Mercurial > public > ostc4
view Small_CPU/Src/externalInterface.c @ 696:cc542448fb28
Merge
author | heinrichsweikamp |
---|---|
date | Fri, 19 Aug 2022 11:30:24 +0200 |
parents | 52d68cf9994c |
children | f1b40364b0af |
line wrap: on
line source
/** ****************************************************************************** * @file externalInterface.c * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 07-Nov-2020 * @brief Interface functionality to proceed external analog signal via i2c connection * @verbatim ============================================================================== ##### stm32f4xx_hal_i2c.c modification ##### ============================================================================== The LTC2942 requires an repeated start condition without stop condition for data reception. @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2014 heinrichs weikamp</center></h2> * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include <math.h> #include "i2c.h" #include "externalInterface.h" #include "scheduler.h" #include "uart.h" #include "data_exchange.h" extern SGlobal global; extern UART_HandleTypeDef huart1; #define ADC_ANSWER_LENGTH (5u) /* 3424 will provide addr + 4 data bytes */ #define ADC_TIMEOUT (10u) /* conversion stuck for unknown reason => restart */ #define ADC_REF_VOLTAGE_MV (2048.0f) /* reference voltage of MPC3424*/ #define ADC_START_CONVERSION (0x80) #define ADC_GAIN_4 (0x02) #define ADC_GAIN_4_VALUE (4.0f) #define ADC_GAIN_8 (0x03) #define ADC_GAIN_8_VALUE (8.0f) #define ADC_RESOLUTION_16BIT (0x08) #define ADC_RESOLUTION_16BIT_VALUE (16u) #define ADC_RESOLUTION_18BIT (0x0C) #define ADC_RESOLUTION_18BIT_VALUE (18u) #define ANSWER_CONFBYTE_INDEX (4u) static uint8_t activeChannel = 0; /* channel which is in request */ static uint8_t recBuf[ADC_ANSWER_LENGTH]; static uint8_t timeoutCnt = 0; static uint8_t externalInterfacePresent = 0; float externalChannel_mV[MAX_ADC_CHANNEL]; static uint8_t externalV33_On = 0; static uint8_t externalADC_On = 0; static uint16_t externalCO2Value; static uint16_t externalCO2SignalStrength; static uint16_t externalCO2Status = 0; void externalInterface_Init(void) { activeChannel = 0; timeoutCnt = 0; externalInterfacePresent = 0; if(externalInterface_StartConversion(activeChannel) == HAL_OK) { externalInterfacePresent = 1; global.deviceDataSendToMaster.hw_Info.extADC = 1; } global.deviceDataSendToMaster.hw_Info.checkADC = 1; /* init data values */ externalV33_On = 0; externalCO2Value = 0; externalCO2SignalStrength = 0; externalCO2Status = 0; } uint8_t externalInterface_StartConversion(uint8_t channel) { uint8_t retval = 0; uint8_t confByte = 0; if(channel < MAX_ADC_CHANNEL) { confByte = ADC_START_CONVERSION | ADC_RESOLUTION_16BIT | ADC_GAIN_8; confByte |= channel << 5; retval = I2C_Master_Transmit(DEVICE_EXTERNAL_ADC, &confByte, 1); } return retval; } /* Check if conversion is done and trigger measurement of next channel */ uint8_t externalInterface_ReadAndSwitch() { uint8_t retval = EXTERNAL_ADC_NO_DATA; if(externalInterfacePresent) { if(I2C_Master_Receive(DEVICE_EXTERNAL_ADC, recBuf, ADC_ANSWER_LENGTH) == HAL_OK) { if((recBuf[ANSWER_CONFBYTE_INDEX] & ADC_START_CONVERSION) == 0) /* !ready set => received data contains new value */ { retval = activeChannel; /* return channel number providing new data */ activeChannel++; if(activeChannel == MAX_ADC_CHANNEL) { activeChannel = 0; } externalInterface_StartConversion(activeChannel); timeoutCnt = 0; } else { if(timeoutCnt++ >= ADC_TIMEOUT) { externalInterface_StartConversion(activeChannel); timeoutCnt = 0; } } } else /* take also i2c bus disturb into account */ { if(timeoutCnt++ >= ADC_TIMEOUT) { externalInterface_StartConversion(activeChannel); timeoutCnt = 0; } } } return retval; } float externalInterface_CalculateADCValue(uint8_t channel) { int32_t rawvalue = 0; float retValue = 0.0; if(channel < MAX_ADC_CHANNEL) { rawvalue = ((recBuf[0] << 16) | (recBuf[1] << 8) | (recBuf[2])); switch(recBuf[3] & 0x0C) /* confbyte => Resolution bits*/ { case ADC_RESOLUTION_16BIT: rawvalue = rawvalue >> 8; /* only 2 databytes received shift out confbyte*/ if(rawvalue & (0x1 << (ADC_RESOLUTION_16BIT_VALUE-1))) /* MSB set => negative number */ { rawvalue |= 0xFFFF0000; /* set MSB for int32 */ } else { rawvalue &= 0x0000FFFF; } externalChannel_mV[channel] = ADC_REF_VOLTAGE_MV * 2.0 / (float) pow(2,ADC_RESOLUTION_16BIT_VALUE); /* calculate bit resolution */ break; case ADC_RESOLUTION_18BIT: if(rawvalue & (0x1 << (ADC_RESOLUTION_18BIT_VALUE-1))) /* MSB set => negative number */ { rawvalue |= 0xFFFE0000; /* set MSB for int32 */ } externalChannel_mV[channel] = ADC_REF_VOLTAGE_MV * 2.0 / (float) pow(2,ADC_RESOLUTION_18BIT_VALUE); /* calculate bit resolution */ break; default: rawvalue = 0; break; } externalChannel_mV[channel] = externalChannel_mV[channel] * rawvalue / ADC_GAIN_8_VALUE; retValue = externalChannel_mV[channel]; } return retValue; } float getExternalInterfaceChannel(uint8_t channel) { float retval = 0; if(channel < MAX_ADC_CHANNEL) { retval = externalChannel_mV[channel]; } return retval; } uint8_t setExternalInterfaceChannel(uint8_t channel, float value) { uint8_t retval = 0; if(channel < MAX_ADC_CHANNEL) { externalChannel_mV[channel] = value; retval = 1; } return retval; } void externalInterface_InitPower33(void) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Pin = GPIO_PIN_7; GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStructure.Pull = GPIO_PULLUP; GPIO_InitStructure.Speed = GPIO_SPEED_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStructure); HAL_GPIO_WritePin(GPIOC,GPIO_PIN_7,GPIO_PIN_SET); } uint8_t externalInterface_isEnabledPower33() { return externalV33_On; } uint8_t externalInterface_isEnabledADC() { return externalADC_On; } void externalInterface_SwitchPower33(uint8_t state) { if(state != externalV33_On) { if(state) { HAL_GPIO_WritePin(GPIOC,GPIO_PIN_7,GPIO_PIN_RESET); externalV33_On = 1; MX_USART1_UART_Init(); } else { HAL_GPIO_WritePin(GPIOC,GPIO_PIN_7,GPIO_PIN_SET); externalV33_On = 0; externalInterface_SetCO2Value(0); externalInterface_SetCO2SignalStrength(0); MX_USART1_UART_DeInit(); } } } void externalInterface_SwitchADC(uint8_t state) { if((state) && (externalInterfacePresent)) { externalInterface_StartConversion(activeChannel); externalADC_On = 1; } else { externalADC_On = 0; } } void externalInterface_SetCO2Value(uint16_t CO2_ppm) { externalCO2Value = CO2_ppm; } void externalInterface_SetCO2SignalStrength(uint16_t LED_qa) { externalCO2SignalStrength = LED_qa; } uint16_t externalInterface_GetCO2Value(void) { return externalCO2Value; } uint16_t externalInterface_GetCO2SignalStrength(void) { return externalCO2SignalStrength; } void externalInterface_SetCO2State(uint16_t state) { externalCO2Status = state; } uint16_t externalInterface_GetCO2State(void) { return externalCO2Status; } void externalInterface_ExecuteCmd(uint16_t Cmd) { char cmdString[10]; uint8_t cmdLength = 0; switch(Cmd & 0x00FF) /* lower byte is reserved for commands */ { case EXT_INTERFACE_CO2_CALIB: cmdLength = snprintf(cmdString, 10, "G\r\n"); break; default: break; } if(cmdLength != 0) { HAL_UART_Transmit(&huart1,(uint8_t*)cmdString,cmdLength,10); } return; }