Mercurial > public > ostc4
view Common/Drivers/CMSIS_v210/core_cmInstr.h @ 43:c42c82f73c96
Split memory areas and reverse engineered font library
author | Ideenmodellierer |
---|---|
date | Sun, 29 Jul 2018 18:05:44 +0200 |
parents | 5f11787b4f42 |
children |
line wrap: on
line source
/**************************************************************************//** * @file core_cmInstr.h * @brief CMSIS Cortex-M Core Instruction Access Header File * @version V2.10 * @date 19. July 2011 * * @note * Copyright (C) 2009-2011 ARM Limited. All rights reserved. * * @par * ARM Limited (ARM) is supplying this software for use with Cortex-M * processor based microcontrollers. This file can be freely distributed * within development tools that are supporting such ARM based processors. * * @par * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. * ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. * ******************************************************************************/ #ifndef __CORE_CMINSTR_H #define __CORE_CMINSTR_H /* ########################## Core Instruction Access ######################### */ /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface Access to dedicated instructions @{ */ #if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/ /* ARM armcc specific functions */ #if (__ARMCC_VERSION < 400677) #error "Please use ARM Compiler Toolchain V4.0.677 or later!" #endif /** \brief No Operation No Operation does nothing. This instruction can be used for code alignment purposes. */ #define __NOP __nop /** \brief Wait For Interrupt Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs. */ #define __WFI __wfi /** \brief Wait For Event Wait For Event is a hint instruction that permits the processor to enter a low-power state until one of a number of events occurs. */ #define __WFE __wfe /** \brief Send Event Send Event is a hint instruction. It causes an event to be signaled to the CPU. */ #define __SEV __sev /** \brief Instruction Synchronization Barrier Instruction Synchronization Barrier flushes the pipeline in the processor, so that all instructions following the ISB are fetched from cache or memory, after the instruction has been completed. */ #define __ISB() __isb(0xF) /** \brief Data Synchronization Barrier This function acts as a special kind of Data Memory Barrier. It completes when all explicit memory accesses before this instruction complete. */ #define __DSB() __dsb(0xF) /** \brief Data Memory Barrier This function ensures the apparent order of the explicit memory operations before and after the instruction, without ensuring their completion. */ #define __DMB() __dmb(0xF) /** \brief Reverse byte order (32 bit) This function reverses the byte order in integer value. \param [in] value Value to reverse \return Reversed value */ #define __REV __rev /** \brief Reverse byte order (16 bit) This function reverses the byte order in two unsigned short values. \param [in] value Value to reverse \return Reversed value */ static __INLINE __ASM uint32_t __REV16(uint32_t value) { rev16 r0, r0 bx lr } /** \brief Reverse byte order in signed short value This function reverses the byte order in a signed short value with sign extension to integer. \param [in] value Value to reverse \return Reversed value */ static __INLINE __ASM int32_t __REVSH(int32_t value) { revsh r0, r0 bx lr } #if (__CORTEX_M >= 0x03) /** \brief Reverse bit order of value This function reverses the bit order of the given value. \param [in] value Value to reverse \return Reversed value */ #define __RBIT __rbit /** \brief LDR Exclusive (8 bit) This function performs a exclusive LDR command for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ #define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr)) /** \brief LDR Exclusive (16 bit) This function performs a exclusive LDR command for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ #define __LDREXH(ptr) ((uint16_t) __ldrex(ptr)) /** \brief LDR Exclusive (32 bit) This function performs a exclusive LDR command for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ #define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr)) /** \brief STR Exclusive (8 bit) This function performs a exclusive STR command for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STREXB(value, ptr) __strex(value, ptr) /** \brief STR Exclusive (16 bit) This function performs a exclusive STR command for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STREXH(value, ptr) __strex(value, ptr) /** \brief STR Exclusive (32 bit) This function performs a exclusive STR command for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STREXW(value, ptr) __strex(value, ptr) /** \brief Remove the exclusive lock This function removes the exclusive lock which is created by LDREX. */ #define __CLREX __clrex /** \brief Signed Saturate This function saturates a signed value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (1..32) \return Saturated value */ #define __SSAT __ssat /** \brief Unsigned Saturate This function saturates an unsigned value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (0..31) \return Saturated value */ #define __USAT __usat /** \brief Count leading zeros This function counts the number of leading zeros of a data value. \param [in] value Value to count the leading zeros \return number of leading zeros in value */ #define __CLZ __clz #endif /* (__CORTEX_M >= 0x03) */ #elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/ /* IAR iccarm specific functions */ #include <cmsis_iar.h> #elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/ /* GNU gcc specific functions */ /** \brief No Operation No Operation does nothing. This instruction can be used for code alignment purposes. */ __attribute__( ( always_inline ) ) static __INLINE void __NOP(void) { __ASM volatile ("nop"); } /** \brief Wait For Interrupt Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs. */ __attribute__( ( always_inline ) ) static __INLINE void __WFI(void) { __ASM volatile ("wfi"); } /** \brief Wait For Event Wait For Event is a hint instruction that permits the processor to enter a low-power state until one of a number of events occurs. */ __attribute__( ( always_inline ) ) static __INLINE void __WFE(void) { __ASM volatile ("wfe"); } /** \brief Send Event Send Event is a hint instruction. It causes an event to be signaled to the CPU. */ __attribute__( ( always_inline ) ) static __INLINE void __SEV(void) { __ASM volatile ("sev"); } /** \brief Instruction Synchronization Barrier Instruction Synchronization Barrier flushes the pipeline in the processor, so that all instructions following the ISB are fetched from cache or memory, after the instruction has been completed. */ __attribute__( ( always_inline ) ) static __INLINE void __ISB(void) { __ASM volatile ("isb"); } /** \brief Data Synchronization Barrier This function acts as a special kind of Data Memory Barrier. It completes when all explicit memory accesses before this instruction complete. */ __attribute__( ( always_inline ) ) static __INLINE void __DSB(void) { __ASM volatile ("dsb"); } /** \brief Data Memory Barrier This function ensures the apparent order of the explicit memory operations before and after the instruction, without ensuring their completion. */ __attribute__( ( always_inline ) ) static __INLINE void __DMB(void) { __ASM volatile ("dmb"); } /** \brief Reverse byte order (32 bit) This function reverses the byte order in integer value. \param [in] value Value to reverse \return Reversed value */ __attribute__( ( always_inline ) ) static __INLINE uint32_t __REV(uint32_t value) { uint32_t result; __ASM volatile ("rev %0, %1" : "=r" (result) : "r" (value) ); return(result); } /** \brief Reverse byte order (16 bit) This function reverses the byte order in two unsigned short values. \param [in] value Value to reverse \return Reversed value */ __attribute__( ( always_inline ) ) static __INLINE uint32_t __REV16(uint32_t value) { uint32_t result; __ASM volatile ("rev16 %0, %1" : "=r" (result) : "r" (value) ); return(result); } /** \brief Reverse byte order in signed short value This function reverses the byte order in a signed short value with sign extension to integer. \param [in] value Value to reverse \return Reversed value */ __attribute__( ( always_inline ) ) static __INLINE int32_t __REVSH(int32_t value) { uint32_t result; __ASM volatile ("revsh %0, %1" : "=r" (result) : "r" (value) ); return(result); } #if (__CORTEX_M >= 0x03) /** \brief Reverse bit order of value This function reverses the bit order of the given value. \param [in] value Value to reverse \return Reversed value */ __attribute__( ( always_inline ) ) static __INLINE uint32_t __RBIT(uint32_t value) { uint32_t result; __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) ); return(result); } /** \brief LDR Exclusive (8 bit) This function performs a exclusive LDR command for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ __attribute__( ( always_inline ) ) static __INLINE uint8_t __LDREXB(volatile uint8_t *addr) { uint8_t result; __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) ); return(result); } /** \brief LDR Exclusive (16 bit) This function performs a exclusive LDR command for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ __attribute__( ( always_inline ) ) static __INLINE uint16_t __LDREXH(volatile uint16_t *addr) { uint16_t result; __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) ); return(result); } /** \brief LDR Exclusive (32 bit) This function performs a exclusive LDR command for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ __attribute__( ( always_inline ) ) static __INLINE uint32_t __LDREXW(volatile uint32_t *addr) { uint32_t result; __ASM volatile ("ldrex %0, [%1]" : "=r" (result) : "r" (addr) ); return(result); } /** \brief STR Exclusive (8 bit) This function performs a exclusive STR command for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ __attribute__( ( always_inline ) ) static __INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr) { uint32_t result; __ASM volatile ("strexb %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) ); return(result); } /** \brief STR Exclusive (16 bit) This function performs a exclusive STR command for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ __attribute__( ( always_inline ) ) static __INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr) { uint32_t result; __ASM volatile ("strexh %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) ); return(result); } /** \brief STR Exclusive (32 bit) This function performs a exclusive STR command for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ __attribute__( ( always_inline ) ) static __INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr) { uint32_t result; __ASM volatile ("strex %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) ); return(result); } /** \brief Remove the exclusive lock This function removes the exclusive lock which is created by LDREX. */ __attribute__( ( always_inline ) ) static __INLINE void __CLREX(void) { __ASM volatile ("clrex"); } /** \brief Signed Saturate This function saturates a signed value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (1..32) \return Saturated value */ #define __SSAT(ARG1,ARG2) \ ({ \ uint32_t __RES, __ARG1 = (ARG1); \ __ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ __RES; \ }) /** \brief Unsigned Saturate This function saturates an unsigned value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (0..31) \return Saturated value */ #define __USAT(ARG1,ARG2) \ ({ \ uint32_t __RES, __ARG1 = (ARG1); \ __ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ __RES; \ }) /** \brief Count leading zeros This function counts the number of leading zeros of a data value. \param [in] value Value to count the leading zeros \return number of leading zeros in value */ __attribute__( ( always_inline ) ) static __INLINE uint8_t __CLZ(uint32_t value) { uint8_t result; __ASM volatile ("clz %0, %1" : "=r" (result) : "r" (value) ); return(result); } #endif /* (__CORTEX_M >= 0x03) */ #elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/ /* TASKING carm specific functions */ /* * The CMSIS functions have been implemented as intrinsics in the compiler. * Please use "carm -?i" to get an up to date list of all intrinsics, * Including the CMSIS ones. */ #endif /*@}*/ /* end of group CMSIS_Core_InstructionInterface */ #endif /* __CORE_CMINSTR_H */