Mercurial > public > ostc4
view Common/Drivers/STM32F4xx_HAL_Driver/Inc/stm32f4xx_ll_spi.h @ 821:d50fcab7a3ce
1.6.5 release
author | heinrichsweikamp |
---|---|
date | Mon, 25 Sep 2023 10:56:32 +0200 |
parents | c78bcbd5deda |
children |
line wrap: on
line source
/** ****************************************************************************** * @file stm32f4xx_ll_spi.h * @author MCD Application Team * @brief Header file of SPI LL module. ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F4xx_LL_SPI_H #define __STM32F4xx_LL_SPI_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "stm32f4xx.h" /** @addtogroup STM32F4xx_LL_Driver * @{ */ #if defined (SPI1) || defined (SPI2) || defined (SPI3) || defined (SPI4) || defined (SPI5) || defined(SPI6) /** @defgroup SPI_LL SPI * @{ */ /* Private types -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private macros ------------------------------------------------------------*/ /* Exported types ------------------------------------------------------------*/ #if defined(USE_FULL_LL_DRIVER) /** @defgroup SPI_LL_ES_INIT SPI Exported Init structure * @{ */ /** * @brief SPI Init structures definition */ typedef struct { uint32_t TransferDirection; /*!< Specifies the SPI unidirectional or bidirectional data mode. This parameter can be a value of @ref SPI_LL_EC_TRANSFER_MODE. This feature can be modified afterwards using unitary function @ref LL_SPI_SetTransferDirection().*/ uint32_t Mode; /*!< Specifies the SPI mode (Master/Slave). This parameter can be a value of @ref SPI_LL_EC_MODE. This feature can be modified afterwards using unitary function @ref LL_SPI_SetMode().*/ uint32_t DataWidth; /*!< Specifies the SPI data width. This parameter can be a value of @ref SPI_LL_EC_DATAWIDTH. This feature can be modified afterwards using unitary function @ref LL_SPI_SetDataWidth().*/ uint32_t ClockPolarity; /*!< Specifies the serial clock steady state. This parameter can be a value of @ref SPI_LL_EC_POLARITY. This feature can be modified afterwards using unitary function @ref LL_SPI_SetClockPolarity().*/ uint32_t ClockPhase; /*!< Specifies the clock active edge for the bit capture. This parameter can be a value of @ref SPI_LL_EC_PHASE. This feature can be modified afterwards using unitary function @ref LL_SPI_SetClockPhase().*/ uint32_t NSS; /*!< Specifies whether the NSS signal is managed by hardware (NSS pin) or by software using the SSI bit. This parameter can be a value of @ref SPI_LL_EC_NSS_MODE. This feature can be modified afterwards using unitary function @ref LL_SPI_SetNSSMode().*/ uint32_t BaudRate; /*!< Specifies the BaudRate prescaler value which will be used to configure the transmit and receive SCK clock. This parameter can be a value of @ref SPI_LL_EC_BAUDRATEPRESCALER. @note The communication clock is derived from the master clock. The slave clock does not need to be set. This feature can be modified afterwards using unitary function @ref LL_SPI_SetBaudRatePrescaler().*/ uint32_t BitOrder; /*!< Specifies whether data transfers start from MSB or LSB bit. This parameter can be a value of @ref SPI_LL_EC_BIT_ORDER. This feature can be modified afterwards using unitary function @ref LL_SPI_SetTransferBitOrder().*/ uint32_t CRCCalculation; /*!< Specifies if the CRC calculation is enabled or not. This parameter can be a value of @ref SPI_LL_EC_CRC_CALCULATION. This feature can be modified afterwards using unitary functions @ref LL_SPI_EnableCRC() and @ref LL_SPI_DisableCRC().*/ uint32_t CRCPoly; /*!< Specifies the polynomial used for the CRC calculation. This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFFFF. This feature can be modified afterwards using unitary function @ref LL_SPI_SetCRCPolynomial().*/ } LL_SPI_InitTypeDef; /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /* Exported constants --------------------------------------------------------*/ /** @defgroup SPI_LL_Exported_Constants SPI Exported Constants * @{ */ /** @defgroup SPI_LL_EC_GET_FLAG Get Flags Defines * @brief Flags defines which can be used with LL_SPI_ReadReg function * @{ */ #define LL_SPI_SR_RXNE SPI_SR_RXNE /*!< Rx buffer not empty flag */ #define LL_SPI_SR_TXE SPI_SR_TXE /*!< Tx buffer empty flag */ #define LL_SPI_SR_BSY SPI_SR_BSY /*!< Busy flag */ #define LL_SPI_SR_CRCERR SPI_SR_CRCERR /*!< CRC error flag */ #define LL_SPI_SR_MODF SPI_SR_MODF /*!< Mode fault flag */ #define LL_SPI_SR_OVR SPI_SR_OVR /*!< Overrun flag */ #define LL_SPI_SR_FRE SPI_SR_FRE /*!< TI mode frame format error flag */ /** * @} */ /** @defgroup SPI_LL_EC_IT IT Defines * @brief IT defines which can be used with LL_SPI_ReadReg and LL_SPI_WriteReg functions * @{ */ #define LL_SPI_CR2_RXNEIE SPI_CR2_RXNEIE /*!< Rx buffer not empty interrupt enable */ #define LL_SPI_CR2_TXEIE SPI_CR2_TXEIE /*!< Tx buffer empty interrupt enable */ #define LL_SPI_CR2_ERRIE SPI_CR2_ERRIE /*!< Error interrupt enable */ /** * @} */ /** @defgroup SPI_LL_EC_MODE Operation Mode * @{ */ #define LL_SPI_MODE_MASTER (SPI_CR1_MSTR | SPI_CR1_SSI) /*!< Master configuration */ #define LL_SPI_MODE_SLAVE 0x00000000U /*!< Slave configuration */ /** * @} */ /** @defgroup SPI_LL_EC_PROTOCOL Serial Protocol * @{ */ #define LL_SPI_PROTOCOL_MOTOROLA 0x00000000U /*!< Motorola mode. Used as default value */ #define LL_SPI_PROTOCOL_TI (SPI_CR2_FRF) /*!< TI mode */ /** * @} */ /** @defgroup SPI_LL_EC_PHASE Clock Phase * @{ */ #define LL_SPI_PHASE_1EDGE 0x00000000U /*!< First clock transition is the first data capture edge */ #define LL_SPI_PHASE_2EDGE (SPI_CR1_CPHA) /*!< Second clock transition is the first data capture edge */ /** * @} */ /** @defgroup SPI_LL_EC_POLARITY Clock Polarity * @{ */ #define LL_SPI_POLARITY_LOW 0x00000000U /*!< Clock to 0 when idle */ #define LL_SPI_POLARITY_HIGH (SPI_CR1_CPOL) /*!< Clock to 1 when idle */ /** * @} */ /** @defgroup SPI_LL_EC_BAUDRATEPRESCALER Baud Rate Prescaler * @{ */ #define LL_SPI_BAUDRATEPRESCALER_DIV2 0x00000000U /*!< BaudRate control equal to fPCLK/2 */ #define LL_SPI_BAUDRATEPRESCALER_DIV4 (SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/4 */ #define LL_SPI_BAUDRATEPRESCALER_DIV8 (SPI_CR1_BR_1) /*!< BaudRate control equal to fPCLK/8 */ #define LL_SPI_BAUDRATEPRESCALER_DIV16 (SPI_CR1_BR_1 | SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/16 */ #define LL_SPI_BAUDRATEPRESCALER_DIV32 (SPI_CR1_BR_2) /*!< BaudRate control equal to fPCLK/32 */ #define LL_SPI_BAUDRATEPRESCALER_DIV64 (SPI_CR1_BR_2 | SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/64 */ #define LL_SPI_BAUDRATEPRESCALER_DIV128 (SPI_CR1_BR_2 | SPI_CR1_BR_1) /*!< BaudRate control equal to fPCLK/128 */ #define LL_SPI_BAUDRATEPRESCALER_DIV256 (SPI_CR1_BR_2 | SPI_CR1_BR_1 | SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/256 */ /** * @} */ /** @defgroup SPI_LL_EC_BIT_ORDER Transmission Bit Order * @{ */ #define LL_SPI_LSB_FIRST (SPI_CR1_LSBFIRST) /*!< Data is transmitted/received with the LSB first */ #define LL_SPI_MSB_FIRST 0x00000000U /*!< Data is transmitted/received with the MSB first */ /** * @} */ /** @defgroup SPI_LL_EC_TRANSFER_MODE Transfer Mode * @{ */ #define LL_SPI_FULL_DUPLEX 0x00000000U /*!< Full-Duplex mode. Rx and Tx transfer on 2 lines */ #define LL_SPI_SIMPLEX_RX (SPI_CR1_RXONLY) /*!< Simplex Rx mode. Rx transfer only on 1 line */ #define LL_SPI_HALF_DUPLEX_RX (SPI_CR1_BIDIMODE) /*!< Half-Duplex Rx mode. Rx transfer on 1 line */ #define LL_SPI_HALF_DUPLEX_TX (SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE) /*!< Half-Duplex Tx mode. Tx transfer on 1 line */ /** * @} */ /** @defgroup SPI_LL_EC_NSS_MODE Slave Select Pin Mode * @{ */ #define LL_SPI_NSS_SOFT (SPI_CR1_SSM) /*!< NSS managed internally. NSS pin not used and free */ #define LL_SPI_NSS_HARD_INPUT 0x00000000U /*!< NSS pin used in Input. Only used in Master mode */ #define LL_SPI_NSS_HARD_OUTPUT (((uint32_t)SPI_CR2_SSOE << 16U)) /*!< NSS pin used in Output. Only used in Slave mode as chip select */ /** * @} */ /** @defgroup SPI_LL_EC_DATAWIDTH Datawidth * @{ */ #define LL_SPI_DATAWIDTH_8BIT 0x00000000U /*!< Data length for SPI transfer: 8 bits */ #define LL_SPI_DATAWIDTH_16BIT (SPI_CR1_DFF) /*!< Data length for SPI transfer: 16 bits */ /** * @} */ #if defined(USE_FULL_LL_DRIVER) /** @defgroup SPI_LL_EC_CRC_CALCULATION CRC Calculation * @{ */ #define LL_SPI_CRCCALCULATION_DISABLE 0x00000000U /*!< CRC calculation disabled */ #define LL_SPI_CRCCALCULATION_ENABLE (SPI_CR1_CRCEN) /*!< CRC calculation enabled */ /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /** * @} */ /* Exported macro ------------------------------------------------------------*/ /** @defgroup SPI_LL_Exported_Macros SPI Exported Macros * @{ */ /** @defgroup SPI_LL_EM_WRITE_READ Common Write and read registers Macros * @{ */ /** * @brief Write a value in SPI register * @param __INSTANCE__ SPI Instance * @param __REG__ Register to be written * @param __VALUE__ Value to be written in the register * @retval None */ #define LL_SPI_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__)) /** * @brief Read a value in SPI register * @param __INSTANCE__ SPI Instance * @param __REG__ Register to be read * @retval Register value */ #define LL_SPI_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__) /** * @} */ /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @defgroup SPI_LL_Exported_Functions SPI Exported Functions * @{ */ /** @defgroup SPI_LL_EF_Configuration Configuration * @{ */ /** * @brief Enable SPI peripheral * @rmtoll CR1 SPE LL_SPI_Enable * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_Enable(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR1, SPI_CR1_SPE); } /** * @brief Disable SPI peripheral * @note When disabling the SPI, follow the procedure described in the Reference Manual. * @rmtoll CR1 SPE LL_SPI_Disable * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_Disable(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE); } /** * @brief Check if SPI peripheral is enabled * @rmtoll CR1 SPE LL_SPI_IsEnabled * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsEnabled(SPI_TypeDef *SPIx) { return (READ_BIT(SPIx->CR1, SPI_CR1_SPE) == (SPI_CR1_SPE)); } /** * @brief Set SPI operation mode to Master or Slave * @note This bit should not be changed when communication is ongoing. * @rmtoll CR1 MSTR LL_SPI_SetMode\n * CR1 SSI LL_SPI_SetMode * @param SPIx SPI Instance * @param Mode This parameter can be one of the following values: * @arg @ref LL_SPI_MODE_MASTER * @arg @ref LL_SPI_MODE_SLAVE * @retval None */ __STATIC_INLINE void LL_SPI_SetMode(SPI_TypeDef *SPIx, uint32_t Mode) { MODIFY_REG(SPIx->CR1, SPI_CR1_MSTR | SPI_CR1_SSI, Mode); } /** * @brief Get SPI operation mode (Master or Slave) * @rmtoll CR1 MSTR LL_SPI_GetMode\n * CR1 SSI LL_SPI_GetMode * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_MODE_MASTER * @arg @ref LL_SPI_MODE_SLAVE */ __STATIC_INLINE uint32_t LL_SPI_GetMode(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_MSTR | SPI_CR1_SSI)); } /** * @brief Set serial protocol used * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation. * @rmtoll CR2 FRF LL_SPI_SetStandard * @param SPIx SPI Instance * @param Standard This parameter can be one of the following values: * @arg @ref LL_SPI_PROTOCOL_MOTOROLA * @arg @ref LL_SPI_PROTOCOL_TI * @retval None */ __STATIC_INLINE void LL_SPI_SetStandard(SPI_TypeDef *SPIx, uint32_t Standard) { MODIFY_REG(SPIx->CR2, SPI_CR2_FRF, Standard); } /** * @brief Get serial protocol used * @rmtoll CR2 FRF LL_SPI_GetStandard * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_PROTOCOL_MOTOROLA * @arg @ref LL_SPI_PROTOCOL_TI */ __STATIC_INLINE uint32_t LL_SPI_GetStandard(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_FRF)); } /** * @brief Set clock phase * @note This bit should not be changed when communication is ongoing. * This bit is not used in SPI TI mode. * @rmtoll CR1 CPHA LL_SPI_SetClockPhase * @param SPIx SPI Instance * @param ClockPhase This parameter can be one of the following values: * @arg @ref LL_SPI_PHASE_1EDGE * @arg @ref LL_SPI_PHASE_2EDGE * @retval None */ __STATIC_INLINE void LL_SPI_SetClockPhase(SPI_TypeDef *SPIx, uint32_t ClockPhase) { MODIFY_REG(SPIx->CR1, SPI_CR1_CPHA, ClockPhase); } /** * @brief Get clock phase * @rmtoll CR1 CPHA LL_SPI_GetClockPhase * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_PHASE_1EDGE * @arg @ref LL_SPI_PHASE_2EDGE */ __STATIC_INLINE uint32_t LL_SPI_GetClockPhase(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CPHA)); } /** * @brief Set clock polarity * @note This bit should not be changed when communication is ongoing. * This bit is not used in SPI TI mode. * @rmtoll CR1 CPOL LL_SPI_SetClockPolarity * @param SPIx SPI Instance * @param ClockPolarity This parameter can be one of the following values: * @arg @ref LL_SPI_POLARITY_LOW * @arg @ref LL_SPI_POLARITY_HIGH * @retval None */ __STATIC_INLINE void LL_SPI_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity) { MODIFY_REG(SPIx->CR1, SPI_CR1_CPOL, ClockPolarity); } /** * @brief Get clock polarity * @rmtoll CR1 CPOL LL_SPI_GetClockPolarity * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_POLARITY_LOW * @arg @ref LL_SPI_POLARITY_HIGH */ __STATIC_INLINE uint32_t LL_SPI_GetClockPolarity(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CPOL)); } /** * @brief Set baud rate prescaler * @note These bits should not be changed when communication is ongoing. SPI BaudRate = fPCLK/Prescaler. * @rmtoll CR1 BR LL_SPI_SetBaudRatePrescaler * @param SPIx SPI Instance * @param BaudRate This parameter can be one of the following values: * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256 * @retval None */ __STATIC_INLINE void LL_SPI_SetBaudRatePrescaler(SPI_TypeDef *SPIx, uint32_t BaudRate) { MODIFY_REG(SPIx->CR1, SPI_CR1_BR, BaudRate); } /** * @brief Get baud rate prescaler * @rmtoll CR1 BR LL_SPI_GetBaudRatePrescaler * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256 */ __STATIC_INLINE uint32_t LL_SPI_GetBaudRatePrescaler(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_BR)); } /** * @brief Set transfer bit order * @note This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode. * @rmtoll CR1 LSBFIRST LL_SPI_SetTransferBitOrder * @param SPIx SPI Instance * @param BitOrder This parameter can be one of the following values: * @arg @ref LL_SPI_LSB_FIRST * @arg @ref LL_SPI_MSB_FIRST * @retval None */ __STATIC_INLINE void LL_SPI_SetTransferBitOrder(SPI_TypeDef *SPIx, uint32_t BitOrder) { MODIFY_REG(SPIx->CR1, SPI_CR1_LSBFIRST, BitOrder); } /** * @brief Get transfer bit order * @rmtoll CR1 LSBFIRST LL_SPI_GetTransferBitOrder * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_LSB_FIRST * @arg @ref LL_SPI_MSB_FIRST */ __STATIC_INLINE uint32_t LL_SPI_GetTransferBitOrder(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_LSBFIRST)); } /** * @brief Set transfer direction mode * @note For Half-Duplex mode, Rx Direction is set by default. * In master mode, the MOSI pin is used and in slave mode, the MISO pin is used for Half-Duplex. * @rmtoll CR1 RXONLY LL_SPI_SetTransferDirection\n * CR1 BIDIMODE LL_SPI_SetTransferDirection\n * CR1 BIDIOE LL_SPI_SetTransferDirection * @param SPIx SPI Instance * @param TransferDirection This parameter can be one of the following values: * @arg @ref LL_SPI_FULL_DUPLEX * @arg @ref LL_SPI_SIMPLEX_RX * @arg @ref LL_SPI_HALF_DUPLEX_RX * @arg @ref LL_SPI_HALF_DUPLEX_TX * @retval None */ __STATIC_INLINE void LL_SPI_SetTransferDirection(SPI_TypeDef *SPIx, uint32_t TransferDirection) { MODIFY_REG(SPIx->CR1, SPI_CR1_RXONLY | SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE, TransferDirection); } /** * @brief Get transfer direction mode * @rmtoll CR1 RXONLY LL_SPI_GetTransferDirection\n * CR1 BIDIMODE LL_SPI_GetTransferDirection\n * CR1 BIDIOE LL_SPI_GetTransferDirection * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_FULL_DUPLEX * @arg @ref LL_SPI_SIMPLEX_RX * @arg @ref LL_SPI_HALF_DUPLEX_RX * @arg @ref LL_SPI_HALF_DUPLEX_TX */ __STATIC_INLINE uint32_t LL_SPI_GetTransferDirection(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_RXONLY | SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE)); } /** * @brief Set frame data width * @rmtoll CR1 DFF LL_SPI_SetDataWidth * @param SPIx SPI Instance * @param DataWidth This parameter can be one of the following values: * @arg @ref LL_SPI_DATAWIDTH_8BIT * @arg @ref LL_SPI_DATAWIDTH_16BIT * @retval None */ __STATIC_INLINE void LL_SPI_SetDataWidth(SPI_TypeDef *SPIx, uint32_t DataWidth) { MODIFY_REG(SPIx->CR1, SPI_CR1_DFF, DataWidth); } /** * @brief Get frame data width * @rmtoll CR1 DFF LL_SPI_GetDataWidth * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_DATAWIDTH_8BIT * @arg @ref LL_SPI_DATAWIDTH_16BIT */ __STATIC_INLINE uint32_t LL_SPI_GetDataWidth(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_DFF)); } /** * @} */ /** @defgroup SPI_LL_EF_CRC_Management CRC Management * @{ */ /** * @brief Enable CRC * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation. * @rmtoll CR1 CRCEN LL_SPI_EnableCRC * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableCRC(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR1, SPI_CR1_CRCEN); } /** * @brief Disable CRC * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation. * @rmtoll CR1 CRCEN LL_SPI_DisableCRC * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableCRC(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CR1, SPI_CR1_CRCEN); } /** * @brief Check if CRC is enabled * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation. * @rmtoll CR1 CRCEN LL_SPI_IsEnabledCRC * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledCRC(SPI_TypeDef *SPIx) { return (READ_BIT(SPIx->CR1, SPI_CR1_CRCEN) == (SPI_CR1_CRCEN)); } /** * @brief Set CRCNext to transfer CRC on the line * @note This bit has to be written as soon as the last data is written in the SPIx_DR register. * @rmtoll CR1 CRCNEXT LL_SPI_SetCRCNext * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_SetCRCNext(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR1, SPI_CR1_CRCNEXT); } /** * @brief Set polynomial for CRC calculation * @rmtoll CRCPR CRCPOLY LL_SPI_SetCRCPolynomial * @param SPIx SPI Instance * @param CRCPoly This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFFFF * @retval None */ __STATIC_INLINE void LL_SPI_SetCRCPolynomial(SPI_TypeDef *SPIx, uint32_t CRCPoly) { WRITE_REG(SPIx->CRCPR, (uint16_t)CRCPoly); } /** * @brief Get polynomial for CRC calculation * @rmtoll CRCPR CRCPOLY LL_SPI_GetCRCPolynomial * @param SPIx SPI Instance * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF */ __STATIC_INLINE uint32_t LL_SPI_GetCRCPolynomial(SPI_TypeDef *SPIx) { return (uint32_t)(READ_REG(SPIx->CRCPR)); } /** * @brief Get Rx CRC * @rmtoll RXCRCR RXCRC LL_SPI_GetRxCRC * @param SPIx SPI Instance * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF */ __STATIC_INLINE uint32_t LL_SPI_GetRxCRC(SPI_TypeDef *SPIx) { return (uint32_t)(READ_REG(SPIx->RXCRCR)); } /** * @brief Get Tx CRC * @rmtoll TXCRCR TXCRC LL_SPI_GetTxCRC * @param SPIx SPI Instance * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF */ __STATIC_INLINE uint32_t LL_SPI_GetTxCRC(SPI_TypeDef *SPIx) { return (uint32_t)(READ_REG(SPIx->TXCRCR)); } /** * @} */ /** @defgroup SPI_LL_EF_NSS_Management Slave Select Pin Management * @{ */ /** * @brief Set NSS mode * @note LL_SPI_NSS_SOFT Mode is not used in SPI TI mode. * @rmtoll CR1 SSM LL_SPI_SetNSSMode\n * @rmtoll CR2 SSOE LL_SPI_SetNSSMode * @param SPIx SPI Instance * @param NSS This parameter can be one of the following values: * @arg @ref LL_SPI_NSS_SOFT * @arg @ref LL_SPI_NSS_HARD_INPUT * @arg @ref LL_SPI_NSS_HARD_OUTPUT * @retval None */ __STATIC_INLINE void LL_SPI_SetNSSMode(SPI_TypeDef *SPIx, uint32_t NSS) { MODIFY_REG(SPIx->CR1, SPI_CR1_SSM, NSS); MODIFY_REG(SPIx->CR2, SPI_CR2_SSOE, ((uint32_t)(NSS >> 16U))); } /** * @brief Get NSS mode * @rmtoll CR1 SSM LL_SPI_GetNSSMode\n * @rmtoll CR2 SSOE LL_SPI_GetNSSMode * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_NSS_SOFT * @arg @ref LL_SPI_NSS_HARD_INPUT * @arg @ref LL_SPI_NSS_HARD_OUTPUT */ __STATIC_INLINE uint32_t LL_SPI_GetNSSMode(SPI_TypeDef *SPIx) { register uint32_t Ssm = (READ_BIT(SPIx->CR1, SPI_CR1_SSM)); register uint32_t Ssoe = (READ_BIT(SPIx->CR2, SPI_CR2_SSOE) << 16U); return (Ssm | Ssoe); } /** * @} */ /** @defgroup SPI_LL_EF_FLAG_Management FLAG Management * @{ */ /** * @brief Check if Rx buffer is not empty * @rmtoll SR RXNE LL_SPI_IsActiveFlag_RXNE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_RXNE(SPI_TypeDef *SPIx) { return (READ_BIT(SPIx->SR, SPI_SR_RXNE) == (SPI_SR_RXNE)); } /** * @brief Check if Tx buffer is empty * @rmtoll SR TXE LL_SPI_IsActiveFlag_TXE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_TXE(SPI_TypeDef *SPIx) { return (READ_BIT(SPIx->SR, SPI_SR_TXE) == (SPI_SR_TXE)); } /** * @brief Get CRC error flag * @rmtoll SR CRCERR LL_SPI_IsActiveFlag_CRCERR * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_CRCERR(SPI_TypeDef *SPIx) { return (READ_BIT(SPIx->SR, SPI_SR_CRCERR) == (SPI_SR_CRCERR)); } /** * @brief Get mode fault error flag * @rmtoll SR MODF LL_SPI_IsActiveFlag_MODF * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_MODF(SPI_TypeDef *SPIx) { return (READ_BIT(SPIx->SR, SPI_SR_MODF) == (SPI_SR_MODF)); } /** * @brief Get overrun error flag * @rmtoll SR OVR LL_SPI_IsActiveFlag_OVR * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_OVR(SPI_TypeDef *SPIx) { return (READ_BIT(SPIx->SR, SPI_SR_OVR) == (SPI_SR_OVR)); } /** * @brief Get busy flag * @note The BSY flag is cleared under any one of the following conditions: * -When the SPI is correctly disabled * -When a fault is detected in Master mode (MODF bit set to 1) * -In Master mode, when it finishes a data transmission and no new data is ready to be * sent * -In Slave mode, when the BSY flag is set to '0' for at least one SPI clock cycle between * each data transfer. * @rmtoll SR BSY LL_SPI_IsActiveFlag_BSY * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_BSY(SPI_TypeDef *SPIx) { return (READ_BIT(SPIx->SR, SPI_SR_BSY) == (SPI_SR_BSY)); } /** * @brief Get frame format error flag * @rmtoll SR FRE LL_SPI_IsActiveFlag_FRE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_FRE(SPI_TypeDef *SPIx) { return (READ_BIT(SPIx->SR, SPI_SR_FRE) == (SPI_SR_FRE)); } /** * @brief Clear CRC error flag * @rmtoll SR CRCERR LL_SPI_ClearFlag_CRCERR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_ClearFlag_CRCERR(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->SR, SPI_SR_CRCERR); } /** * @brief Clear mode fault error flag * @note Clearing this flag is done by a read access to the SPIx_SR * register followed by a write access to the SPIx_CR1 register * @rmtoll SR MODF LL_SPI_ClearFlag_MODF * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_ClearFlag_MODF(SPI_TypeDef *SPIx) { __IO uint32_t tmpreg; tmpreg = SPIx->SR; (void) tmpreg; tmpreg = CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE); (void) tmpreg; } /** * @brief Clear overrun error flag * @note Clearing this flag is done by a read access to the SPIx_DR * register followed by a read access to the SPIx_SR register * @rmtoll SR OVR LL_SPI_ClearFlag_OVR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_ClearFlag_OVR(SPI_TypeDef *SPIx) { __IO uint32_t tmpreg; tmpreg = SPIx->DR; (void) tmpreg; tmpreg = SPIx->SR; (void) tmpreg; } /** * @brief Clear frame format error flag * @note Clearing this flag is done by reading SPIx_SR register * @rmtoll SR FRE LL_SPI_ClearFlag_FRE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_ClearFlag_FRE(SPI_TypeDef *SPIx) { __IO uint32_t tmpreg; tmpreg = SPIx->SR; (void) tmpreg; } /** * @} */ /** @defgroup SPI_LL_EF_IT_Management Interrupt Management * @{ */ /** * @brief Enable error interrupt * @note This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode). * @rmtoll CR2 ERRIE LL_SPI_EnableIT_ERR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableIT_ERR(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR2, SPI_CR2_ERRIE); } /** * @brief Enable Rx buffer not empty interrupt * @rmtoll CR2 RXNEIE LL_SPI_EnableIT_RXNE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableIT_RXNE(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR2, SPI_CR2_RXNEIE); } /** * @brief Enable Tx buffer empty interrupt * @rmtoll CR2 TXEIE LL_SPI_EnableIT_TXE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableIT_TXE(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR2, SPI_CR2_TXEIE); } /** * @brief Disable error interrupt * @note This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode). * @rmtoll CR2 ERRIE LL_SPI_DisableIT_ERR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableIT_ERR(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CR2, SPI_CR2_ERRIE); } /** * @brief Disable Rx buffer not empty interrupt * @rmtoll CR2 RXNEIE LL_SPI_DisableIT_RXNE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableIT_RXNE(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CR2, SPI_CR2_RXNEIE); } /** * @brief Disable Tx buffer empty interrupt * @rmtoll CR2 TXEIE LL_SPI_DisableIT_TXE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableIT_TXE(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CR2, SPI_CR2_TXEIE); } /** * @brief Check if error interrupt is enabled * @rmtoll CR2 ERRIE LL_SPI_IsEnabledIT_ERR * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_ERR(SPI_TypeDef *SPIx) { return (READ_BIT(SPIx->CR2, SPI_CR2_ERRIE) == (SPI_CR2_ERRIE)); } /** * @brief Check if Rx buffer not empty interrupt is enabled * @rmtoll CR2 RXNEIE LL_SPI_IsEnabledIT_RXNE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_RXNE(SPI_TypeDef *SPIx) { return (READ_BIT(SPIx->CR2, SPI_CR2_RXNEIE) == (SPI_CR2_RXNEIE)); } /** * @brief Check if Tx buffer empty interrupt * @rmtoll CR2 TXEIE LL_SPI_IsEnabledIT_TXE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_TXE(SPI_TypeDef *SPIx) { return (READ_BIT(SPIx->CR2, SPI_CR2_TXEIE) == (SPI_CR2_TXEIE)); } /** * @} */ /** @defgroup SPI_LL_EF_DMA_Management DMA Management * @{ */ /** * @brief Enable DMA Rx * @rmtoll CR2 RXDMAEN LL_SPI_EnableDMAReq_RX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableDMAReq_RX(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR2, SPI_CR2_RXDMAEN); } /** * @brief Disable DMA Rx * @rmtoll CR2 RXDMAEN LL_SPI_DisableDMAReq_RX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableDMAReq_RX(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CR2, SPI_CR2_RXDMAEN); } /** * @brief Check if DMA Rx is enabled * @rmtoll CR2 RXDMAEN LL_SPI_IsEnabledDMAReq_RX * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx) { return (READ_BIT(SPIx->CR2, SPI_CR2_RXDMAEN) == (SPI_CR2_RXDMAEN)); } /** * @brief Enable DMA Tx * @rmtoll CR2 TXDMAEN LL_SPI_EnableDMAReq_TX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableDMAReq_TX(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR2, SPI_CR2_TXDMAEN); } /** * @brief Disable DMA Tx * @rmtoll CR2 TXDMAEN LL_SPI_DisableDMAReq_TX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableDMAReq_TX(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CR2, SPI_CR2_TXDMAEN); } /** * @brief Check if DMA Tx is enabled * @rmtoll CR2 TXDMAEN LL_SPI_IsEnabledDMAReq_TX * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx) { return (READ_BIT(SPIx->CR2, SPI_CR2_TXDMAEN) == (SPI_CR2_TXDMAEN)); } /** * @brief Get the data register address used for DMA transfer * @rmtoll DR DR LL_SPI_DMA_GetRegAddr * @param SPIx SPI Instance * @retval Address of data register */ __STATIC_INLINE uint32_t LL_SPI_DMA_GetRegAddr(SPI_TypeDef *SPIx) { return (uint32_t) & (SPIx->DR); } /** * @} */ /** @defgroup SPI_LL_EF_DATA_Management DATA Management * @{ */ /** * @brief Read 8-Bits in the data register * @rmtoll DR DR LL_SPI_ReceiveData8 * @param SPIx SPI Instance * @retval RxData Value between Min_Data=0x00 and Max_Data=0xFF */ __STATIC_INLINE uint8_t LL_SPI_ReceiveData8(SPI_TypeDef *SPIx) { return (uint8_t)(READ_REG(SPIx->DR)); } /** * @brief Read 16-Bits in the data register * @rmtoll DR DR LL_SPI_ReceiveData16 * @param SPIx SPI Instance * @retval RxData Value between Min_Data=0x00 and Max_Data=0xFFFF */ __STATIC_INLINE uint16_t LL_SPI_ReceiveData16(SPI_TypeDef *SPIx) { return (uint16_t)(READ_REG(SPIx->DR)); } /** * @brief Write 8-Bits in the data register * @rmtoll DR DR LL_SPI_TransmitData8 * @param SPIx SPI Instance * @param TxData Value between Min_Data=0x00 and Max_Data=0xFF * @retval None */ __STATIC_INLINE void LL_SPI_TransmitData8(SPI_TypeDef *SPIx, uint8_t TxData) { SPIx->DR = TxData; } /** * @brief Write 16-Bits in the data register * @rmtoll DR DR LL_SPI_TransmitData16 * @param SPIx SPI Instance * @param TxData Value between Min_Data=0x00 and Max_Data=0xFFFF * @retval None */ __STATIC_INLINE void LL_SPI_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData) { SPIx->DR = TxData; } /** * @} */ #if defined(USE_FULL_LL_DRIVER) /** @defgroup SPI_LL_EF_Init Initialization and de-initialization functions * @{ */ ErrorStatus LL_SPI_DeInit(SPI_TypeDef *SPIx); ErrorStatus LL_SPI_Init(SPI_TypeDef *SPIx, LL_SPI_InitTypeDef *SPI_InitStruct); void LL_SPI_StructInit(LL_SPI_InitTypeDef *SPI_InitStruct); /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /** * @} */ /** * @} */ /** @defgroup I2S_LL I2S * @{ */ /* Private variables ---------------------------------------------------------*/ /* Private constants ---------------------------------------------------------*/ /* Private macros ------------------------------------------------------------*/ /* Exported types ------------------------------------------------------------*/ #if defined(USE_FULL_LL_DRIVER) /** @defgroup I2S_LL_ES_INIT I2S Exported Init structure * @{ */ /** * @brief I2S Init structure definition */ typedef struct { uint32_t Mode; /*!< Specifies the I2S operating mode. This parameter can be a value of @ref I2S_LL_EC_MODE This feature can be modified afterwards using unitary function @ref LL_I2S_SetTransferMode().*/ uint32_t Standard; /*!< Specifies the standard used for the I2S communication. This parameter can be a value of @ref I2S_LL_EC_STANDARD This feature can be modified afterwards using unitary function @ref LL_I2S_SetStandard().*/ uint32_t DataFormat; /*!< Specifies the data format for the I2S communication. This parameter can be a value of @ref I2S_LL_EC_DATA_FORMAT This feature can be modified afterwards using unitary function @ref LL_I2S_SetDataFormat().*/ uint32_t MCLKOutput; /*!< Specifies whether the I2S MCLK output is enabled or not. This parameter can be a value of @ref I2S_LL_EC_MCLK_OUTPUT This feature can be modified afterwards using unitary functions @ref LL_I2S_EnableMasterClock() or @ref LL_I2S_DisableMasterClock.*/ uint32_t AudioFreq; /*!< Specifies the frequency selected for the I2S communication. This parameter can be a value of @ref I2S_LL_EC_AUDIO_FREQ Audio Frequency can be modified afterwards using Reference manual formulas to calculate Prescaler Linear, Parity and unitary functions @ref LL_I2S_SetPrescalerLinear() and @ref LL_I2S_SetPrescalerParity() to set it.*/ uint32_t ClockPolarity; /*!< Specifies the idle state of the I2S clock. This parameter can be a value of @ref I2S_LL_EC_POLARITY This feature can be modified afterwards using unitary function @ref LL_I2S_SetClockPolarity().*/ } LL_I2S_InitTypeDef; /** * @} */ #endif /*USE_FULL_LL_DRIVER*/ /* Exported constants --------------------------------------------------------*/ /** @defgroup I2S_LL_Exported_Constants I2S Exported Constants * @{ */ /** @defgroup I2S_LL_EC_GET_FLAG Get Flags Defines * @brief Flags defines which can be used with LL_I2S_ReadReg function * @{ */ #define LL_I2S_SR_RXNE LL_SPI_SR_RXNE /*!< Rx buffer not empty flag */ #define LL_I2S_SR_TXE LL_SPI_SR_TXE /*!< Tx buffer empty flag */ #define LL_I2S_SR_BSY LL_SPI_SR_BSY /*!< Busy flag */ #define LL_I2S_SR_UDR SPI_SR_UDR /*!< Underrun flag */ #define LL_I2S_SR_OVR LL_SPI_SR_OVR /*!< Overrun flag */ #define LL_I2S_SR_FRE LL_SPI_SR_FRE /*!< TI mode frame format error flag */ /** * @} */ /** @defgroup SPI_LL_EC_IT IT Defines * @brief IT defines which can be used with LL_SPI_ReadReg and LL_SPI_WriteReg functions * @{ */ #define LL_I2S_CR2_RXNEIE LL_SPI_CR2_RXNEIE /*!< Rx buffer not empty interrupt enable */ #define LL_I2S_CR2_TXEIE LL_SPI_CR2_TXEIE /*!< Tx buffer empty interrupt enable */ #define LL_I2S_CR2_ERRIE LL_SPI_CR2_ERRIE /*!< Error interrupt enable */ /** * @} */ /** @defgroup I2S_LL_EC_DATA_FORMAT Data format * @{ */ #define LL_I2S_DATAFORMAT_16B 0x00000000U /*!< Data length 16 bits, Channel lenght 16bit */ #define LL_I2S_DATAFORMAT_16B_EXTENDED (SPI_I2SCFGR_CHLEN) /*!< Data length 16 bits, Channel lenght 32bit */ #define LL_I2S_DATAFORMAT_24B (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_0) /*!< Data length 24 bits, Channel lenght 32bit */ #define LL_I2S_DATAFORMAT_32B (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_1) /*!< Data length 16 bits, Channel lenght 32bit */ /** * @} */ /** @defgroup I2S_LL_EC_POLARITY Clock Polarity * @{ */ #define LL_I2S_POLARITY_LOW 0x00000000U /*!< Clock steady state is low level */ #define LL_I2S_POLARITY_HIGH (SPI_I2SCFGR_CKPOL) /*!< Clock steady state is high level */ /** * @} */ /** @defgroup I2S_LL_EC_STANDARD I2s Standard * @{ */ #define LL_I2S_STANDARD_PHILIPS 0x00000000U /*!< I2S standard philips */ #define LL_I2S_STANDARD_MSB (SPI_I2SCFGR_I2SSTD_0) /*!< MSB justified standard (left justified) */ #define LL_I2S_STANDARD_LSB (SPI_I2SCFGR_I2SSTD_1) /*!< LSB justified standard (right justified) */ #define LL_I2S_STANDARD_PCM_SHORT (SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1) /*!< PCM standard, short frame synchronization */ #define LL_I2S_STANDARD_PCM_LONG (SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1 | SPI_I2SCFGR_PCMSYNC) /*!< PCM standard, long frame synchronization */ /** * @} */ /** @defgroup I2S_LL_EC_MODE Operation Mode * @{ */ #define LL_I2S_MODE_SLAVE_TX 0x00000000U /*!< Slave Tx configuration */ #define LL_I2S_MODE_SLAVE_RX (SPI_I2SCFGR_I2SCFG_0) /*!< Slave Rx configuration */ #define LL_I2S_MODE_MASTER_TX (SPI_I2SCFGR_I2SCFG_1) /*!< Master Tx configuration */ #define LL_I2S_MODE_MASTER_RX (SPI_I2SCFGR_I2SCFG_0 | SPI_I2SCFGR_I2SCFG_1) /*!< Master Rx configuration */ /** * @} */ /** @defgroup I2S_LL_EC_PRESCALER_FACTOR Prescaler Factor * @{ */ #define LL_I2S_PRESCALER_PARITY_EVEN 0x00000000U /*!< Odd factor: Real divider value is = I2SDIV * 2 */ #define LL_I2S_PRESCALER_PARITY_ODD (SPI_I2SPR_ODD >> 8U) /*!< Odd factor: Real divider value is = (I2SDIV * 2)+1 */ /** * @} */ #if defined(USE_FULL_LL_DRIVER) /** @defgroup I2S_LL_EC_MCLK_OUTPUT MCLK Output * @{ */ #define LL_I2S_MCLK_OUTPUT_DISABLE 0x00000000U /*!< Master clock output is disabled */ #define LL_I2S_MCLK_OUTPUT_ENABLE (SPI_I2SPR_MCKOE) /*!< Master clock output is enabled */ /** * @} */ /** @defgroup I2S_LL_EC_AUDIO_FREQ Audio Frequency * @{ */ #define LL_I2S_AUDIOFREQ_192K 192000U /*!< Audio Frequency configuration 192000 Hz */ #define LL_I2S_AUDIOFREQ_96K 96000U /*!< Audio Frequency configuration 96000 Hz */ #define LL_I2S_AUDIOFREQ_48K 48000U /*!< Audio Frequency configuration 48000 Hz */ #define LL_I2S_AUDIOFREQ_44K 44100U /*!< Audio Frequency configuration 44100 Hz */ #define LL_I2S_AUDIOFREQ_32K 32000U /*!< Audio Frequency configuration 32000 Hz */ #define LL_I2S_AUDIOFREQ_22K 22050U /*!< Audio Frequency configuration 22050 Hz */ #define LL_I2S_AUDIOFREQ_16K 16000U /*!< Audio Frequency configuration 16000 Hz */ #define LL_I2S_AUDIOFREQ_11K 11025U /*!< Audio Frequency configuration 11025 Hz */ #define LL_I2S_AUDIOFREQ_8K 8000U /*!< Audio Frequency configuration 8000 Hz */ #define LL_I2S_AUDIOFREQ_DEFAULT 2U /*!< Audio Freq not specified. Register I2SDIV = 2 */ /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /** * @} */ /* Exported macro ------------------------------------------------------------*/ /** @defgroup I2S_LL_Exported_Macros I2S Exported Macros * @{ */ /** @defgroup I2S_LL_EM_WRITE_READ Common Write and read registers Macros * @{ */ /** * @brief Write a value in I2S register * @param __INSTANCE__ I2S Instance * @param __REG__ Register to be written * @param __VALUE__ Value to be written in the register * @retval None */ #define LL_I2S_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__)) /** * @brief Read a value in I2S register * @param __INSTANCE__ I2S Instance * @param __REG__ Register to be read * @retval Register value */ #define LL_I2S_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__) /** * @} */ /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @defgroup I2S_LL_Exported_Functions I2S Exported Functions * @{ */ /** @defgroup I2S_LL_EF_Configuration Configuration * @{ */ /** * @brief Select I2S mode and Enable I2S peripheral * @rmtoll I2SCFGR I2SMOD LL_I2S_Enable\n * I2SCFGR I2SE LL_I2S_Enable * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_Enable(SPI_TypeDef *SPIx) { SET_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD | SPI_I2SCFGR_I2SE); } /** * @brief Disable I2S peripheral * @rmtoll I2SCFGR I2SE LL_I2S_Disable * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_Disable(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD | SPI_I2SCFGR_I2SE); } /** * @brief Check if I2S peripheral is enabled * @rmtoll I2SCFGR I2SE LL_I2S_IsEnabled * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsEnabled(SPI_TypeDef *SPIx) { return (READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SE) == (SPI_I2SCFGR_I2SE)); } /** * @brief Set I2S data frame length * @rmtoll I2SCFGR DATLEN LL_I2S_SetDataFormat\n * I2SCFGR CHLEN LL_I2S_SetDataFormat * @param SPIx SPI Instance * @param DataFormat This parameter can be one of the following values: * @arg @ref LL_I2S_DATAFORMAT_16B * @arg @ref LL_I2S_DATAFORMAT_16B_EXTENDED * @arg @ref LL_I2S_DATAFORMAT_24B * @arg @ref LL_I2S_DATAFORMAT_32B * @retval None */ __STATIC_INLINE void LL_I2S_SetDataFormat(SPI_TypeDef *SPIx, uint32_t DataFormat) { MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN, DataFormat); } /** * @brief Get I2S data frame length * @rmtoll I2SCFGR DATLEN LL_I2S_GetDataFormat\n * I2SCFGR CHLEN LL_I2S_GetDataFormat * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_I2S_DATAFORMAT_16B * @arg @ref LL_I2S_DATAFORMAT_16B_EXTENDED * @arg @ref LL_I2S_DATAFORMAT_24B * @arg @ref LL_I2S_DATAFORMAT_32B */ __STATIC_INLINE uint32_t LL_I2S_GetDataFormat(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)); } /** * @brief Set I2S clock polarity * @rmtoll I2SCFGR CKPOL LL_I2S_SetClockPolarity * @param SPIx SPI Instance * @param ClockPolarity This parameter can be one of the following values: * @arg @ref LL_I2S_POLARITY_LOW * @arg @ref LL_I2S_POLARITY_HIGH * @retval None */ __STATIC_INLINE void LL_I2S_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity) { SET_BIT(SPIx->I2SCFGR, ClockPolarity); } /** * @brief Get I2S clock polarity * @rmtoll I2SCFGR CKPOL LL_I2S_GetClockPolarity * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_I2S_POLARITY_LOW * @arg @ref LL_I2S_POLARITY_HIGH */ __STATIC_INLINE uint32_t LL_I2S_GetClockPolarity(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_CKPOL)); } /** * @brief Set I2S standard protocol * @rmtoll I2SCFGR I2SSTD LL_I2S_SetStandard\n * I2SCFGR PCMSYNC LL_I2S_SetStandard * @param SPIx SPI Instance * @param Standard This parameter can be one of the following values: * @arg @ref LL_I2S_STANDARD_PHILIPS * @arg @ref LL_I2S_STANDARD_MSB * @arg @ref LL_I2S_STANDARD_LSB * @arg @ref LL_I2S_STANDARD_PCM_SHORT * @arg @ref LL_I2S_STANDARD_PCM_LONG * @retval None */ __STATIC_INLINE void LL_I2S_SetStandard(SPI_TypeDef *SPIx, uint32_t Standard) { MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC, Standard); } /** * @brief Get I2S standard protocol * @rmtoll I2SCFGR I2SSTD LL_I2S_GetStandard\n * I2SCFGR PCMSYNC LL_I2S_GetStandard * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_I2S_STANDARD_PHILIPS * @arg @ref LL_I2S_STANDARD_MSB * @arg @ref LL_I2S_STANDARD_LSB * @arg @ref LL_I2S_STANDARD_PCM_SHORT * @arg @ref LL_I2S_STANDARD_PCM_LONG */ __STATIC_INLINE uint32_t LL_I2S_GetStandard(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC)); } /** * @brief Set I2S transfer mode * @rmtoll I2SCFGR I2SCFG LL_I2S_SetTransferMode * @param SPIx SPI Instance * @param Mode This parameter can be one of the following values: * @arg @ref LL_I2S_MODE_SLAVE_TX * @arg @ref LL_I2S_MODE_SLAVE_RX * @arg @ref LL_I2S_MODE_MASTER_TX * @arg @ref LL_I2S_MODE_MASTER_RX * @retval None */ __STATIC_INLINE void LL_I2S_SetTransferMode(SPI_TypeDef *SPIx, uint32_t Mode) { MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SCFG, Mode); } /** * @brief Get I2S transfer mode * @rmtoll I2SCFGR I2SCFG LL_I2S_GetTransferMode * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_I2S_MODE_SLAVE_TX * @arg @ref LL_I2S_MODE_SLAVE_RX * @arg @ref LL_I2S_MODE_MASTER_TX * @arg @ref LL_I2S_MODE_MASTER_RX */ __STATIC_INLINE uint32_t LL_I2S_GetTransferMode(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SCFG)); } /** * @brief Set I2S linear prescaler * @rmtoll I2SPR I2SDIV LL_I2S_SetPrescalerLinear * @param SPIx SPI Instance * @param PrescalerLinear Value between Min_Data=0x02 and Max_Data=0xFF * @retval None */ __STATIC_INLINE void LL_I2S_SetPrescalerLinear(SPI_TypeDef *SPIx, uint8_t PrescalerLinear) { MODIFY_REG(SPIx->I2SPR, SPI_I2SPR_I2SDIV, PrescalerLinear); } /** * @brief Get I2S linear prescaler * @rmtoll I2SPR I2SDIV LL_I2S_GetPrescalerLinear * @param SPIx SPI Instance * @retval PrescalerLinear Value between Min_Data=0x02 and Max_Data=0xFF */ __STATIC_INLINE uint32_t LL_I2S_GetPrescalerLinear(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->I2SPR, SPI_I2SPR_I2SDIV)); } /** * @brief Set I2S parity prescaler * @rmtoll I2SPR ODD LL_I2S_SetPrescalerParity * @param SPIx SPI Instance * @param PrescalerParity This parameter can be one of the following values: * @arg @ref LL_I2S_PRESCALER_PARITY_EVEN * @arg @ref LL_I2S_PRESCALER_PARITY_ODD * @retval None */ __STATIC_INLINE void LL_I2S_SetPrescalerParity(SPI_TypeDef *SPIx, uint32_t PrescalerParity) { MODIFY_REG(SPIx->I2SPR, SPI_I2SPR_ODD, PrescalerParity << 8U); } /** * @brief Get I2S parity prescaler * @rmtoll I2SPR ODD LL_I2S_GetPrescalerParity * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_I2S_PRESCALER_PARITY_EVEN * @arg @ref LL_I2S_PRESCALER_PARITY_ODD */ __STATIC_INLINE uint32_t LL_I2S_GetPrescalerParity(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->I2SPR, SPI_I2SPR_ODD) >> 8U); } /** * @brief Enable the master clock ouput (Pin MCK) * @rmtoll I2SPR MCKOE LL_I2S_EnableMasterClock * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableMasterClock(SPI_TypeDef *SPIx) { SET_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE); } /** * @brief Disable the master clock ouput (Pin MCK) * @rmtoll I2SPR MCKOE LL_I2S_DisableMasterClock * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableMasterClock(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE); } /** * @brief Check if the master clock ouput (Pin MCK) is enabled * @rmtoll I2SPR MCKOE LL_I2S_IsEnabledMasterClock * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledMasterClock(SPI_TypeDef *SPIx) { return (READ_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE) == (SPI_I2SPR_MCKOE)); } #if defined(SPI_I2SCFGR_ASTRTEN) /** * @brief Enable asynchronous start * @rmtoll I2SCFGR ASTRTEN LL_I2S_EnableAsyncStart * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableAsyncStart(SPI_TypeDef *SPIx) { SET_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_ASTRTEN); } /** * @brief Disable asynchronous start * @rmtoll I2SCFGR ASTRTEN LL_I2S_DisableAsyncStart * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableAsyncStart(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_ASTRTEN); } /** * @brief Check if asynchronous start is enabled * @rmtoll I2SCFGR ASTRTEN LL_I2S_IsEnabledAsyncStart * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledAsyncStart(SPI_TypeDef *SPIx) { return (READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_ASTRTEN) == (SPI_I2SCFGR_ASTRTEN)); } #endif /* SPI_I2SCFGR_ASTRTEN */ /** * @} */ /** @defgroup I2S_LL_EF_FLAG FLAG Management * @{ */ /** * @brief Check if Rx buffer is not empty * @rmtoll SR RXNE LL_I2S_IsActiveFlag_RXNE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_RXNE(SPI_TypeDef *SPIx) { return LL_SPI_IsActiveFlag_RXNE(SPIx); } /** * @brief Check if Tx buffer is empty * @rmtoll SR TXE LL_I2S_IsActiveFlag_TXE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_TXE(SPI_TypeDef *SPIx) { return LL_SPI_IsActiveFlag_TXE(SPIx); } /** * @brief Get busy flag * @rmtoll SR BSY LL_I2S_IsActiveFlag_BSY * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_BSY(SPI_TypeDef *SPIx) { return LL_SPI_IsActiveFlag_BSY(SPIx); } /** * @brief Get overrun error flag * @rmtoll SR OVR LL_I2S_IsActiveFlag_OVR * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_OVR(SPI_TypeDef *SPIx) { return LL_SPI_IsActiveFlag_OVR(SPIx); } /** * @brief Get underrun error flag * @rmtoll SR UDR LL_I2S_IsActiveFlag_UDR * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_UDR(SPI_TypeDef *SPIx) { return (READ_BIT(SPIx->SR, SPI_SR_UDR) == (SPI_SR_UDR)); } /** * @brief Get frame format error flag * @rmtoll SR FRE LL_I2S_IsActiveFlag_FRE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_FRE(SPI_TypeDef *SPIx) { return LL_SPI_IsActiveFlag_FRE(SPIx); } /** * @brief Get channel side flag. * @note 0: Channel Left has to be transmitted or has been received\n * 1: Channel Right has to be transmitted or has been received\n * It has no significance in PCM mode. * @rmtoll SR CHSIDE LL_I2S_IsActiveFlag_CHSIDE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_CHSIDE(SPI_TypeDef *SPIx) { return (READ_BIT(SPIx->SR, SPI_SR_CHSIDE) == (SPI_SR_CHSIDE)); } /** * @brief Clear overrun error flag * @rmtoll SR OVR LL_I2S_ClearFlag_OVR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_ClearFlag_OVR(SPI_TypeDef *SPIx) { LL_SPI_ClearFlag_OVR(SPIx); } /** * @brief Clear underrun error flag * @rmtoll SR UDR LL_I2S_ClearFlag_UDR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_ClearFlag_UDR(SPI_TypeDef *SPIx) { __IO uint32_t tmpreg; tmpreg = SPIx->SR; (void)tmpreg; } /** * @brief Clear frame format error flag * @rmtoll SR FRE LL_I2S_ClearFlag_FRE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_ClearFlag_FRE(SPI_TypeDef *SPIx) { LL_SPI_ClearFlag_FRE(SPIx); } /** * @} */ /** @defgroup I2S_LL_EF_IT Interrupt Management * @{ */ /** * @brief Enable error IT * @note This bit controls the generation of an interrupt when an error condition occurs (OVR, UDR and FRE in I2S mode). * @rmtoll CR2 ERRIE LL_I2S_EnableIT_ERR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableIT_ERR(SPI_TypeDef *SPIx) { LL_SPI_EnableIT_ERR(SPIx); } /** * @brief Enable Rx buffer not empty IT * @rmtoll CR2 RXNEIE LL_I2S_EnableIT_RXNE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableIT_RXNE(SPI_TypeDef *SPIx) { LL_SPI_EnableIT_RXNE(SPIx); } /** * @brief Enable Tx buffer empty IT * @rmtoll CR2 TXEIE LL_I2S_EnableIT_TXE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableIT_TXE(SPI_TypeDef *SPIx) { LL_SPI_EnableIT_TXE(SPIx); } /** * @brief Disable error IT * @note This bit controls the generation of an interrupt when an error condition occurs (OVR, UDR and FRE in I2S mode). * @rmtoll CR2 ERRIE LL_I2S_DisableIT_ERR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableIT_ERR(SPI_TypeDef *SPIx) { LL_SPI_DisableIT_ERR(SPIx); } /** * @brief Disable Rx buffer not empty IT * @rmtoll CR2 RXNEIE LL_I2S_DisableIT_RXNE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableIT_RXNE(SPI_TypeDef *SPIx) { LL_SPI_DisableIT_RXNE(SPIx); } /** * @brief Disable Tx buffer empty IT * @rmtoll CR2 TXEIE LL_I2S_DisableIT_TXE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableIT_TXE(SPI_TypeDef *SPIx) { LL_SPI_DisableIT_TXE(SPIx); } /** * @brief Check if ERR IT is enabled * @rmtoll CR2 ERRIE LL_I2S_IsEnabledIT_ERR * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_ERR(SPI_TypeDef *SPIx) { return LL_SPI_IsEnabledIT_ERR(SPIx); } /** * @brief Check if RXNE IT is enabled * @rmtoll CR2 RXNEIE LL_I2S_IsEnabledIT_RXNE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_RXNE(SPI_TypeDef *SPIx) { return LL_SPI_IsEnabledIT_RXNE(SPIx); } /** * @brief Check if TXE IT is enabled * @rmtoll CR2 TXEIE LL_I2S_IsEnabledIT_TXE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_TXE(SPI_TypeDef *SPIx) { return LL_SPI_IsEnabledIT_TXE(SPIx); } /** * @} */ /** @defgroup I2S_LL_EF_DMA DMA Management * @{ */ /** * @brief Enable DMA Rx * @rmtoll CR2 RXDMAEN LL_I2S_EnableDMAReq_RX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableDMAReq_RX(SPI_TypeDef *SPIx) { LL_SPI_EnableDMAReq_RX(SPIx); } /** * @brief Disable DMA Rx * @rmtoll CR2 RXDMAEN LL_I2S_DisableDMAReq_RX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableDMAReq_RX(SPI_TypeDef *SPIx) { LL_SPI_DisableDMAReq_RX(SPIx); } /** * @brief Check if DMA Rx is enabled * @rmtoll CR2 RXDMAEN LL_I2S_IsEnabledDMAReq_RX * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx) { return LL_SPI_IsEnabledDMAReq_RX(SPIx); } /** * @brief Enable DMA Tx * @rmtoll CR2 TXDMAEN LL_I2S_EnableDMAReq_TX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableDMAReq_TX(SPI_TypeDef *SPIx) { LL_SPI_EnableDMAReq_TX(SPIx); } /** * @brief Disable DMA Tx * @rmtoll CR2 TXDMAEN LL_I2S_DisableDMAReq_TX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableDMAReq_TX(SPI_TypeDef *SPIx) { LL_SPI_DisableDMAReq_TX(SPIx); } /** * @brief Check if DMA Tx is enabled * @rmtoll CR2 TXDMAEN LL_I2S_IsEnabledDMAReq_TX * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx) { return LL_SPI_IsEnabledDMAReq_TX(SPIx); } /** * @} */ /** @defgroup I2S_LL_EF_DATA DATA Management * @{ */ /** * @brief Read 16-Bits in data register * @rmtoll DR DR LL_I2S_ReceiveData16 * @param SPIx SPI Instance * @retval RxData Value between Min_Data=0x0000 and Max_Data=0xFFFF */ __STATIC_INLINE uint16_t LL_I2S_ReceiveData16(SPI_TypeDef *SPIx) { return LL_SPI_ReceiveData16(SPIx); } /** * @brief Write 16-Bits in data register * @rmtoll DR DR LL_I2S_TransmitData16 * @param SPIx SPI Instance * @param TxData Value between Min_Data=0x0000 and Max_Data=0xFFFF * @retval None */ __STATIC_INLINE void LL_I2S_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData) { LL_SPI_TransmitData16(SPIx, TxData); } /** * @} */ #if defined(USE_FULL_LL_DRIVER) /** @defgroup I2S_LL_EF_Init Initialization and de-initialization functions * @{ */ ErrorStatus LL_I2S_DeInit(SPI_TypeDef *SPIx); ErrorStatus LL_I2S_Init(SPI_TypeDef *SPIx, LL_I2S_InitTypeDef *I2S_InitStruct); void LL_I2S_StructInit(LL_I2S_InitTypeDef *I2S_InitStruct); void LL_I2S_ConfigPrescaler(SPI_TypeDef *SPIx, uint32_t PrescalerLinear, uint32_t PrescalerParity); #if defined (SPI_I2S_FULLDUPLEX_SUPPORT) ErrorStatus LL_I2S_InitFullDuplex(SPI_TypeDef *I2Sxext, LL_I2S_InitTypeDef *I2S_InitStruct); #endif /* SPI_I2S_FULLDUPLEX_SUPPORT */ /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /** * @} */ /** * @} */ #endif /* defined (SPI1) || defined (SPI2) || defined (SPI3) || defined (SPI4) || defined (SPI5) || defined(SPI6) */ /** * @} */ #ifdef __cplusplus } #endif #endif /* __STM32F4xx_LL_SPI_H */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/