Mercurial > public > ostc4
view Common/Src/decom.c @ 128:c78bcbd5deda FlipDisplay
Added current STM32 standandard libraries in version independend folder structure
author | Ideenmodellierer |
---|---|
date | Sun, 17 Feb 2019 21:12:22 +0100 |
parents | e941c9e49f73 |
children | 239aa58b533d |
line wrap: on
line source
/////////////////////////////////////////////////////////////////////////////// /// -*- coding: UTF-8 -*- /// /// \file Common/Src/decom.c /// \brief This code is used to calculate desat, calculated by RTE and send to Firmware /// \author heinrichs weikamp gmbh /// \date 22-Feb-2016 /// /// $Id$ /////////////////////////////////////////////////////////////////////////////// /// \par Copyright (c) 2014-2018 Heinrichs Weikamp gmbh /// /// This program is free software: you can redistribute it and/or modify /// it under the terms of the GNU General Public License as published by /// the Free Software Foundation, either version 3 of the License, or /// (at your option) any later version. /// /// This program is distributed in the hope that it will be useful, /// but WITHOUT ANY WARRANTY; without even the implied warranty of /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the /// GNU General Public License for more details. /// /// You should have received a copy of the GNU General Public License /// along with this program. If not, see <http://www.gnu.org/licenses/>. ////////////////////////////////////////////////////////////////////////////// /** @verbatim ============================================================================== ##### Changes ##### ============================================================================== V1.0.2 1602220x decom_oxygen_calculate_cns() changed to hwOS version @endverbatim ****************************************************************************** */ #include "decom.h" #include <math.h> #include "settings.h" #include "calc_crush.h" # define FRACTION_N2_AIR 0.7902 const float helium_time_constant[16] = { 3.68695308808482E-001, 2.29518933960247E-001, 1.46853216220327E-001, 9.91626867753856E-002, 6.78890480470074E-002, 4.78692804254106E-002, 3.37626488338989E-002, 2.38113081607676E-002, 1.68239606932026E-002, 1.25592893741610E-002, 9.80544886914621E-003, 7.67264977374303E-003, 6.01220557342307E-003, 4.70185307665137E-003, 3.68225234041620E-003, 2.88775228329769E-003}; const float nitrogen_time_constant[16] = { 1.38629436111989E-001, 8.66433975699932E-002, 5.54517744447956E-002, 3.74674151654024E-002, 2.56721177985165E-002, 1.80978376125312E-002, 1.27651414467762E-002, 9.00191143584345E-003, 6.35914844550409E-003, 4.74758342849278E-003, 3.70666941475907E-003, 2.90019740820061E-003, 2.27261370675392E-003, 1.77730046297422E-003, 1.39186180835330E-003, 1.09157036308653E-003}; const float buehlmann_N2_a[] = { 1.1696f, 1.0000f, 0.8618f, 0.7562f, 0.6200f, 0.5043f, 0.4410f, 0.4000f, 0.3750f, 0.3500f, 0.3295f, 0.3065f, 0.2835f, 0.2610f, 0.2480f, 0.2327f}; const float buehlmann_N2_b[] = { 0.5578f, 0.6514f, 0.7222f, 0.7825f, 0.8126f, 0.8434f, 0.8693f, 0.8910f, 0.9092f, 0.9222f, 0.9319f, 0.9403f, 0.9477f, 0.9544f, 0.9602f, 0.9653f}; const float buehlmann_He_a[] = { 1.6189f, 1.3830f, 1.1919f, 1.0458f, 0.9220f, 0.8205f, 0.7305f, 0.6502f, 0.5950f, 0.5545f, 0.5333f, 0.5189f, 0.5181f, 0.5176f, 0.5172f, 0.5119f}; const float buehlmann_He_b[] = { 0.4770f, 0.5747f, 0.6527f, 0.7223f, 0.7582f, 0.7957f, 0.8279f, 0.8553f, 0.8757f, 0.8903f, 0.8997f, 0.9073f, 0.9122f, 0.9171f, 0.9217f, 0.9267f}; const float buehlmann_N2_t_halflife[] = { 5.0f, 8.0f, 12.5f, 18.5f, 27.0f, 38.3f, 54.3f, 77.0f, 109.0f, 146.0f, 187.0f, 239.0f, 305.0f, 390.0f, 498.0f, 635.0f}; const float buehlmann_He_t_halflife[] = { 1.88f, 3.02f, 4.72f, 6.99f, 10.21f, 14.48f, 20.53f, 29.11f, 41.20f, 55.19f, 70.69f, 90.34f, 115.29f, 147.42f, 188.24f, 240.03f}; const float float_buehlmann_N2_factor_expositon_one_second[] = { 2.30782347297664E-003f, 1.44301447809736E-003f, 9.23769302935806E-004f, 6.24261986779007E-004f, 4.27777107246730E-004f, 3.01585140931371E-004f, 2.12729727268379E-004f, 1.50020603047807E-004f, 1.05980191127841E-004f, 7.91232600646508E-005f, 6.17759153688224E-005f, 4.83354552742732E-005f, 3.78761777920511E-005f, 2.96212356654113E-005f, 2.31974277413727E-005f, 1.81926738960225E-005f}; const float float_buehlmann_N2_factor_expositon_003_second[] = { 6.90750456296407E-003f, 4.32279956671600E-003f, 2.76874864793053E-003f, 1.87161709452954E-003f, 1.28278242026003E-003f, 9.04482589432765E-004f, 6.38053429621421E-004f, 4.49994293975742E-004f, 3.17906879170993E-004f, 2.37350999218289E-004f, 1.85316297551252E-004f, 1.44999356986975E-004f, 1.13624229615916E-004f, 8.88610747694640E-005f, 6.95906688746861E-005f, 5.45770287740943E-005f}; const float float_buehlmann_N2_factor_expositon_008_second[] = { 1.83141447532454E-002f, 1.14859796471039E-002f, 7.36630472495203E-003f, 4.98319782231915E-003f, 3.41709742823104E-003f, 2.41013596224415E-003f, 1.70057124687550E-003f, 1.19953484034729E-003f, 8.47527105247492E-004f, 6.32810814525819E-004f, 4.94100480767923E-004f, 3.86618231662861E-004f, 3.02969256443353E-004f, 2.36945319086024E-004f, 1.85564355251966E-004f, 1.45532124251058E-004f}; const float float_buehlmann_N2_factor_expositon_10_seconds[] = { 2.28400315657541E-002f, 1.43368013598124E-002f, 9.19938673477072E-003f, 6.22511239287027E-003f, 4.69545762670800E-003f, 3.01176178733265E-003f, 2.12526200031782E-003f, 1.49919365737827E-003f, 1.05929662305226E-03f, 7.909509380171760E-004f, 6.17587450108648E-004f, 4.83249432061905E-004f, 3.78697227222391E-004f, 2.61728759809380E-004f, 2.31950063482533E-004f, 1.81911845881011E-004f}; const float float_buehlmann_N2_factor_expositon_18_seconds[] = { 4.07358806747357E-002f, 2.56581087982929E-002f, 1.64979259737517E-002f, 1.11772892486697E-002f, 7.67205373705648E-003f, 5.41463899418337E-003f, 3.82221908774349E-003f, 2.69693016270112E-003f, 1.90592594569927E-003f, 1.42326123023573E-003f, 1.11138278062062E-003f, 8.69680830683950E-004f, 6.81551750048359E-004f, 5.33048018290350E-004f, 4.17471377070378E-004f, 3.27417496114757E-004f}; const float float_buehlmann_N2_factor_expositon_20_seconds[] = { 4.51583960895835E-002f, 2.84680588463941E-002f, 1.83141447532454E-002f, 1.24114727614367E-002f, 8.52086250432193E-003f, 6.01445286560154E-003f, 4.24600726206570E-003f, 2.99613973313428E-003f, 2.11747113676897E-003f, 1.58127627264804E-003f, 1.23479348595879E-003f, 9.66265334110261E-004f, 7.57251042854845E-004f, 5.92258033589421E-004f, 4.63846326133055E-004f, 3.63790599842373E-004f}; const float float_buehlmann_N2_factor_expositon_one_minute[] = { 1.29449436703876E-001f, 8.29959567953288E-002f, 5.39423532744041E-002f, 3.67741962370398E-002f, 2.53453908775689E-002f, 1.79350552316596E-002f, 1.26840126026602E-002f, 8.96151553540825E-003f, 6.33897185233323E-003f, 4.73633146787078E-003f, 3.69980819572546E-003f, 2.89599589841472E-003f, 2.27003327536857E-003f, 1.77572199977927E-003f, 1.39089361795441E-003f, 1.09097481687104E-003f}; const float float_buehlmann_N2_factor_expositon_100_second[] = { 2.06299474015900E-001f, 1.34463438993857E-001f, 8.82775114417832E-002f, 6.05359181023788E-002f, 4.18844218114071E-002f, 2.97126970072147E-002f, 2.10505144045823E-002f, 1.48911986890571E-002f, 1.05426136839346E-002f, 7.88141652426455E-003f, 6.15873909572406E-003f, 4.82199900095137E-003f, 3.78052526350936E-003f, 2.95778454900952E-003f, 2.31708109427220E-003f, 1.81763004457269E-003f}; const float float_buehlmann_N2_factor_expositon_five_minutes[]= { 5.00000000000000E-001f, 3.51580222674495E-001f, 2.42141716744801E-001f, 1.70835801932547E-001f, 1.20463829104624E-001f, 8.65157896183918E-002f, 6.18314987350977E-002f, 4.40116547625051E-002f, 3.12955727186929E-002f, 2.34583889613009E-002f, 1.83626606868127E-002f, 1.43963540993090E-002f, 1.12987527093947E-002f, 8.84713405486026E-003f, 6.93514912851934E-003f, 5.44298480182925E-003f}; const float float_buehlmann_N2_factor_expositon_800_second[] = { 8.42509868763141E-001f, 6.85019737526282E-001f, 5.22579198044792E-001f, 3.93205767018569E-001f, 2.89861248917861E-001f, 2.14397627137602E-001f, 1.56505490290652E-001f, 1.13102166881646E-001f, 8.12935637814599E-002f, 6.13392112527207E-002f, 4.82208523469105E-002f, 3.79311861210304E-002f, 2.98470272862601E-002f, 2.34187624071612E-002f, 1.83870151711824E-002f, 1.44488700649190E-002f}; const float float_buehlmann_N2_factor_expositon_one_hour[]= { 9.99755859375000E-001f, 9.94475728271980E-001f, 9.64103176406343E-001f, 8.94394508891055E-001f, 7.85689004286732E-001f, 6.62392147498621E-001f, 5.35088626789486E-001f, 4.17318576947576E-001f, 3.17197008420226E-001f, 2.47876700002107E-001f, 1.99405069752929E-001f, 1.59713055172538E-001f, 1.27468761759271E-001f, 1.01149026804458E-001f, 8.01196838116008E-002f, 6.33955413542552E-002f}; const float float_buehlmann_He_factor_expositon_one_second[] = { 6.12608039419837E-003f, 3.81800836683133E-003f, 2.44456078654209E-003f, 1.65134647076792E-003f, 1.13084424730725E-003f, 7.97503165599123E-004f, 5.62552521860549E-004f, 3.96776399429366E-004f, 2.80360036664540E-004f, 2.09299583354805E-004f, 1.63410794820518E-004f, 1.27869320250551E-004f, 1.00198406028040E-004f, 7.83611475491108E-005f, 6.13689891868496E-005f, 4.81280465299827E-005f}; const float float_buehlmann_He_factor_expositon_003_second[] = { 1.82658845044263E-002f, 1.14103491926518E-002f, 7.31576933570466E-003f, 4.94586307993539E-003f, 3.38869776192019E-003f, 2.39060197012086E-003f, 1.68670834759044E-003f, 1.18985696621965E-003f, 8.40844326779777E-004f, 6.27767340286467E-004f, 4.90152279561396E-004f, 3.83558911153159E-004f, 3.00565099928485E-004f, 2.35065021719993E-004f, 1.84095669333084E-004f, 1.44377190774980E-004f}; // 3 He const float float_buehlmann_He_factor_expositon_008_second[] = { 4.79706116082057E-002f, 3.01390075707096E-002f, 1.93899772993034E-002f, 1.31346689569831E-002f, 9.01102820363486E-003f, 6.36224538449637E-003f, 4.49156910795023E-003f, 3.16980660943422E-003f, 2.24068067793926E-003f, 1.67317060331207E-003f, 1.30653891641375E-003f, 1.02249686330114E-003f, 8.01306192375617E-004f, 6.26717274191169E-004f, 4.90846474157092E-004f, 3.84959521834594E-004f}; // 8 He const float float_buehlmann_He_factor_expositon_10_seconds[] = { 5.95993001714799E-002f, 3.75307444923134E-002f, 2.41784389107607E-002f, 1.63912909924208E-002f, 1.25106927410620E-002f, 7.94647192918641E-003f, 5.61130562069978E-003f, 3.96068706690245E-003f, 2.80006593100546E-003f, 2.09102564918129E-003f, 1.63290683272987E-003f, 1.27795767799976E-003f, 1.00153239354972E-003f, 7.33352120986130E-004f, 6.13520442722559E-004f, 4.81176244777948E-004f}; const float float_buehlmann_He_factor_expositon_18_seconds[] = { 1.04710896899039E-001f, 6.65386126706349E-002f, 4.30995968284519E-002f, 2.93106657684409E-002f, 2.01607137751910E-002f, 1.42581599093282E-002f, 1.00776711616688E-002f, 7.11793906429403E-003f, 5.03447255531631E-003f, 3.76069760984632E-003f, 2.93731229281968E-003f, 2.29914783358365E-003f, 1.80203605181650E-003f, 1.40956155658090E-003f, 1.10406577253352E-003f, 8.65950533235460E-004f}; const float float_buehlmann_He_factor_expositon_20_seconds[] = { 1.15646523762030E-001f, 7.36529322024796E-002f, 4.77722809133601E-002f, 3.25139075644434E-002f, 2.23755519884017E-002f, 1.58297974422514E-002f, 1.11911244906306E-002f, 7.90568709176287E-003f, 5.59229149279306E-003f, 4.17767891009702E-003f, 3.26314728073529E-003f, 2.55428218017273E-003f, 2.00206171996409E-003f, 1.56605681014277E-003f, 1.22666447811148E-003f, 9.62120958977297E-004f}; const float float_buehlmann_He_factor_expositon_one_minute[] = { 3.08363886219441E-001f, 2.05084082411030E-001f, 1.36579295730211E-001f, 9.44046323514587E-002f, 6.56358626478964E-002f, 4.67416115355790E-002f, 3.31990512604121E-002f, 2.35300557146709E-002f, 1.66832281977395E-002f, 1.24807506400979E-002f, 9.75753219809561E-003f, 7.64329013320042E-003f, 5.99416843126677E-003f, 4.69081666943783E-003f, 3.67548116287808E-003f, 2.88358673732592E-003f}; const float float_buehlmann_He_factor_expositon_100_second[] = { 4.59084487437744E-001f, 3.17867635141657E-001f, 2.17103957783539E-001f, 1.52336166567559E-001f, 1.06981885584572E-001f, 7.66825160768219E-002f, 5.47171474343117E-002f, 3.89083581201959E-002f, 2.76504642556165E-002f, 2.07145921483078E-002f, 1.62096019995457E-002f, 1.27063337640768E-002f, 9.97030625587825E-003f, 7.80579708939710E-003f, 6.11829377951190E-003f, 4.80135692933603E-003f}; // 100 He const float float_buehlmann_He_factor_expositon_five_minutes[]= { 8.41733751018722E-001f, 6.82600697933713E-001f, 5.20142493735619E-001f, 3.90924736715930E-001f, 2.87834706153524E-001f, 2.12857832580192E-001f, 1.55333364924147E-001f, 1.12242395185686E-001f, 8.06788883581406E-002f, 6.08653819753062E-002f, 4.78448115000141E-002f, 3.76366999883051E-002f, 2.96136888654287E-002f, 2.32350754744602E-002f, 1.82428098114835E-002f, 1.43350223887367E-002f}; // thre const float float_buehlmann_He_factor_expositon_800_second[] = { 9.92671155759686E-001f, 9.53124140216102E-001f, 8.58865632718416E-001f, 7.33443528431762E-001f, 5.95533881446524E-001f, 4.71787742036413E-001f, 3.62479376011699E-001f, 2.72021750877104E-001f, 2.00940186773410E-001f, 1.54187175639359E-001f, 1.22553521140786E-001f, 9.72431193565182E-002f, 7.70338702477497E-002f, 6.07666995543268E-002f, 4.79109397391700E-002f, 3.77715319879068E-002f}; // 800 He const float float_buehlmann_He_factor_expositon_one_hour[]= { 9.99999999753021E-001f, 9.99998954626205E-001f, 9.99850944669188E-001f, 9.97393537149572E-001f, 9.82979603888650E-001f, 9.43423231328217E-001f, 8.68106292901111E-001f, 7.60374619482322E-001f, 6.35576141220644E-001f, 5.29310840978539E-001f, 4.44744511849213E-001f, 3.68942936079581E-001f, 3.02834419265355E-001f, 2.45810174422126E-001f, 1.98231319020275E-001f, 1.59085372294989E-001f}; void decom_get_inert_gases(const float ambient_pressure_bar,const SGas* pGas, float* fraction_nitrogen, float* fraction_helium ) { float fraction_all_inertgases; float ppo2_fraction_setpoint; float diluent_divisor; *fraction_nitrogen = ((float)pGas->nitrogen_percentage) / 100.0f; *fraction_helium = ((float)pGas->helium_percentage) / 100.0f; if(!pGas->setPoint_cbar) return; // continue with CCR fraction_all_inertgases = *fraction_nitrogen + *fraction_helium; ppo2_fraction_setpoint = (float)pGas->setPoint_cbar/ (100 * ambient_pressure_bar); diluent_divisor = (1.0f - ppo2_fraction_setpoint) / fraction_all_inertgases; if(diluent_divisor < 0) diluent_divisor = 0; *fraction_nitrogen *= diluent_divisor; *fraction_helium *= diluent_divisor; } void decom_tissues_exposure(int period_in_seconds, SLifeData * pLifeData) { decom_tissues_exposure2(period_in_seconds, &pLifeData->actualGas, pLifeData->pressure_ambient_bar, pLifeData->tissue_nitrogen_bar, pLifeData->tissue_helium_bar); } void decom_tissues_exposure2(int period_in_seconds, SGas* pActualGas, float ambiant_pressure_bar, float *tissue_N2_selected_stage, float *tissue_He_selected_stage) { int ci; float percent_N2; float percent_He; float partial_pressure_N2; float partial_pressure_He; int period_in_seconds_left; if(period_in_seconds > 0) { decom_get_inert_gases(ambiant_pressure_bar, pActualGas, &percent_N2, &percent_He); partial_pressure_N2 = (ambiant_pressure_bar - WATER_VAPOUR_PRESSURE) * percent_N2; partial_pressure_He = (ambiant_pressure_bar - WATER_VAPOUR_PRESSURE) * percent_He; period_in_seconds_left = period_in_seconds; while(period_in_seconds_left) { if(period_in_seconds_left >= 3600) period_in_seconds = 3600; else if(period_in_seconds_left >= 800) period_in_seconds = 800; else if(period_in_seconds_left >= 300) period_in_seconds = 300; else if(period_in_seconds_left >= 100) period_in_seconds = 100; else if(period_in_seconds_left >= 60) period_in_seconds = 60; else if(period_in_seconds_left == 36) period_in_seconds = 18; else if(period_in_seconds_left >= 20) period_in_seconds = 20; else if(period_in_seconds_left >= 18) period_in_seconds = 18; else if(period_in_seconds_left >= 10) period_in_seconds = 10; else if(period_in_seconds_left >= 8) period_in_seconds = 8; else if(period_in_seconds_left >= 3) period_in_seconds = 3; else period_in_seconds = 1; period_in_seconds_left -= period_in_seconds; switch (period_in_seconds) { case 1: for (ci=0;ci<16;ci++) { tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_one_second[ci]; tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_one_second[ci]; } break; case 3: for (ci=0;ci<16;ci++) { tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_003_second[ci]; tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_003_second[ci]; } break; case 8: for (ci=0;ci<16;ci++) { tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_008_second[ci]; tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_008_second[ci]; } break; case 10: for (ci=0;ci<16;ci++) { tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_10_seconds[ci]; tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_10_seconds[ci]; } break; case 18: for (ci=0;ci<16;ci++) { tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_18_seconds[ci]; tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_18_seconds[ci]; } break; case 20: for (ci=0;ci<16;ci++) { tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_20_seconds[ci]; tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_20_seconds[ci]; } break; case 60: for (ci=0;ci<16;ci++) { tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_one_minute[ci]; tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_one_minute[ci]; } break; case 100: for (ci=0;ci<16;ci++) { tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_100_second[ci]; tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_100_second[ci]; } break; case 300: for (ci=0;ci<16;ci++) { tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_five_minutes[ci]; tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_five_minutes[ci]; } break; case 800: for (ci=0;ci<16;ci++) { tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_800_second[ci]; tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_800_second[ci]; } break; case 3600: for (ci=0;ci<16;ci++) { tissue_N2_selected_stage[ci] += (partial_pressure_N2 - tissue_N2_selected_stage[ci]) * float_buehlmann_N2_factor_expositon_one_hour[ci]; tissue_He_selected_stage[ci] += (partial_pressure_He - tissue_He_selected_stage[ci]) * float_buehlmann_He_factor_expositon_one_hour[ci]; } break; } } } } void decom_reset_with_1000mbar(SLifeData * pLifeData) { double saturation = 1.0; saturation -= WATER_VAPOUR_PRESSURE; saturation *= FRACTION_N2_AIR; for(int i=0;i<16;i++) { pLifeData->tissue_nitrogen_bar[i] = saturation; pLifeData->tissue_helium_bar[i] = 0; } pLifeData->otu = 0; pLifeData->cns = 0; pLifeData->desaturation_time_minutes = 0; pLifeData->no_fly_time_minutes = 0; } /* =============================================================================== */ /* NOTE ABOUT PRESSURE UNITS USED IN CALCULATIONS: */ /* It is the convention in decompression calculations to compute all gas */ /* loadings, absolute pressures, partial pressures, etc., in the units of */ /* depth pressure that you are diving - either feet of seawater (fsw) or */ /* meters of seawater (msw). This program follows that convention with the */ /* the exception that all VPM calculations are performed in SI units (by */ /* necessity). Accordingly, there are several conversions back and forth */ /* between the diving pressure units and the SI units. */ /* =============================================================================== */ /* =============================================================================== */ /* FUNCTION SUBPROGRAM FOR GAS LOADING CALCULATIONS - ASCENT AND DESCENT */ /* =============================================================================== */ float decom_schreiner_equation(float *initial_inspired_gas_pressure, float *rate_change_insp_gas_pressure, float *interval_time_minutes, const float *gas_time_constant, float *initial_gas_pressure) { /* System generated locals */ float ret_val; float time_null_pressure = 0.0f; float time_rest = 0.0f; float time = *interval_time_minutes; /* =============================================================================== */ /* Note: The Schreiner equation is applied when calculating the uptake or */ /* elimination of compartment gases during linear ascents or descents at a */ /* constant rate. For ascents, a negative number for rate must be used. */ /* =============================================================================== */ if( *rate_change_insp_gas_pressure < 0.0f) { time_null_pressure = -1.0f * *initial_inspired_gas_pressure / *rate_change_insp_gas_pressure; if(time > time_null_pressure ) { time_rest = time - time_null_pressure; time = time_null_pressure; } } ret_val = *initial_inspired_gas_pressure + *rate_change_insp_gas_pressure * (time - 1.f / *gas_time_constant) - (*initial_inspired_gas_pressure - *initial_gas_pressure - *rate_change_insp_gas_pressure / *gas_time_constant) * expf(-(*gas_time_constant) * time); if(time_rest > 0.0f) { ret_val = ret_val * expf(-(*gas_time_constant) * time_rest); } return ret_val; }; /* schreiner_equation__2 */ void decom_tissues_exposure_stage_schreiner(int period_in_seconds, SGas* pGas, float starting_ambient_pressure_bar, float ending_ambient_pressure_bar, float* pTissue_nitrogen_bar, float* pTissue_helium_bar) { float initial_pressure_N2; float initial_pressure_He; float ending_pressure_N2; float ending_pressure_He; float fraction_N2_begin; float fraction_N2_end; float fraction_He_begin; float fraction_He_end; float rate_N2; float rate_He; float period_in_minutes; int ci; if(period_in_seconds <= 0) return; decom_get_inert_gases(starting_ambient_pressure_bar, pGas, &fraction_N2_begin, &fraction_He_begin ); decom_get_inert_gases(ending_ambient_pressure_bar, pGas, &fraction_N2_end, &fraction_He_end ); initial_pressure_N2 = (starting_ambient_pressure_bar - WATER_VAPOUR_PRESSURE) * fraction_N2_begin; initial_pressure_He = (starting_ambient_pressure_bar - WATER_VAPOUR_PRESSURE) * fraction_He_begin; ending_pressure_N2 = (ending_ambient_pressure_bar - WATER_VAPOUR_PRESSURE) * fraction_N2_end; ending_pressure_He = (ending_ambient_pressure_bar - WATER_VAPOUR_PRESSURE) * fraction_He_end; rate_N2 = (ending_pressure_N2 - initial_pressure_N2) / period_in_seconds; rate_He = (ending_pressure_He - initial_pressure_He) / period_in_seconds; period_in_minutes = ((float)period_in_seconds) / 60.0f; for (ci=0;ci<16;ci++) { pTissue_nitrogen_bar[ci] = decom_schreiner_equation( &initial_pressure_N2, &rate_N2, &period_in_minutes, &nitrogen_time_constant[ci], &pTissue_nitrogen_bar[ci]); pTissue_helium_bar[ci] = decom_schreiner_equation( &initial_pressure_He, &rate_He, &period_in_minutes, &helium_time_constant[ci], &pTissue_helium_bar[ci]); } } _Bool nextSetpointChange(SDiveSettings* pDiveSettings, uint8_t depth_meter, uint8_t* change_depth_meter, char* setpoint) { uint8_t new_depth = 0; char new_setpoint = 0; for(int i = 1; i <= 5; i++) { if(pDiveSettings->setpoint[i].setpoint_cbar > 0 && pDiveSettings->setpoint[i].depth_meter > 0 ) { if( pDiveSettings->setpoint[i].depth_meter > new_depth && pDiveSettings->setpoint[i].depth_meter < depth_meter) { new_depth = pDiveSettings->setpoint[i].depth_meter; new_setpoint = pDiveSettings->setpoint[i].setpoint_cbar; } } } if(new_depth) { * change_depth_meter = new_depth; * setpoint = new_setpoint; return 1; } return 0; } void decom_CreateGasChangeList(SDiveSettings* pInput, const SLifeData* pLifeData) { int i=0, j = 0; int count = 0; for(i=0;i< 5;i++) { //FirstGas pInput->decogaslist[i].change_during_ascent_depth_meter_otherwise_zero = 0; pInput->decogaslist[i].GasIdInSettings = 255; pInput->decogaslist[i].setPoint_cbar = 0; pInput->decogaslist[i].helium_percentage = 0; pInput->decogaslist[i].nitrogen_percentage = 0; } //pInput->liveData.dive_time_seconds = 0; /* FirstGas * 0 = special gas, 1 to 5 ist OC gas, 6 to 10 is diluent */ pInput->decogaslist[0] = pLifeData->actualGas; /* Add Deco Gases * special (gasId == 0) is never a deco/travel gas but actual gas only */ if(pInput->diveMode == DIVEMODE_OC) { for(i=1;i<= 5;i++) { if(pInput->gas[i].note.ub.active && pInput->gas[i].depth_meter && (pLifeData->actualGas.GasIdInSettings != i) &&(pInput->gas[i].depth_meter < pLifeData->depth_meter ) ) { count = 1; for(j=1;j<= 5;j++) { if( (pInput->gas[j].note.ub.active && pInput->gas[j].depth_meter > 0) && (pLifeData->actualGas.GasIdInSettings != j) // new hw 160905 && (pInput->gas[j].depth_meter > pInput->gas[i].depth_meter)) count++; } pInput->decogaslist[count].change_during_ascent_depth_meter_otherwise_zero = pInput->gas[i].depth_meter; pInput->decogaslist[count].nitrogen_percentage = 100; pInput->decogaslist[count].nitrogen_percentage -= pInput->gas[i].oxygen_percentage; pInput->decogaslist[count].nitrogen_percentage -= pInput->gas[i].helium_percentage; pInput->decogaslist[count].helium_percentage = pInput->gas[i].helium_percentage; pInput->decogaslist[count].GasIdInSettings = i; } } } else { //divmode CCR for(i=6; i <= 10; i++) { if(pInput->gas[i].note.ub.active && pInput->gas[i].depth_meter && (pLifeData->actualGas.GasIdInSettings != i) &&(pInput->gas[i].depth_meter < pLifeData->depth_meter ) ) { count = 1; for(j=6;j<= 10;j++) { // if(pInput->gas[j].note.ub.active && pInput->gas[j].depth_meter > 0 &&pInput->gas[j].depth_meter > pInput->gas[i].depth_meter) if( (pInput->gas[j].note.ub.active && pInput->gas[j].depth_meter > 0) && (pLifeData->actualGas.GasIdInSettings != j) // new hw 160905 && (pInput->gas[j].depth_meter > pInput->gas[i].depth_meter)) count++; } pInput->decogaslist[count].change_during_ascent_depth_meter_otherwise_zero = pInput->gas[i].depth_meter; pInput->decogaslist[count].nitrogen_percentage = 100; pInput->decogaslist[count].nitrogen_percentage -= pInput->gas[i].oxygen_percentage; pInput->decogaslist[count].nitrogen_percentage -= pInput->gas[i].helium_percentage; pInput->decogaslist[count].helium_percentage = pInput->gas[i].helium_percentage; pInput->decogaslist[count].GasIdInSettings = i; } } /* Include Setpoint Changes */ for(j=0; j <= count; j++) { uint8_t depth = 0; uint8_t changedepth = 0; char newSetpoint; if(j == 0) { depth = pLifeData->depth_meter; } else { //no setpointchange ? pInput->decogaslist[j].setPoint_cbar = pInput->decogaslist[j - 1].setPoint_cbar; depth = pInput->decogaslist[j].change_during_ascent_depth_meter_otherwise_zero + 0.1f; } /* Setpoint change at the same depth as gas changes */ if(nextSetpointChange(pInput,depth + 1, &changedepth,&newSetpoint) && changedepth == depth) { pInput->decogaslist[j].setPoint_cbar = newSetpoint; } /* Setpoint changes inbetween gas changes */ while(nextSetpointChange(pInput, depth, &changedepth,&newSetpoint) && ( ( (j < count) && (changedepth > pInput->decogaslist[j + 1].change_during_ascent_depth_meter_otherwise_zero)) || ((j == count) && (changedepth > 0)) )) { //Include new entry with setpoint change in decogaslist for(int k = count; k > j; k--) { pInput->decogaslist[k+1] = pInput->decogaslist[k]; } pInput->decogaslist[j + 1] = pInput->decogaslist[j]; pInput->decogaslist[j + 1].setPoint_cbar = newSetpoint; j++; count++; depth = changedepth; } } } } void test_decom_CreateGasChangeList(void) { SDiveSettings diveSetting; SLifeData lifeData; lifeData.depth_meter = 100; lifeData.actualGas.helium_percentage = 30; lifeData.actualGas.nitrogen_percentage = 60; lifeData.actualGas.setPoint_cbar = 18; lifeData.actualGas.GasIdInSettings = 0; lifeData.actualGas.change_during_ascent_depth_meter_otherwise_zero = 0; diveSetting.diveMode = DIVEMODE_CCR; diveSetting.gas[6].depth_meter = 0; diveSetting.gas[6].helium_percentage = 30; diveSetting.gas[6].oxygen_percentage = 10; diveSetting.gas[6].note.ub.active = 1; diveSetting.gas[7].depth_meter = 60; diveSetting.gas[7].helium_percentage = 0; diveSetting.gas[7].oxygen_percentage = 10; diveSetting.gas[7].note.ub.active = 1; diveSetting.gas[8].note.ub.active = 0; diveSetting.gas[9].note.ub.active = 0; diveSetting.gas[10].note.ub.active = 0; diveSetting.setpoint[0].depth_meter = 0; diveSetting.setpoint[1].depth_meter = 80; diveSetting.setpoint[1].setpoint_cbar = 20; diveSetting.setpoint[2].depth_meter = 60; diveSetting.setpoint[2].setpoint_cbar = 25; diveSetting.setpoint[3].depth_meter = 0; diveSetting.setpoint[4].depth_meter = 0; diveSetting.setpoint[5].depth_meter = 0; decom_CreateGasChangeList(&diveSetting, &lifeData); } uint8_t decom_tissue_test_tolerance(float* Tissue_nitrogen_bar, float* Tissue_helium_bar, float GF_value, float depth_in_bar_absolute) { float tissue_inertgas_saturation; float inertgas_a; float inertgas_b; float inertgas_tolerance; float gf_minus_1; gf_minus_1 = GF_value - 1.0f; for (int ci = 0; ci < 16; ci++) { if(Tissue_helium_bar[ci] == 0) { tissue_inertgas_saturation = Tissue_nitrogen_bar[ci]; // inertgas_a = buehlmann_N2_a[ci]; inertgas_b = buehlmann_N2_b[ci]; } else { tissue_inertgas_saturation = Tissue_nitrogen_bar[ci] + Tissue_helium_bar[ci]; // inertgas_a = ( ( buehlmann_N2_a[ci] * Tissue_nitrogen_bar[ci]) + ( buehlmann_He_a[ci] * Tissue_helium_bar[ci]) ) / tissue_inertgas_saturation; inertgas_b = ( ( buehlmann_N2_b[ci] * Tissue_nitrogen_bar[ci]) + ( buehlmann_He_b[ci] * Tissue_helium_bar[ci]) ) / tissue_inertgas_saturation; } // inertgas_tolerance = ( (GF_value / inertgas_b - gf_minus_1) * depth_in_bar_absolute ) + ( GF_value * inertgas_a ); // if(inertgas_tolerance < tissue_inertgas_saturation) return 0; } return 1; } void decom_tissues_desaturation_time(const SLifeData* pLifeData, SLifeData2* pOutput) { float pressure_in_gas_for_complete; float pressure_in_gas_for_desat; float diff_to_complete; float diff_to_desatpoint; float necessary_halftimes; float desattime; pressure_in_gas_for_complete = 0.7902f * ( pLifeData->pressure_surface_bar - 0.0627f); pressure_in_gas_for_desat = 1.05f * pressure_in_gas_for_complete; for(int i=0; i<16; i++) { diff_to_complete = pressure_in_gas_for_complete - pLifeData->tissue_nitrogen_bar[i]; diff_to_desatpoint = pressure_in_gas_for_desat - pLifeData->tissue_nitrogen_bar[i]; if((diff_to_desatpoint >= 0) || (diff_to_complete >= 0)) pOutput->tissue_nitrogen_desaturation_time_minutes[i] = 0; else { necessary_halftimes = (logf(1.0f - (diff_to_desatpoint/diff_to_complete)) / -0.6931f); desattime = buehlmann_N2_t_halflife[i] * necessary_halftimes; if(desattime <= (float)0xFFFF) pOutput->tissue_nitrogen_desaturation_time_minutes[i] = desattime; else pOutput->tissue_nitrogen_desaturation_time_minutes[i] = 0xFFFF; } } for(int i=0; i<16; i++) { diff_to_desatpoint = 0.05f - pLifeData->tissue_helium_bar[i]; diff_to_complete = -1.0f * pLifeData->tissue_helium_bar[i]; if((diff_to_desatpoint >= 0) || (diff_to_complete >= 0)) pOutput->tissue_helium_desaturation_time_minutes[i] = 0; else { necessary_halftimes = (logf(1.0f - (diff_to_desatpoint/diff_to_complete)) / -0.6931f); desattime = buehlmann_He_t_halflife[i] * necessary_halftimes; if(desattime <= (float)0xFFFF) pOutput->tissue_helium_desaturation_time_minutes[i] = desattime; else pOutput->tissue_helium_desaturation_time_minutes[i] = 0xFFFF; } } } #define MAX_DEGRADE_OTU_TIME_MINUTES (1440) //CNS&OTU: #define OXY_TEN_MINUTES_IN_SECONDS (600) #define OXY_HALF_LIVE_OF_TEN_MINUTES__INVERSE_NINTH_ROOT_OF_TWO (0.92587471f) #define OXY_NINE_DAYS_IN_TEN_MINUTES (1296) #define OXY_ONE_SIXTIETH_PART (0.0166667f) #define OXY_NEGATIVE_FIVE_SIXTH_PARTS (-0.8333333f) void decom_oxygen_calculate_otu(float* oxygen_otu, float pressure_oxygen_real) { if(pressure_oxygen_real <= 0.5f) return; *oxygen_otu += (pow((double)(0.5f / (pressure_oxygen_real - 0.5f)),OXY_NEGATIVE_FIVE_SIXTH_PARTS)) * OXY_ONE_SIXTIETH_PART; } void decom_oxygen_calculate_otu_degrade(float* oxygen_otu, long seconds_since_last_dive) { static long otu_time_ticker = 0; static double otu_degrade_every_10_minutes = 999.9; long cycles_since_last_call; if((*oxygen_otu <= 0) || (seconds_since_last_dive == 0)) *oxygen_otu = 0; else if(seconds_since_last_dive < OXY_TEN_MINUTES_IN_SECONDS) { otu_time_ticker = 1; otu_degrade_every_10_minutes = *oxygen_otu / (MAX_DEGRADE_OTU_TIME_MINUTES / 10); } else { cycles_since_last_call = seconds_since_last_dive / (otu_time_ticker * OXY_TEN_MINUTES_IN_SECONDS); *oxygen_otu -= ((double)cycles_since_last_call) * otu_degrade_every_10_minutes; otu_time_ticker += cycles_since_last_call; if((*oxygen_otu < 0) || (otu_time_ticker > (MAX_DEGRADE_OTU_TIME_MINUTES / 10))) *oxygen_otu = 0; } } void decom_oxygen_calculate_cns_degrade(float* oxygen_cns, long seconds_since_last_dive) { static long cns_time_ticker = 0; int cns_max_cycles; if((*oxygen_cns <= 0.5f) || (seconds_since_last_dive == 0)) *oxygen_cns = 0; else if(seconds_since_last_dive < OXY_TEN_MINUTES_IN_SECONDS) cns_time_ticker = 1; else { cns_max_cycles = OXY_NINE_DAYS_IN_TEN_MINUTES; while((*oxygen_cns >= 0.5f) && ((cns_time_ticker * OXY_TEN_MINUTES_IN_SECONDS) < seconds_since_last_dive) && cns_max_cycles) { cns_time_ticker++; cns_max_cycles--; *oxygen_cns *= OXY_HALF_LIVE_OF_TEN_MINUTES__INVERSE_NINTH_ROOT_OF_TWO; } } } // new hwOS style void decom_oxygen_calculate_cns(float* oxygen_cns, float pressure_oxygen_real) { uint8_t char_I_actual_ppO2; float CNS_fraction = 0; const float time_factor = 3000.0f; if(pressure_oxygen_real < 0.15f) char_I_actual_ppO2 = 15; else if(pressure_oxygen_real >= 2.5f) char_I_actual_ppO2 = 255; else char_I_actual_ppO2 = (uint8_t)(pressure_oxygen_real * 100); if (char_I_actual_ppO2 < 50) (void)0; // no changes //------------------------------------------------------------------------ // Below (and including) 1.60 bar else if (char_I_actual_ppO2 < 61) CNS_fraction += time_factor/(-533.07f * char_I_actual_ppO2 + 54000.0f); else if (char_I_actual_ppO2 < 71) CNS_fraction += time_factor/(-444.22f * char_I_actual_ppO2 + 48600.0f); else if (char_I_actual_ppO2 < 81) CNS_fraction += time_factor/(-355.38f * char_I_actual_ppO2 + 42300.0f); else if (char_I_actual_ppO2 < 91) CNS_fraction += time_factor/(-266.53f * char_I_actual_ppO2 + 35100.0f); else if (char_I_actual_ppO2 < 111) CNS_fraction += time_factor/(-177.69f * char_I_actual_ppO2 + 27000.0f); else if (char_I_actual_ppO2 < 152) CNS_fraction += time_factor/( -88.84f * char_I_actual_ppO2 + 17100.0f); else if (char_I_actual_ppO2 < 167) CNS_fraction += time_factor/(-222.11f * char_I_actual_ppO2 + 37350.0f); //------------------------------------------------------------------------ // Arieli et all.(2002): Modeling pulmonary and CNS O2 toxicity: // J Appl Physiol 92: 248--256, 2002, doi:10.1152/japplphysiol.00434.2001 // Formula (A1) based on value for 1.55 and c=20 // example calculation: Sqrt((1.7/1.55)^20)*0.000404 else if (char_I_actual_ppO2 < 172) CNS_fraction += time_factor*0.00102f; else if (char_I_actual_ppO2 < 177) CNS_fraction += time_factor*0.00136f; else if (char_I_actual_ppO2 < 182) CNS_fraction += time_factor*0.00180f; else if (char_I_actual_ppO2 < 187) CNS_fraction += time_factor*0.00237f; else if (char_I_actual_ppO2 < 192) CNS_fraction += time_factor*0.00310f; else if (char_I_actual_ppO2 < 198) CNS_fraction += time_factor*0.00401f; else if (char_I_actual_ppO2 < 203) CNS_fraction += time_factor*0.00517f; else if (char_I_actual_ppO2 < 233) CNS_fraction += time_factor*0.0209f; else CNS_fraction += time_factor*0.0482f; // value for 2.5 if( CNS_fraction > 999.0f) // Limit display to 999% CNS_fraction = 999.0f; if( CNS_fraction < 0.0f ) CNS_fraction = 0.0f; //calculate cns for the actual ppo2 for 1 second *oxygen_cns += OXY_ONE_SIXTIETH_PART * CNS_fraction; if( *oxygen_cns > 999.0f) // Limit display to 999% *oxygen_cns = 999.0f; if( *oxygen_cns < 0.0f ) *oxygen_cns = 0.0f; } /* old DR5 style void decom_oxygen_calculate_cns(float* oxygen_cns, float pressure_oxygen_real) { int cns_no_range = 0; _Bool not_found = 1; //for the cns calculation const float cns_ppo2_ranges[60][2] = { {0.50f, 0.00f}, {0.60f, 0.14f}, {0.64f, 0.15f}, {0.66f, 0.16f}, {0.68f, 0.17f}, {0.70f, 0.18f}, {0.74f, 0.19f}, {0.76f, 0.20f}, {0.78f, 0.21f}, {0.80f, 0.22f}, {0.82f, 0.23f}, {0.84f, 0.24f}, {0.86f, 0.25f}, {0.88f, 0.26f}, {0.90f, 0.28f}, {0.92f, 0.29f}, {0.94f, 0.30f}, {0.96f, 0.31f}, {0.98f, 0.32f}, {1.00f, 0.33f}, {1.02f, 0.35f}, {1.04f, 0.36f}, {1.06f, 0.38f}, {1.08f, 0.40f}, {1.10f, 0.42f}, {1.12f, 0.43f}, {1.14f, 0.43f}, {1.16f, 0.44f}, {1.18f, 0.46f}, {1.20f, 0.47f}, {1.22f, 0.48f}, {1.24f, 0.51f}, {1.26f, 0.52f}, {1.28f, 0.54f}, {1.30f, 0.56f}, {1.32f, 0.57f}, {1.34f, 0.60f}, {1.36f, 0.62f}, {1.38f, 0.63f}, {1.40f, 0.65f}, {1.42f, 0.68f}, {1.44f, 0.71f}, {1.46f, 0.74f}, {1.48f, 0.78f}, {1.50f, 0.83f}, {1.52f, 0.93f}, {1.54f, 1.04f}, {1.56f, 1.19f}, {1.58f, 1.47f}, {1.60f, 2.22f}, {1.62f, 5.00f}, {1.65f, 6.25f}, {1.67f, 7.69f}, {1.70f, 10.0f}, {1.72f,12.50f}, {1.74f,20.00f}, {1.77f,25.00f}, {1.79f,31.25f}, {1.80f,50.00f}, {1.82f,100.0f}}; //find the correct cns range for the corresponding ppo2 cns_no_range = 58; while (cns_no_range && not_found) { if (pressure_oxygen_real > cns_ppo2_ranges[cns_no_range][0]) { cns_no_range++; not_found = 0; } else cns_no_range--; } //calculate cns for the actual ppo2 for 1 second *oxygen_cns += OXY_ONE_SIXTIETH_PART * cns_ppo2_ranges[cns_no_range][1]; } */ void decom_oxygen_calculate_cns_exposure(int period_in_seconds, SGas* pActualGas, float pressure_ambient_bar, float* oxygen_cns) { float pressure_oxygen_real; float one_second_cns; pressure_oxygen_real = decom_calc_ppO2(pressure_ambient_bar, pActualGas); one_second_cns = 0; decom_oxygen_calculate_cns(&one_second_cns, pressure_oxygen_real); *oxygen_cns += one_second_cns * period_in_seconds; } void decom_oxygen_calculate_cns_stage_SchreinerStyle(int period_in_seconds, SGas* pGas, float starting_ambient_pressure_bar, float ending_ambient_pressure_bar, float* oxygen_cns) { if(ending_ambient_pressure_bar == starting_ambient_pressure_bar) { decom_oxygen_calculate_cns_exposure(period_in_seconds, pGas, starting_ambient_pressure_bar, oxygen_cns); return; } float pressure_oxygen_real; float initial_pressure_oxygen; float ending_pressure_oxygen; float rate_oxygen; initial_pressure_oxygen = decom_calc_ppO2(starting_ambient_pressure_bar, pGas); ending_pressure_oxygen = decom_calc_ppO2(ending_ambient_pressure_bar, pGas); rate_oxygen = (ending_pressure_oxygen - initial_pressure_oxygen) / period_in_seconds; pressure_oxygen_real = initial_pressure_oxygen; for(int i = 0; i < period_in_seconds; i++) { decom_oxygen_calculate_cns(oxygen_cns, pressure_oxygen_real); pressure_oxygen_real += rate_oxygen; } } float decom_calc_ppO2(const float ambiant_pressure_bar, const SGas* pGas) { float percent_N2 = 0; float percent_He = 0; float percent_O2 = 0; decom_get_inert_gases(ambiant_pressure_bar, pGas, &percent_N2, &percent_He); percent_O2 = 1 - percent_N2 - percent_He; return (ambiant_pressure_bar - WATER_VAPOUR_PRESSURE) * percent_O2; } uint8_t decom_get_actual_deco_stop(SDiveState* pDiveState) { SDecoinfo* pDecoinfo; uint8_t depthNext, depthLast, depthSecond, depthInc; if(pDiveState->diveSettings.deco_type.ub.standard == GF_MODE) pDecoinfo = &pDiveState->decolistBuehlmann; else pDecoinfo = &pDiveState->decolistVPM; depthLast = (uint8_t)(pDiveState->diveSettings.last_stop_depth_bar * 10); depthSecond = (uint8_t)(pDiveState->diveSettings.input_second_to_last_stop_depth_bar * 10); depthInc = (uint8_t)(pDiveState->diveSettings.input_next_stop_increment_depth_bar * 10); if(pDecoinfo->output_stop_length_seconds[0] > 0) { depthNext = depthLast; } else return 0; for(int i = DECOINFO_STRUCT_MAX_STOPS -1 ;i > 0; i--) { if(pDecoinfo->output_stop_length_seconds[i] > 0) { depthNext = depthSecond + ( (i - 1) * depthInc); break; } } return depthNext; } // =============================================================================== // decom_calc_desaturation_time /// @brief This code is used to calculate desat, calculated by RTE and send to Firmware /// similar but more technical in code than decom_tissues_desaturation_time() /// the later has 0.05 for helium in contrast to this one. /// This one goes down to 70%, the oterh /// /// output is desat time in minutes // =============================================================================== int decom_calc_desaturation_time(float* Tissue_nitrogen_bar, float* Tissue_helium_bar, float surface_pressure_bar) { const float N2_ratio = 0.7902; // FIXED sum as stated in b"uhlmann float pres_surface; float temp_atem; float float_desaturation_multiplier; float temp1,temp2,temp3,temp4; int ci; int int_temp; int int_O_desaturation_time; pres_surface = ((float)surface_pressure_bar); temp_atem = N2_ratio * (pres_surface - 0.0627f); int_O_desaturation_time = 0; float_desaturation_multiplier = 100 / 142.0f; // new in v.101 (70,42%/100.=142) for (ci=0;ci<16;ci++) { // saturation_time (for flight) and N2_saturation in multiples of halftime // version v.100: 1.1 = 10 percent distance to totally clean (totally clean is not possible, would take infinite time ) // new in version v.101: 1.07 = 7 percent distance to totally clean (totally clean is not possible, would take infinite time ) // changes in v.101: 1.05 = 5 percent dist to totally clean is new desaturation point for display and noFly calculations // N2 temp1 = 1.05f * temp_atem; temp1 = temp1 - (float)Tissue_nitrogen_bar[ci]; temp2 = temp_atem - (float)Tissue_nitrogen_bar[ci]; if (temp2 >= 0) { temp1 = 0; temp2 = 0; } else temp1 = temp1 / temp2; if (temp1 > 0) { temp1 = logf(1.0f - temp1); temp1 = temp1 / -0.6931f; // temp1 is the multiples of half times necessary. // 0.6931 is ln(2), because the math function log() calculates with a base of e not 2 as requested. // minus because log is negative temp2 = buehlmann_N2_t_halflife[ci] * temp1 / float_desaturation_multiplier; // time necessary (in minutes ) for complete desaturation (see comment about 10 percent) , new in v.101: float_desaturation_multiplier } else { temp1 = 0; temp2 = 0; } // He temp3 = 0.1f - (float)Tissue_helium_bar[ci]; if (temp3 >= 0) { temp3 = 0; temp4 = 0; } else temp3 = -1.0f * temp3 / (float)Tissue_helium_bar[ci]; if (temp3 > 0) { temp3 = logf(1.0f - temp3); temp3 = temp3 / -0.6931f; // temp1 is the multiples of half times necessary. // 0.6931 is ln(2), because the math function log() calculates with a base of e not 2 as requested. // minus because log is negative temp4 = buehlmann_He_t_halflife[ci] * temp3 / float_desaturation_multiplier; // time necessary (in minutes ) for "complete" desaturation, new in v.101 float_desaturation_multiplier } else { temp3 = 0; temp4 = 0; } // saturation_time (for flight) if (temp4 > temp2) int_temp = (int)temp4; else int_temp = (int)temp2; if(int_temp > int_O_desaturation_time) int_O_desaturation_time = int_temp; /*// N2 saturation in multiples of halftime for display purposes temp2 = temp1 * 20.0; // 0 = 1/8, 120 = 0, 249 = 8 temp2 = temp2 + 80.0; // set center if (temp2 < 0.0) temp2 = 0.0; if (temp2 > 255.0) temp2 = 255.0; U8_tissue_N2_saturation[ci] = (U8)temp2; // He saturation in multiples of halftime for display purposes temp4 = temp3 * 20.0; // 0 = 1/8, 120 = 0, 249 = 8 temp4 = temp4 + 80.0; // set center if (temp4 < 0.0) temp4 = 0.0; if (temp4 > 255.0) temp4 = 255.0; U8_tissue_He_saturation[ci] = (char)temp4;*/ } return int_O_desaturation_time; }