdvOBInit.BootConfig = OB_DUAL_BOOT_DISABLE; HAL_FLASHEx_AdvOBProgram (&AdvOBInit); if (HAL_FLASH_OB_Launch() != HAL_OK) { while (1) { } } } else { AdvOBInit.BootConfig = OB_DUAL_BOOT_ENABLE; HAL_FLASHEx_AdvOBProgram (&AdvOBInit); if (HAL_FLASH_OB_Launch() != HAL_OK) { while (1) { } } } // Prevent Access to option bytes sector HAL_FLASH_OB_Lock(); / Disable the Flash option control register access (recommended to protect // the option Bytes against possible unwanted operations) HAL_FLASH_Lock(); // Initiates a system reset request to reset the MCU reset_to_firmware_using_Watchdog(); } */ void reset_to_update_using_system_reset(void) { __HAL_RCC_CLEAR_RESET_FLAGS(); HAL_NVIC_SystemReset(); } void reset_to_firmware_using_Watchdog(void) { __HAL_RCC_CLEAR_RESET_FLAGS(); __HAL_RCC_WWDG_CLK_ENABLE(); WWDG_HandleTypeDef WwdgHandle; WwdgHandle.Instance = WWDG; WwdgHandle.Init.Prescaler = WWDG_PRESCALER_8; WwdgHandle.Init.Window = 80; WwdgHandle.Init.Counter = 127; HAL_WWDG_Init(&WwdgHandle); /* HAL_WWDG_Start(&WwdgHandle); has been removed from HAL library starting_V120 */ while(1); } void set_returnFromComm(void) { returnFromCommCleanUpRequest = 1; } /************************ (C) COPYRIGHT heinrichs weikamp *****END OF FILE****/