Mercurial > public > ostc4
view Small_CPU/Src/scheduler.c @ 963:c19c8f17a9f3 Evo_2_23
hard-coded hardwaredata for testing purposes
author | heinrichsweikamp |
---|---|
date | Mon, 13 Jan 2025 14:23:29 +0100 |
parents | 9b29995d6619 |
children |
line wrap: on
line source
/** ****************************************************************************** * @file scheduler.c * @author heinrichs weikamp gmbh * @date 27-March-2014 * @version V0.0.6 * @since 18-June-2015 * @brief the main part except for base.c * @verbatim ============================================================================== ##### How to use ##### ============================================================================== @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2015 heinrichs weikamp</center></h2> * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include <string.h> #include "baseCPU2.h" #include "stm32f4xx_hal.h" #include "i2c.h" #include "scheduler.h" #include "pressure.h" #include "compass.h" #include "batteryGasGauge.h" #include "batteryCharger.h" #include "spi.h" #include "rtc.h" #include "dma.h" #include "adc.h" #include "gpio.h" #include "calc_crush.h" #include "stm32f4xx_hal_rtc_ex.h" #include "decom.h" #include "tm_stm32f4_otp.h" #include "externalInterface.h" #include "uart.h" #include "uart_Internal.h" #include "GNSS.h" #include "uartProtocol_GNSS.h" #include "math.h" #include "configuration.h" /* uncomment to enable restoting of last known date in case of a power loss (RTC looses timing data) */ /* #define RESTORE_LAST_KNOWN_DATE */ #define INVALID_PREASURE_VALUE (0.0f) #define START_DIVE_MOUNTAIN_MODE_BAR (0.88f) #define START_DIVE_IMMEDIATLY_BAR (1.16f) /* Ascent rate calculation */ typedef enum { ASCENT_NONE = 0, ASCENT_RISING, ASCENT_FALLING, } AscentStates_t; /* Private types -------------------------------------------------------------*/ const SGas Air = {79,0,0,0,0}; /* Exported variables --------------------------------------------------------*/ SGlobal global; SDevice DeviceDataFlash; uint8_t deviceDataFlashValid = 0; uint8_t deviceDataSubSeconds = 0; /* Private variables ---------------------------------------------------------*/ static uint16_t ManualExitDiveCounter = 0; /* The computer will exit dive mode in shallow area immediately. Increase depth to restart dive while counter is active */ /* can be lost while in sleep */ uint8_t clearDecoNow = 0; uint8_t setButtonsNow = 0; /* has to be in SRAM2 */ uint8_t secondsCount = 0; static uint8_t dospisync = SPI_SYNC_METHOD_NONE; SScheduleCtrl Scheduler; /* Private function prototypes -----------------------------------------------*/ _Bool vpm_crush2(void); void scheduleUpdateDeviceData(void); long get_nofly_time_minutes(void); void copyActualGas(SGas gas); void copyPressureData(void); void copyCnsAndOtuData(void); void copyTimeData(void); void copyCompassData(void); void copyCompassDataDuringCalibration(int16_t dx, int16_t dy, int16_t dz); void copyAmbientLightData(void); void copyTissueData(void); void copyVpmCrushingData(void); void copyDeviceData(void); void copyPICdata(void); void copyExtADCdata(); void copyExtCO2data(); void copyGNSSdata(void); static void schedule_update_timer_helper(int8_t thisSeconds); static void evaluateAscentSpeed(void); uint32_t time_elapsed_ms(uint32_t ticksstart,uint32_t ticksnow); void scheduleSetDate(SDeviceLine *line); /* Exported functions --------------------------------------------------------*/ void initGlobals(void) { bzero(&global, sizeof(SGlobal)); global.dataSendToSlavePending = 0; global.dataSendToSlaveIsValid = 1; global.dataSendToSlaveIsNotValidCount = 0; global.mode = MODE_POWERUP; global.repetitive_dive = 0; global.conservatism = 0; global.whichGas = 0; global.aktualGas[0] = Air; global.lifeData.actualGas = global.aktualGas[0]; const uint8_t button_standard_sensitivity = 51; /* 51 equals a percentage of 85% which was the default value before */ global.ButtonResponsiveness[0] = button_standard_sensitivity; global.ButtonResponsiveness[1] = button_standard_sensitivity; global.ButtonResponsiveness[2] = button_standard_sensitivity; global.ButtonResponsiveness[3] = button_standard_sensitivity; global.ButtonPICdata[0] = 0xFF; global.ButtonPICdata[1] = 0xFF; global.ButtonPICdata[2] = 0xFF; global.ButtonPICdata[3] = 0xFF; global.I2C_SystemStatus = HAL_ERROR; // 0x00 would be everything working global.lifeData.battery_voltage = BATTERY_DEFAULT_VOLTAGE; global.lifeData.pressure_ambient_bar = INVALID_PREASURE_VALUE; global.lifeData.pressure_surface_bar = INVALID_PREASURE_VALUE; decom_reset_with_1000mbar(&global.lifeData); global.demo_mode = 0; for(int i = 0; i < MAX_SENSORS; i++) { global.sensorError[i] = HAL_OK; // HAL_OK = 0; } global.dataSendToMaster.RTE_VERSION_high = firmwareVersionHigh();//RTE_VERSION_HIGH;; global.dataSendToMaster.RTE_VERSION_low = firmwareVersionLow();//RTE_VERSION_LOW;; global.dataSendToMaster.chargeStatus = CHARGER_off; global.dataSendToMaster.power_on_reset = 0; global.dataSendToMaster.header.checkCode[0] = 0xA1; global.dataSendToMaster.header.checkCode[1] = SPI_RX_STATE_OFFLINE; global.dataSendToMaster.header.checkCode[2] = 0xA3; global.dataSendToMaster.header.checkCode[3] = 0xA4; global.dataSendToMaster.footer.checkCode[3] = 0xE4; global.dataSendToMaster.footer.checkCode[2] = 0xE3; global.dataSendToMaster.footer.checkCode[1] = 0xE2; global.dataSendToMaster.footer.checkCode[0] = 0xE1; global.dataSendToMaster.sensorErrors = 0; global.dataSendToMaster.data[0].gnssInfo.coord.fLat = 0.0; global.dataSendToMaster.data[0].gnssInfo.coord.fLon = 0.0; global.dataSendToMaster.data[0].gnssInfo.fixType = 0; global.dataSendToMaster.data[0].gnssInfo.numSat = 0; global.sync_error_count = 0; global.check_sync_not_running = 0; global.deviceDataSendToMaster.RTE_VERSION_high = firmwareVersionHigh();//RTE_VERSION_HIGH; global.deviceDataSendToMaster.RTE_VERSION_low = firmwareVersionLow();//RTE_VERSION_LOW; global.deviceDataSendToMaster.chargeStatus = CHARGER_off; global.deviceDataSendToMaster.power_on_reset = 0; global.deviceDataSendToMaster.header.checkCode[0] = 0xDF; global.deviceDataSendToMaster.header.checkCode[1] = 0xDE; global.deviceDataSendToMaster.header.checkCode[2] = 0xDD; global.deviceDataSendToMaster.header.checkCode[3] = 0xDC; global.deviceDataSendToMaster.footer.checkCode[3] = 0xE4; global.deviceDataSendToMaster.footer.checkCode[2] = 0xE3; global.deviceDataSendToMaster.footer.checkCode[1] = 0xE2; global.deviceDataSendToMaster.footer.checkCode[0] = 0xE1; global.dataSendToSlave.getDeviceDataNow = 0; global.deviceData.batteryChargeCompleteCycles.value_int32 = 0; global.deviceData.batteryChargeCycles.value_int32 = 0; global.deviceData.depthMaximum.value_int32 = 0; global.deviceData.diveCycles.value_int32 = 0; global.deviceData.hoursOfOperation.value_int32 = 0; global.deviceData.temperatureMaximum.value_int32 = INT32_MIN; global.deviceData.temperatureMinimum.value_int32 = INT32_MAX; global.deviceData.voltageMinimum.value_int32 = INT32_MAX; Scheduler.communicationTimeout = SPI_COM_TIMEOUT_START; Scheduler_Request_sync_with_SPI(SPI_SYNC_METHOD_HARD); } void reinitGlobals(void) { global.dataSendToSlavePending = 0; global.dataSendToSlaveIsValid = 0; global.dataSendToSlaveIsNotValidCount = 0; global.sync_error_count = 0; global.check_sync_not_running = 0; Scheduler.communicationTimeout = SPI_COM_TIMEOUT_START; } void scheduleSpecial_Evaluate_DataSendToSlave(void) { //TEMPORARY fix for compass calibration. //TODO: Fix I2C timeout for complete solving problem. if(global.mode==MODE_CALIB){ return; } global.dataSendToSlavePending = 0; if(!global.dataSendToSlaveIsValid) return; global.dataSendToMaster.confirmRequest.uw = 0; if(TM_OTP_Read(0,0) == 0xFF) { if(global.dataSendToSlave.revisionHardware == (global.dataSendToSlave.revisionCRCx0x7A ^ 0x7A)) TM_OTP_Write(0,0,global.dataSendToSlave.revisionHardware); } if(global.dataSendToSlave.setAccidentFlag) { global.dataSendToMaster.confirmRequest.ub.accident = 1; global.deviceData.diveAccident.value_int32 = global.dataSendToSlave.setAccidentFlag; scheduleSetDate(&global.deviceData.diveAccident); global.accidentFlag |= global.dataSendToSlave.setAccidentFlag; if(global.accidentFlag == ACCIDENT_CNS) // LVL1 global.accidentRemainingSeconds = 2*60*60; else global.accidentRemainingSeconds = 24*60*60; } if(global.dataSendToSlave.setTimeNow) { global.dataSendToMaster.confirmRequest.ub.time = 1; RTC_SetTime(global.dataSendToSlave.data.newTime); schedule_update_timer_helper(0); } if(global.dataSendToSlave.setDateNow) { global.dataSendToMaster.confirmRequest.ub.date = 1; RTC_SetDate(global.dataSendToSlave.data.newDate); schedule_update_timer_helper(0); } if(global.dataSendToSlave.calibrateCompassNow) { global.dataSendToMaster.confirmRequest.ub.compass = 1; global.mode = MODE_CALIB; } if(global.dataSendToSlave.clearDecoNow) { global.dataSendToMaster.confirmRequest.ub.clearDeco = 1; clearDecoNow = 1; } if(global.dataSendToSlave.setButtonSensitivityNow) { global.dataSendToMaster.confirmRequest.ub.button = 1; global.ButtonResponsiveness[0] = global.dataSendToSlave.data.buttonResponsiveness[0]; global.ButtonResponsiveness[1] = global.dataSendToSlave.data.buttonResponsiveness[1]; global.ButtonResponsiveness[2] = global.dataSendToSlave.data.buttonResponsiveness[2]; global.ButtonResponsiveness[3] = global.dataSendToSlave.data.buttonResponsiveness[3]; setButtonsNow = 1; } if(global.dataSendToSlave.setBatteryGaugeNow) { if(global.mode!=MODE_CALIB){ global.dataSendToMaster.confirmRequest.ub.batterygauge = 1; battery_gas_gauge_set(global.dataSendToSlave.data.newBatteryGaugePercentageFloat); } } if(global.dataSendToSlave.setEndDive) { ManualExitDiveCounter = 30 * 60; /* This will cause the computer to leave dive mode if in shallow area and increase the depth to enter dive mode for the next 30 minutes */ } if((global.mode == MODE_SURFACE) && (global.dataSendToSlave.mode == MODE_SHUTDOWN)) { global.mode = MODE_SHUTDOWN; } if(global.mode == MODE_DIVE) { copyActualGas(global.dataSendToSlave.data.actualGas); } else { copyActualGas(Air); global.settings.divetimeToCreateLogbook = global.dataSendToSlave.data.divetimeToCreateLogbook; global.settings.timeoutDiveReachedZeroDepth = global.dataSendToSlave.data.timeoutDiveReachedZeroDepth; } /* for simulation / testing */ global.ceiling_from_main_CPU_mbar = global.dataSendToSlave.data.ambient_pressure_mbar_ceiling; /* Set pressure and temperature offsets */ pressure_set_offset (global.dataSendToSlave.data.offsetPressureSensor_mbar, global.dataSendToSlave.data.offsetTemperatureSensor_centiDegree); /* for device data updates */ deviceDataFlashValid = 0; memcpy(&DeviceDataFlash, &global.dataSendToSlave.data.DeviceData, sizeof(SDevice)); deviceDataFlashValid = 1; /* handle external interface requests */ if((global.dataSendToSlave.data.externalInterface_Cmd && EXT_INTERFACE_33V_ON) != externalInterface_isEnabledPower33()) { externalInterface_SwitchPower33(global.dataSendToSlave.data.externalInterface_Cmd && EXT_INTERFACE_33V_ON); } if(((global.dataSendToSlave.data.externalInterface_Cmd & EXT_INTERFACE_ADC_ON) != 0) != externalInterface_isEnabledADC()) { externalInterface_SwitchADC(1-externalInterface_isEnabledADC()); } externalInface_SetSensorMap(global.dataSendToSlave.data.externalInterface_SensorMap); if(global.dataSendToSlave.data.externalInterface_Cmd & 0x00FF) /* lowest nibble for commands */ { externalInterface_ExecuteCmd(global.dataSendToSlave.data.externalInterface_Cmd); } #ifdef ENABLE_GPIO_V2 GPIO_HandleBuzzer(); #endif #if 0 //TODO: Temporary placed here. Duration ~210 ms. if (global.I2C_SystemStatus != HAL_OK) { MX_I2C1_TestAndClear(); MX_I2C1_Init(); // init_pressure(); // compass_init(0, 7); // accelerator_init(); } #endif /* already called once a second */ } /** ****************************************************************************** * @brief schedule_time_compare_helper. * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 20-Oct-2016 ****************************************************************************** */ uint8_t RtcBugFixChsw(uint8_t inStupidTime) { uint8_t multiplesOf16 = 0; multiplesOf16 = inStupidTime / 16; inStupidTime -= multiplesOf16 * 16; return (10 * multiplesOf16) + inStupidTime; } uint32_t schedule_time_compare_helper(RTC_TimeTypeDef timeNow, RTC_DateTypeDef dateNow, RTC_TimeTypeDef timeLast, RTC_DateTypeDef dateLast) { uint32_t nowInSeconds; uint32_t lastInSeconds; uint32_t resultDiff; nowInSeconds = (uint32_t)RtcBugFixChsw(timeNow.Hours) * 3600; nowInSeconds += (uint32_t)RtcBugFixChsw(timeNow.Minutes) * 60; nowInSeconds += (uint32_t)RtcBugFixChsw(timeNow.Seconds); lastInSeconds = (uint32_t)RtcBugFixChsw(timeLast.Hours) * 3600; lastInSeconds += (uint32_t)RtcBugFixChsw(timeLast.Minutes) * 60; lastInSeconds += (uint32_t)RtcBugFixChsw(timeLast.Seconds); if(dateNow.Date != dateLast.Date) { resultDiff = 86400 + nowInSeconds - lastInSeconds; } else { resultDiff = nowInSeconds - lastInSeconds; } return resultDiff; } /** ****************************************************************************** * @brief schedule_update_timer_helper. * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 20-Oct-2016 * @brief use 0 for init use -1 for RTC controlled use >= 1 for manual control ****************************************************************************** */ extern RTC_HandleTypeDef RTCHandle; static void schedule_update_timer_helper(int8_t thisSeconds) { static RTC_TimeTypeDef sTimeLast; static RTC_DateTypeDef sDateLast; RTC_TimeTypeDef sTimeNow; RTC_DateTypeDef sDateNow; uint32_t secondsPast; HAL_RTC_GetTime(&RTCHandle, &sTimeNow, RTC_FORMAT_BCD); HAL_RTC_GetDate(&RTCHandle, &sDateNow, RTC_FORMAT_BCD); if(thisSeconds != 0) // otherwise just store sTimeLast, sDateLast { if(thisSeconds > 0) // use this value instead, good for pre-loading sTimeLast and sDateLast { secondsPast = thisSeconds; } else { // thisSeconds < 0 and not <= ! secondsPast = schedule_time_compare_helper(sTimeNow, sDateNow, sTimeLast, sDateLast); } if(global.seconds_since_last_dive) { if(secondsPast >= 777900) { global.seconds_since_last_dive = 0; } else { uint32_t tempNewValue = ((uint32_t)global.seconds_since_last_dive) + secondsPast; if(tempNewValue > 777900) // a bit more than nine days [seconds] global.seconds_since_last_dive = 0; else global.seconds_since_last_dive = (long)tempNewValue; } } } sTimeLast = sTimeNow; sDateLast = sDateNow; } /** ****************************************************************************** * @brief schedule_check_resync. * @author heinrichs weikamp gmbh * @version V0.0.2 * @date 18-June-2015 ****************************************************************************** */ void schedule_check_resync(void) { /* counter is incremented in cyclic 100ms loop and reset to 0 if the transmission complete callback is called */ if((global.check_sync_not_running >= Scheduler.communicationTimeout)) { // global.dataSendToSlaveIsNotValidCount = 0; global.check_sync_not_running = 0; global.sync_error_count++; /* Try to start communication again. If exchange is stuck during execution for some reason the TX will be aborted by the * function error handler */ HAL_SPI_TransmitReceive_DMA(&hspi1,(uint8_t*) &(global.dataSendToMaster),(uint8_t*) &(global.dataSendToSlave), EXCHANGE_BUFFERSIZE); Scheduler.communicationTimeout = SPI_COM_TIMEOUT_COMMON; /* Reduce error detection time */ Scheduler_Request_sync_with_SPI(SPI_SYNC_METHOD_HARD); } } /** ****************************************************************************** * @brief scheduleDiveMode. / Dive Mode: Main Loop * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 22-April-2014 ****************************************************************************** */ void scheduleDiveMode(void) { uint32_t ticksdiff = 0; uint32_t lasttick = 0; uint8_t extAdcChannel = 0; uint8_t counterAscentRate = 0; global.dataSendToMaster.mode = MODE_DIVE; global.deviceDataSendToMaster.mode = MODE_DIVE; uint8_t counter_exit = 0; Scheduler.counterSPIdata100msec = 0; Scheduler.counterCompass100msec = 0; Scheduler.counterPressure100msec = 0; Scheduler.counterAmbientLight100msec = 0; Scheduler.tick_execute1second = SCHEDULER_TICK_EXE1SEC; global.deviceData.diveCycles.value_int32++; scheduleSetDate(&global.deviceData.diveCycles); global.lifeData.counterSecondsShallowDepth = 0; /* Get the last stable value in case of an unstable surface history condition */ if(!is_surface_pressure_stable()) { set_last_surface_pressure_stable(); } global.lifeData.pressure_surface_bar = get_surface_mbar() / 1000.0f; ManualExitDiveCounter = 0; /* reset early exit request */ Scheduler.tickstart = HAL_GetTick(); while(global.mode == MODE_DIVE) { lasttick = HAL_GetTick(); ticksdiff = time_elapsed_ms(Scheduler.tickstart,lasttick); externalInterface_HandleUART(); #ifdef ENABLE_GPIO_V2 UART6_HandleUART(); #endif if(ticksdiff >= Scheduler.counterSPIdata100msec * 100 + 10) { if(SPI_Evaluate_RX_Data()!=0) /* did we receive something ? */ { Scheduler.counterSPIdata100msec++; } schedule_check_resync(); if(externalInterface_isEnabledADC()) { extAdcChannel = externalInterface_ReadAndSwitch(); if(extAdcChannel != EXTERNAL_ADC_NO_DATA) { externalInterface_CalculateADCValue(extAdcChannel); } } copyExtADCdata(); copyExtCO2data(); } //Evaluate pressure at 20 ms, 120 ms, 220 ms,.... if(ticksdiff >= Scheduler.counterPressure100msec * 100 + 20) { global.check_sync_not_running++; pressure_update_alternating(); scheduleUpdateDeviceData(); #ifdef DEMOMODE if(global.demo_mode) { int turbo_seconds = demo_modify_temperature_and_pressure(global.lifeData.dive_time_seconds, Scheduler.counterPressure100msec, global.ceiling_from_main_CPU_mbar); if(turbo_seconds) { global.lifeData.dive_time_seconds += turbo_seconds; decom_tissues_exposure((int)(turbo_seconds), &global.lifeData); copyTissueData(); } if((global.lifeData.counterSecondsShallowDepth > 1) && (global.lifeData.counterSecondsShallowDepth < (global.settings.timeoutDiveReachedZeroDepth - 10))) global.lifeData.counterSecondsShallowDepth = (global.settings.timeoutDiveReachedZeroDepth - 10); } #endif counterAscentRate++; if(counterAscentRate == 4) { global.lifeData.pressure_ambient_bar = get_pressure_mbar() / 1000.0f; evaluateAscentSpeed(); counterAscentRate = 0; } copyPressureData(); Scheduler.counterPressure100msec++; } //evaluate compass data at 50 ms, 150 ms, 250 ms,.... if(ticksdiff >= Scheduler.counterCompass100msec * 100 + 50) { compass_read(); acceleration_read(); compass_calc(); copyCompassData(); Scheduler.counterCompass100msec++; } if(ticksdiff >= Scheduler.counterAmbientLight100msec * 100 + 70) { adc_ambient_light_sensor_get_data(); copyAmbientLightData(); Scheduler.counterAmbientLight100msec++; } //Evaluate tissues, toxic data, vpm, etc. once a second if(ticksdiff >= Scheduler.tick_execute1second) { Scheduler.tick_execute1second = 0xFFFFFFFF; /* execute once only in the second cycle */ if(global.dataSendToSlave.diveModeInfo != DIVEMODE_Apnea) { scheduleUpdateLifeData(0); // includes tissues global.lifeData.dive_time_seconds++; // there is dive_time_seconds_without_surface_time too global.lifeData.ppO2 = decom_calc_ppO2(global.lifeData.pressure_ambient_bar, &global.lifeData.actualGas); decom_oxygen_calculate_cns(&global.lifeData.cns,global.lifeData.ppO2); decom_oxygen_calculate_otu(&global.lifeData.otu,global.lifeData.ppO2); battery_gas_gauge_get_data(); /** counter_exit allows safe exit via button for testing * and demo_mode is exited too if applicable. */ if(global.dataSendToMaster.mode == MODE_ENDDIVE) { counter_exit++; if(counter_exit >= 2) { global.mode = MODE_SURFACE; global.demo_mode = 0; } } if(is_ambient_pressure_close_to_surface(&global.lifeData)) { global.lifeData.counterSecondsShallowDepth++; if((global.lifeData.counterSecondsShallowDepth >= global.settings.timeoutDiveReachedZeroDepth) || ((global.lifeData.dive_time_seconds < 60) && (global.demo_mode == 0)) || (ManualExitDiveCounter)) { global.seconds_since_last_dive = 1; // start counter schedule_update_timer_helper(0); // zum starten :-) global.dataSendToMaster.mode = MODE_ENDDIVE; global.deviceDataSendToMaster.mode = MODE_ENDDIVE; } } else { global.lifeData.counterSecondsShallowDepth = 0; global.lifeData.dive_time_seconds_without_surface_time++; } vpm_crush2(); } else // DIVEMODE_Apnea { global.lifeData.dive_time_seconds++; // exit dive mode if(global.dataSendToMaster.mode == MODE_ENDDIVE) { counter_exit++; if(counter_exit >= 2) { scheduleUpdateLifeData(-1); // 'restart' tissue calculations without calculating time during apnea mode global.lifeData.dive_time_seconds = 0; // use backup noflytime and desaturation time global.mode = MODE_SURFACE; global.demo_mode = 0; } } // surface break if(is_ambient_pressure_close_to_surface(&global.lifeData)) { global.lifeData.ascent_rate_meter_per_min = 0; global.lifeData.counterSecondsShallowDepth++; if(global.lifeData.counterSecondsShallowDepth > 3) // time for main cpu to copy to apnea_last_dive_time_seconds { global.lifeData.dive_time_seconds = 0; // this apnea dive ends here } if((global.lifeData.counterSecondsShallowDepth >= global.settings.timeoutDiveReachedZeroDepth) || (ManualExitDiveCounter)) { global.dataSendToMaster.mode = MODE_ENDDIVE; global.deviceDataSendToMaster.mode = MODE_ENDDIVE; } } else { global.lifeData.counterSecondsShallowDepth = 0; global.lifeData.dive_time_seconds_without_surface_time++; } } // standard dive or DIVEMODE_Apnea copyVpmCrushingData(); copyTimeData(); copyCnsAndOtuData(); copyBatteryData(); // new hw 170523 if(global.I2C_SystemStatus != HAL_OK) { MX_I2C1_TestAndClear(); HAL_Delay(100); I2C_DeInit(); HAL_Delay(100); MX_I2C1_Init(); HAL_Delay(100); init_pressure(); } } if(ticksdiff >= 1000) { /* reset counter */ Scheduler.tickstart = HAL_GetTick(); Scheduler.counterSPIdata100msec = 0; Scheduler.counterCompass100msec = 0; Scheduler.counterPressure100msec = 0; Scheduler.counterAmbientLight100msec = 0; Scheduler.tick_execute1second = SCHEDULER_TICK_EXE1SEC; } } } /** ****************************************************************************** * @brief scheduleSurfaceMode / surface mode: Main Loop * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 22-April-2014 ****************************************************************************** */ // =============================================================================== // scheduleTestMode /// @brief included for sealed hardware with permanent RTE update message // =============================================================================== void scheduleTestMode(void) { uint32_t ticksdiff = 0; uint32_t lasttick = 0; Scheduler.tickstart = HAL_GetTick(); Scheduler.counterPressure100msec = 0; float temperature_carousel = 0.0f; float temperature_changer = 0.1f; while(global.mode == MODE_TEST) { lasttick = HAL_GetTick(); ticksdiff = time_elapsed_ms(Scheduler.tickstart,lasttick); //Evaluate received data at 10 ms, 110 ms, 210 ms,... if(ticksdiff >= Scheduler.counterSPIdata100msec * 100 + 10) { if(SPI_Evaluate_RX_Data()!=0) /* did we receive something ? */ { Scheduler.counterSPIdata100msec++; } schedule_check_resync(); } //Evaluate pressure at 20 ms, 120 ms, 220 ms,... if(ticksdiff >= Scheduler.counterPressure100msec * 100 + 20) { global.check_sync_not_running++; pressure_update_alternating(); scheduleUpdateDeviceData(); global.lifeData.ascent_rate_meter_per_min = 0; copyPressureData(); if(temperature_carousel > 20.0f) { temperature_carousel = 20.0f; temperature_changer = -0.1f; } else if(temperature_carousel < 0) { temperature_carousel = 0; temperature_changer = +0.1f; } temperature_carousel += temperature_changer; uint8_t boolPressureData = !global.dataSendToMaster.boolPressureData; global.dataSendToMaster.data[boolPressureData].pressure_mbar = get_pressure_mbar(); global.dataSendToMaster.data[boolPressureData].temperature = temperature_carousel; global.dataSendToMaster.data[boolPressureData].pressure_uTick = HAL_GetTick(); global.dataSendToMaster.boolPressureData = boolPressureData; Scheduler.counterPressure100msec++; } if(ticksdiff >= 1000) { //Set back tick counter Scheduler.tickstart = HAL_GetTick(); Scheduler.counterPressure100msec = 0; Scheduler.counterSPIdata100msec = 0; } }; } void scheduleSurfaceMode(void) { uint32_t ticksdiff = 0; uint32_t lasttick = 0; uint8_t extAdcChannel = 0; uint8_t batteryToggle = 0; /* ADC is operating in automatic 2 second cycles => consider for battery charge function call */ Scheduler.tickstart = HAL_GetTick(); Scheduler.counterSPIdata100msec = 0; Scheduler.counterCompass100msec = 0; Scheduler.counterPressure100msec = 0; Scheduler.counterAmbientLight100msec = 0; Scheduler.tick_execute1second = SCHEDULER_TICK_EXE1SEC; global.dataSendToMaster.mode = MODE_SURFACE; global.deviceDataSendToMaster.mode = MODE_SURFACE; while(global.mode == MODE_SURFACE) { lasttick = HAL_GetTick(); ticksdiff = time_elapsed_ms(Scheduler.tickstart,lasttick); if(setButtonsNow == 1) { if(scheduleSetButtonResponsiveness()) setButtonsNow = 0; } externalInterface_HandleUART(); #ifdef ENABLE_GPIO_V2 UART6_HandleUART(); #endif /* Evaluate received data at 10 ms, 110 ms, 210 ms,... duration ~<1ms */ if(ticksdiff >= Scheduler.counterSPIdata100msec * 100 + 10) { if(SPI_Evaluate_RX_Data()!=0) /* did we receive something ? */ { Scheduler.counterSPIdata100msec++; } schedule_check_resync(); if(externalInterface_isEnabledADC()) { extAdcChannel = externalInterface_ReadAndSwitch(); if(extAdcChannel != EXTERNAL_ADC_NO_DATA) { externalInterface_CalculateADCValue(extAdcChannel); } } copyExtADCdata(); copyExtCO2data(); } /* Evaluate pressure at 20 ms, 120 ms, 220 ms,... duration ~22ms] */ if(ticksdiff >= Scheduler.counterPressure100msec * 100 + 20) { global.check_sync_not_running++; pressure_update_alternating(); scheduleUpdateDeviceData(); global.lifeData.ascent_rate_meter_per_min = 0; copyPressureData(); Scheduler.counterPressure100msec++; if (!is_ambient_pressure_close_to_surface(&global.lifeData)) global.mode = MODE_DIVE; } /* Evaluate compass data at 50 ms, 150 ms, 250 ms,... duration ~5ms */ if(ticksdiff >= Scheduler.counterCompass100msec * 100 + 50) { compass_read(); acceleration_read(); compass_calc(); copyCompassData(); Scheduler.counterCompass100msec++; } /* evaluate compass data at 70 ms, 170 ms, 270 ms,... duration <1ms */ if(ticksdiff >= Scheduler.counterAmbientLight100msec * 100 + 70) { adc_ambient_light_sensor_get_data(); copyAmbientLightData(); #if defined ENABLE_GNSS_SUPPORT || defined ENABLE_GPIO_V2 copyGNSSdata(); #endif Scheduler.counterAmbientLight100msec++; } /* Evaluate tissues, toxic data, etc. once a second... duration ~1ms */ if(ticksdiff >= Scheduler.tick_execute1second) { Scheduler.tick_execute1second = 0xFFFFFFFF; if(clearDecoNow) { decom_reset_with_1000mbar(&global.lifeData); ///< this should almost reset desaturation time // new 160215 hw global.repetitive_dive = 0; global.seconds_since_last_dive = 0; ///< this will reset OTU and CNS as well global.no_fly_time_minutes = 0; global.accidentFlag = 0; global.accidentRemainingSeconds = 0; vpm_init(&global.vpm, global.conservatism, global.repetitive_dive, global.seconds_since_last_dive); clearDecoNow = 0; } if(ManualExitDiveCounter) { ManualExitDiveCounter--; } if(global.seconds_since_last_dive) { schedule_update_timer_helper(-1); } if(global.accidentRemainingSeconds) { global.accidentRemainingSeconds--; if(!global.accidentRemainingSeconds) global.accidentFlag = 0; } global.dataSendToMaster.accidentFlags = global.accidentFlag; update_surface_pressure(1); scheduleUpdateLifeData(0); decom_oxygen_calculate_otu_degrade(&global.lifeData.otu, global.seconds_since_last_dive); decom_oxygen_calculate_cns_degrade(&global.lifeData.cns, global.seconds_since_last_dive); /* start desaturation calculation after first valid measurement has been done */ if(global.lifeData.pressure_surface_bar != INVALID_PREASURE_VALUE) { global.lifeData.desaturation_time_minutes = decom_calc_desaturation_time(global.lifeData.tissue_nitrogen_bar,global.lifeData.tissue_helium_bar,global.lifeData.pressure_surface_bar); } else { global.lifeData.desaturation_time_minutes = 0; } if(!batteryToggle) { battery_gas_gauge_get_data(); battery_charger_get_status_and_contral_battery_gas_gauge(2); batteryToggle = 1; } else { batteryToggle = 0; } copyCnsAndOtuData(); copyTimeData(); copyBatteryData(); copyDeviceData(); /* check if I2C is not up an running and try to reactivate if necessary. Also do initialization if problem occured during startup */ if(global.I2C_SystemStatus != HAL_OK) { MX_I2C1_TestAndClear(); HAL_Delay(100); I2C_DeInit(); HAL_Delay(100); MX_I2C1_Init(); HAL_Delay(100); if(global.I2C_SystemStatus == HAL_OK) { init_pressure(); if(is_init_pressure_done()) /* Init surface data with initial measurement */ { init_surface_ring(0); } if(!battery_gas_gauge_CheckConfigOK()) { init_battery_gas_gauge(); } } } externalInterface_AutodetectSensor(); } if(ticksdiff >= 1000) { //Set back tick counter Scheduler.tickstart = HAL_GetTick(); Scheduler.counterSPIdata100msec = 0; Scheduler.counterCompass100msec = 0; Scheduler.counterPressure100msec = 0; Scheduler.counterAmbientLight100msec = 0; Scheduler.tick_execute1second = SCHEDULER_TICK_EXE1SEC; } } } inline void Scheduler_Request_sync_with_SPI(uint8_t SyncMethod) { if( SyncMethod < SPI_SYNC_METHOD_INVALID) { dospisync = SyncMethod; } } void Scheduler_SyncToSPI(uint8_t TXtick) { uint32_t deltatick = 0; int8_t TXcompensation; switch(dospisync) { case SPI_SYNC_METHOD_HARD: //Set back tick counter Scheduler.tickstart = HAL_GetTick() - 4; /* consider 4ms offset for transfer */ Scheduler.counterSPIdata100msec = 0; Scheduler.counterCompass100msec = 0; Scheduler.counterPressure100msec = 0; Scheduler.counterAmbientLight100msec = 0; dospisync = SPI_SYNC_METHOD_NONE; break; case SPI_SYNC_METHOD_SOFT: deltatick = time_elapsed_ms(Scheduler.tickstart,HAL_GetTick()); deltatick %= 100; /* clip to 100ms window */ if(Scheduler.tickstart - deltatick >= 0) /* adjust start time to the next 100ms window */ { Scheduler.tickstart -= deltatick; } else { Scheduler.tickstart = 0xFFFFFFFF- (deltatick - Scheduler.tickstart); } dospisync = SPI_SYNC_METHOD_NONE; break; default: /* continous sync activity */ if(TXtick < 100) /* do not handle unexpected jump length > 100ms */ { TXtick += 4; /* add 4ms TX time to offset of 100ms time stamp */ deltatick = time_elapsed_ms(Scheduler.tickstart,HAL_GetTick()); deltatick %= 100; if(deltatick > 50) { TXcompensation = deltatick - 100; /* neg drift */ } else { TXcompensation = deltatick; /* pos drift */ } TXcompensation = TXtick - TXcompensation; Scheduler.tickstart -= TXcompensation; } else { Scheduler_Request_sync_with_SPI(SPI_SYNC_METHOD_SOFT); /* A large shift in 100ms cycle occured => clip to 100ms in next sync call */ } break; } } /** ****************************************************************************** * @brief scheduleCompassCalibrationMode * @author heinrichs weikamp gmbh * @version V0.0.1 * @since 31-March-2015 * @date 31-March-2015 ****************************************************************************** */ void scheduleCompassCalibrationMode(void) { compass_init(1,7); // fast mode, max gain compass_calib(); // duration : 1 minute! compass_init(0,7); // back to normal mode if(global.seconds_since_last_dive) { schedule_update_timer_helper(-1); } scheduleUpdateLifeData(0); global.mode = MODE_SURFACE; } /** ****************************************************************************** * @brief scheduleSleepMode / sleep mode: Main Loop * @author heinrichs weikamp gmbh * @version V0.0.2 * @since 31-March-2015 * @date 22-April-2014 ****************************************************************************** */ void scheduleSleepMode(void) { global.dataSendToMaster.mode = 0; global.deviceDataSendToMaster.mode = 0; secondsCount = 0; #ifdef ENABLE_GPIO_V2 uint16_t deepSleepCntDwn = 21600; /* 12 hours in 2 second steps */ uint8_t deepSleep = 0; GPIO_InitTypeDef GPIO_InitStruct; #endif /* prevent button wake up problem while in sleep_prepare * sleep prepare does I2C_DeInit() */ if(global.mode != MODE_SLEEP) MX_I2C1_Init(); else do { I2C_DeInit(); #ifdef ENABLE_SLEEP_DEBUG HAL_Delay(2000); #else RTC_StopMode_2seconds(); #endif if(global.mode == MODE_SLEEP) secondsCount += 2; externalInterface_InitPower33(); MX_I2C1_Init(); pressure_sensor_get_pressure_raw(); /* check if I2C is not up and running and try to reactivate if necessary. Also do initialization if problem occurred during startup */ if(global.I2C_SystemStatus != HAL_OK) { MX_I2C1_TestAndClear(); HAL_Delay(100); I2C_DeInit(); HAL_Delay(100); MX_I2C1_Init(); HAL_Delay(100); if((global.I2C_SystemStatus == HAL_OK) && (!is_init_pressure_done())) { init_pressure(); } } if((secondsCount >= 30) || (global.mode != MODE_SLEEP)) /* Service battery charge state in case sleep is left */ { pressure_sensor_get_temperature_raw(); battery_gas_gauge_get_data(); ReInit_battery_charger_status_pins(); battery_charger_get_status_and_contral_battery_gas_gauge(secondsCount); // DeInit_battery_charger_status_pins(); secondsCount = 0; } pressure_calculation(); scheduleUpdateDeviceData(); update_surface_pressure(2); if(global.seconds_since_last_dive) { schedule_update_timer_helper(-1); } if(global.accidentRemainingSeconds) { if(global.accidentRemainingSeconds > 2) global.accidentRemainingSeconds -= 2; else { global.accidentRemainingSeconds = 0; global.accidentFlag = 0; } } if (((!is_ambient_pressure_close_to_surface(&global.lifeData)) && (global.lifeData.pressure_surface_bar > START_DIVE_MOUNTAIN_MODE_BAR )) || (global.lifeData.pressure_ambient_bar > START_DIVE_IMMEDIATLY_BAR)) { global.mode = MODE_BOOT; } scheduleUpdateLifeData(2000); #ifdef ENABLE_GPIO_V2 if(deepSleepCntDwn) { deepSleepCntDwn--; if(deepSleepCntDwn == 0) { deepSleep = 1; GPIO_GPS_OFF(); GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Speed = GPIO_SPEED_LOW; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Pin = GPIO_PIN_All ^ (GPS_POWER_CONTROL_PIN); HAL_GPIO_Init( GPIOB, &GPIO_InitStruct); uartGnss_SetState(UART_GNSS_INIT); } } else { if((deepSleep = 1) && (global.lifeData.battery_voltage < 3.5)) /* switch off backup voltage if battery gets low */ { deepSleep = 2; GPIO_GPS_BCKP_OFF(); GPIO_InitStruct.Pin = GPIO_PIN_All ^ (GPS_BCKP_CONTROL_PIN); HAL_GPIO_Init( GPIOB, &GPIO_InitStruct); __HAL_RCC_GPIOB_CLK_DISABLE(); } } #endif } while(global.mode == MODE_SLEEP); /* new section for system after Standby */ scheduleUpdateLifeData(-1); clearDecoNow = 0; setButtonsNow = 0; reinitGlobals(); ReInit_battery_charger_status_pins(); #ifdef ENABLE_GPIO_V2 if(deepSleep != 0) { GPIO_GNSS_Init(); } #endif } /* Private functions ---------------------------------------------------------*/ /** ****************************************************************************** * @brief scheduleUpdateLifeData / calculates tissues * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 22-April-2014 ****************************************************************************** */ void scheduleUpdateLifeData(int32_t asynchron_milliseconds_since_last) { static _Bool first = 1; static uint32_t tickstart = 0; static uint32_t ticksrest = 0; uint32_t ticksdiff = 0; uint32_t ticksnow = 0; uint32_t time_seconds = 0; uint8_t whichGasTmp = 0; uint8_t updateTissueData = 0; if(global.lifeData.pressure_surface_bar == INVALID_PREASURE_VALUE) { updateTissueData = 1; } if(asynchron_milliseconds_since_last < 0) { first = 1; tickstart = 0; ticksrest = 0; return; } if(!asynchron_milliseconds_since_last && first) { tickstart = HAL_GetTick(); first = 0; return; } whichGasTmp = global.whichGas; global.lifeData.actualGas = global.aktualGas[whichGasTmp]; global.lifeData.pressure_ambient_bar = get_pressure_mbar() / 1000.0f; global.lifeData.pressure_surface_bar = get_surface_mbar() / 1000.0f; if(updateTissueData) { decom_reset_with_ambientmbar(global.lifeData.pressure_surface_bar,&global.lifeData); } if(!asynchron_milliseconds_since_last) { ticksnow = HAL_GetTick(); ticksdiff = time_elapsed_ms(tickstart,ticksnow); } else { first = 1; ticksdiff = asynchron_milliseconds_since_last; } if(ticksrest > 1000) // whatever happens after standby with STM32L476 ticksrest = 0; // maybe move static to SRAM2 ticksdiff += ticksrest; time_seconds = ticksdiff/ 1000; ticksrest = ticksdiff - time_seconds * 1000; tickstart = ticksnow; decom_tissues_exposure((int)time_seconds, &global.lifeData); if(global.demo_mode) decom_tissues_exposure((int)(3*time_seconds), &global.lifeData); copyTissueData(); } /** ****************************************************************************** * @brief scheduleUpdateDeviceData * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 16-March-2015 * * two step process * first compare with data from main CPU == externalLogbookFlash * second update with new sensor data ****************************************************************************** */ void scheduleSetDate(SDeviceLine *line) { extern RTC_HandleTypeDef RTCHandle; line->date_rtc_dr = (uint32_t)(RTCHandle.Instance->DR & RTC_DR_RESERVED_MASK); line->time_rtc_tr = (uint32_t)(RTCHandle.Instance->TR & RTC_TR_RESERVED_MASK); } void scheduleCopyDeviceData(SDeviceLine *lineWrite, const SDeviceLine *lineRead) { lineWrite->date_rtc_dr = lineRead->date_rtc_dr; lineWrite->time_rtc_tr = lineRead->time_rtc_tr; lineWrite->value_int32 = lineRead->value_int32; } void scheduletranslateDate(uint32_t datetmpreg, RTC_DateTypeDef *sDate) { datetmpreg = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK); /* Fill the structure fields with the read parameters */ sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> 16); sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> 8); sDate->Date = (uint8_t)(datetmpreg & (RTC_DR_DT | RTC_DR_DU)); sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> 13); /* Convert the date structure parameters to Binary format */ sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year); sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month); sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date); } void scheduleCheckDate(void) { uint32_t localdate; RTC_DateTypeDef sDate; localdate = (uint32_t)(RTCHandle.Instance->DR & RTC_DR_RESERVED_MASK); scheduletranslateDate(localdate, &sDate); /* RTC start in year 2000 in case of a power loss. Use the operation counter time stamp to bring at last date to a more realistic value */ if(sDate.Year < 15) { scheduletranslateDate(DeviceDataFlash.hoursOfOperation.date_rtc_dr, &sDate); if(sDate.Year > 16) { RTC_SetDate(sDate); } } } void scheduleUpdateDeviceData(void) { /* first step, main CPU */ if(deviceDataFlashValid) { /* max values */ if(global.deviceData.hoursOfOperation.value_int32 < DeviceDataFlash.hoursOfOperation.value_int32) { scheduleCopyDeviceData(&global.deviceData.hoursOfOperation, &DeviceDataFlash.hoursOfOperation); #ifdef RESTORE_LAST_KNOWN_DATE scheduleCheckDate(); #endif } if(global.deviceData.batteryChargeCompleteCycles.value_int32 < DeviceDataFlash.batteryChargeCompleteCycles.value_int32) { scheduleCopyDeviceData(&global.deviceData.batteryChargeCompleteCycles, &DeviceDataFlash.batteryChargeCompleteCycles); } if(global.deviceData.batteryChargeCycles.value_int32 < DeviceDataFlash.batteryChargeCycles.value_int32) { scheduleCopyDeviceData(&global.deviceData.batteryChargeCycles, &DeviceDataFlash.batteryChargeCycles); } if(global.deviceData.temperatureMaximum.value_int32 < DeviceDataFlash.temperatureMaximum.value_int32) { scheduleCopyDeviceData(&global.deviceData.temperatureMaximum, &DeviceDataFlash.temperatureMaximum); } if(global.deviceData.depthMaximum.value_int32 < DeviceDataFlash.depthMaximum.value_int32) { scheduleCopyDeviceData(&global.deviceData.depthMaximum, &DeviceDataFlash.depthMaximum); } if(global.deviceData.diveCycles.value_int32 < DeviceDataFlash.diveCycles.value_int32) { scheduleCopyDeviceData(&global.deviceData.diveCycles, &DeviceDataFlash.diveCycles); } /* min values */ if(global.deviceData.temperatureMinimum.value_int32 > DeviceDataFlash.temperatureMinimum.value_int32) { scheduleCopyDeviceData(&global.deviceData.temperatureMinimum, &DeviceDataFlash.temperatureMinimum); } if(global.deviceData.voltageMinimum.value_int32 > DeviceDataFlash.voltageMinimum.value_int32) { scheduleCopyDeviceData(&global.deviceData.voltageMinimum, &DeviceDataFlash.voltageMinimum); } } /* second step, sensor data */ int32_t temperature_centigrad_int32; int32_t pressure_mbar_int32; int32_t voltage_mvolt_int32; temperature_centigrad_int32 = (int32_t)(get_temperature() * 100); if(temperature_centigrad_int32 < global.deviceData.temperatureMinimum.value_int32) { global.deviceData.temperatureMinimum.value_int32 = temperature_centigrad_int32; scheduleSetDate(&global.deviceData.temperatureMinimum); } if(temperature_centigrad_int32 > global.deviceData.temperatureMaximum.value_int32) { global.deviceData.temperatureMaximum.value_int32 = temperature_centigrad_int32; scheduleSetDate(&global.deviceData.temperatureMaximum); } pressure_mbar_int32 = (int32_t)get_pressure_mbar(); if(pressure_mbar_int32 > global.deviceData.depthMaximum.value_int32) { global.deviceData.depthMaximum.value_int32 = pressure_mbar_int32; scheduleSetDate(&global.deviceData.depthMaximum); } voltage_mvolt_int32 = (int32_t)(get_voltage() * 1000); if(voltage_mvolt_int32 < global.deviceData.voltageMinimum.value_int32) { global.deviceData.voltageMinimum.value_int32 = voltage_mvolt_int32; scheduleSetDate(&global.deviceData.voltageMinimum); } /* third step, counter */ switch (global.mode) { case MODE_SURFACE: case MODE_DIVE: default: deviceDataSubSeconds++; if(deviceDataSubSeconds > 10) { deviceDataSubSeconds = 0; global.deviceData.hoursOfOperation.value_int32++; scheduleSetDate(&global.deviceData.hoursOfOperation); } break; case MODE_SLEEP: case MODE_SHUTDOWN: break; } } void scheduleUpdateDeviceDataChargerFull(void) { global.deviceData.batteryChargeCompleteCycles.value_int32++; scheduleSetDate(&global.deviceData.batteryChargeCompleteCycles); } void scheduleUpdateDeviceDataChargerCharging(void) { global.deviceData.batteryChargeCycles.value_int32++; scheduleSetDate(&global.deviceData.batteryChargeCycles); } /** ****************************************************************************** * @brief vpm_crush / calls vpm calc_crushing_pressure every four seconds during descend * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 22-April-2014 ****************************************************************************** */ _Bool vpm_crush2(void) { int i = 0; static float starting_ambient_pressure = 0; static float ending_ambient_pressure = 0; static float time_calc_begin = -1; static float initial_helium_pressure[16]; static float initial_nitrogen_pressure[16]; ending_ambient_pressure = global.lifeData.pressure_ambient_bar * 10; if((global.lifeData.dive_time_seconds <= 4) || (starting_ambient_pressure >= ending_ambient_pressure)) { time_calc_begin = global.lifeData.dive_time_seconds; starting_ambient_pressure = global.lifeData.pressure_ambient_bar * 10; for( i = 0; i < 16; i++) { initial_helium_pressure[i] = global.lifeData.tissue_helium_bar[i] * 10; initial_nitrogen_pressure[i] = global.lifeData.tissue_nitrogen_bar[i] * 10; } return 0; } if(global.lifeData.dive_time_seconds - time_calc_begin >= 4) { if(ending_ambient_pressure > starting_ambient_pressure + 0.5f) { float rate = (ending_ambient_pressure - starting_ambient_pressure) * 60 / 4; calc_crushing_pressure(&global.lifeData, &global.vpm, initial_helium_pressure, initial_nitrogen_pressure, starting_ambient_pressure, rate); time_calc_begin = global.lifeData.dive_time_seconds; starting_ambient_pressure = global.lifeData.pressure_ambient_bar * 10; for( i = 0; i < 16; i++) { initial_helium_pressure[i] = global.lifeData.tissue_helium_bar[i] * 10; initial_nitrogen_pressure[i] = global.lifeData.tissue_nitrogen_bar[i] * 10; } return 1; } } return 0; } long get_nofly_time_minutes(void) { if(global.no_fly_time_minutes <= 0) return 0; long minutes_since_last_dive = global.seconds_since_last_dive/60; if((global.seconds_since_last_dive > 0) && (global.no_fly_time_minutes > minutes_since_last_dive)) { return (global.no_fly_time_minutes - minutes_since_last_dive); } else { global.no_fly_time_minutes = 0; return 0; } } //Supports threadsave copying!!! void copyActualGas(SGas gas) { uint8_t whichGas = !global.whichGas; global.aktualGas[whichGas] = gas; global.whichGas = whichGas; } //Supports threadsave copying!!! void copyPressureData(void) { global.dataSendToMaster.sensorErrors = global.I2C_SystemStatus; uint8_t boolPressureData = !global.dataSendToMaster.boolPressureData; global.dataSendToMaster.data[boolPressureData].temperature = get_temperature(); global.dataSendToMaster.data[boolPressureData].pressure_mbar = get_pressure_mbar(); global.dataSendToMaster.data[boolPressureData].surface_mbar = get_surface_mbar(); global.dataSendToMaster.data[boolPressureData].ascent_rate_meter_per_min = global.lifeData.ascent_rate_meter_per_min; global.dataSendToMaster.data[boolPressureData].pressure_uTick = HAL_GetTick(); global.dataSendToMaster.boolPressureData = boolPressureData; global.dataSendToMaster.data[boolPressureData].SPARE1 = is_surface_pressure_stable(); } //Supports threadsave copying!!! void copyCnsAndOtuData(void) { //uint8_t dataSendToMaster. uint8_t boolToxicData = !global.dataSendToMaster.boolToxicData; global.dataSendToMaster.data[boolToxicData].cns = global.lifeData.cns; global.dataSendToMaster.data[boolToxicData].otu = global.lifeData.otu; global.dataSendToMaster.data[boolToxicData].desaturation_time_minutes = global.lifeData.desaturation_time_minutes; global.dataSendToMaster.data[boolToxicData].no_fly_time_minutes = get_nofly_time_minutes(); global.dataSendToMaster.boolToxicData = boolToxicData; } //Supports threadsave copying!!! void copyTimeData(void) { extern RTC_HandleTypeDef RTCHandle; uint8_t boolTimeData = !global.dataSendToMaster.boolTimeData; global.dataSendToMaster.data[boolTimeData].localtime_rtc_tr = (uint32_t)(RTCHandle.Instance->TR & RTC_TR_RESERVED_MASK); global.dataSendToMaster.data[boolTimeData].localtime_rtc_dr = (uint32_t)(RTCHandle.Instance->DR & RTC_DR_RESERVED_MASK); global.dataSendToMaster.data[boolTimeData].divetime_seconds = (uint32_t)global.lifeData.dive_time_seconds; global.dataSendToMaster.data[boolTimeData].dive_time_seconds_without_surface_time = (uint32_t)global.lifeData.dive_time_seconds_without_surface_time; global.dataSendToMaster.data[boolTimeData].surfacetime_seconds = (uint32_t)global.seconds_since_last_dive; global.dataSendToMaster.data[boolTimeData].counterSecondsShallowDepth = (uint32_t)global.lifeData.counterSecondsShallowDepth; global.dataSendToMaster.boolTimeData = boolTimeData; } //Supports threadsave copying!!! void copyCompassData(void) { extern float compass_heading; extern float compass_roll; extern float compass_pitch; //uint8_t dataSendToMaster. uint8_t boolCompassData = !global.dataSendToMaster.boolCompassData; global.dataSendToMaster.data[boolCompassData].compass_heading = compass_heading; global.dataSendToMaster.data[boolCompassData].compass_roll = compass_roll; global.dataSendToMaster.data[boolCompassData].compass_pitch = compass_pitch; global.dataSendToMaster.data[boolCompassData].compass_DX_f = 0; global.dataSendToMaster.data[boolCompassData].compass_DY_f = 0; global.dataSendToMaster.data[boolCompassData].compass_DZ_f = 0; global.dataSendToMaster.data[boolCompassData].compass_uTick = HAL_GetTick(); global.dataSendToMaster.boolCompassData = boolCompassData; } void copyCompassDataDuringCalibration(int16_t dx, int16_t dy, int16_t dz) { extern float compass_heading; extern float compass_roll; extern float compass_pitch; //uint8_t dataSendToMaster. uint8_t boolCompassData = !global.dataSendToMaster.boolCompassData; global.dataSendToMaster.data[boolCompassData].compass_heading = compass_heading; global.dataSendToMaster.data[boolCompassData].compass_roll = compass_roll; global.dataSendToMaster.data[boolCompassData].compass_pitch = compass_pitch; global.dataSendToMaster.data[boolCompassData].compass_DX_f = dx; global.dataSendToMaster.data[boolCompassData].compass_DY_f = dy; global.dataSendToMaster.data[boolCompassData].compass_DZ_f = dz; global.dataSendToMaster.boolCompassData = boolCompassData; } //Supports threadsave copying!!! void copyBatteryData(void) { uint8_t boolBatteryData = !global.dataSendToMaster.boolBatteryData; global.lifeData.battery_charge = get_charge(); global.dataSendToMaster.data[boolBatteryData].battery_voltage = get_voltage(); if(battery_gas_gauge_isChargeValueValid()) { global.dataSendToMaster.data[boolBatteryData].battery_charge= global.lifeData.battery_charge; } else { global.dataSendToMaster.data[boolBatteryData].battery_charge = global.lifeData.battery_charge * -1.0; /* negate value to show that this is just an assumption */ } global.dataSendToMaster.boolBatteryData = boolBatteryData; } //Supports threadsave copying!!! void copyAmbientLightData(void) { uint8_t boolAmbientLightData = !global.dataSendToMaster.boolAmbientLightData; global.dataSendToMaster.data[boolAmbientLightData].ambient_light_level = get_ambient_light_level(); global.dataSendToMaster.boolAmbientLightData = boolAmbientLightData; } //Supports threadsave copying!!! void copyTissueData(void) { //uint8_t dataSendToMaster. uint8_t boolTisssueData = !global.dataSendToMaster.boolTisssueData; for(int i = 0; i < 16; i++) { global.dataSendToMaster.data[boolTisssueData].tissue_nitrogen_bar[i] = global.lifeData.tissue_nitrogen_bar[i]; global.dataSendToMaster.data[boolTisssueData].tissue_helium_bar[i] = global.lifeData.tissue_helium_bar[i]; } global.dataSendToMaster.boolTisssueData = boolTisssueData; } //Supports threadsave copying!!! void copyVpmCrushingData(void) { //uint8_t dataSendToMaster. uint8_t boolCrushingData = !global.dataSendToMaster.boolCrushingData; for(int i = 0; i < 16; i++) { global.dataSendToMaster.data[boolCrushingData].max_crushing_pressure_n2[i] = global.vpm.max_crushing_pressure_n2[i]; global.dataSendToMaster.data[boolCrushingData].max_crushing_pressure_he[i] = global.vpm.max_crushing_pressure_he[i]; global.dataSendToMaster.data[boolCrushingData].adjusted_critical_radius_he[i] = global.vpm.adjusted_critical_radius_he[i]; global.dataSendToMaster.data[boolCrushingData].adjusted_critical_radius_n2[i] = global.vpm.adjusted_critical_radius_n2[i]; } global.dataSendToMaster.boolCrushingData = boolCrushingData; } void copyDeviceData(void) { uint8_t boolDeviceData = !global.deviceDataSendToMaster.boolDeviceData; memcpy(&global.deviceDataSendToMaster.DeviceData[boolDeviceData], &global.deviceData,sizeof(SDevice)); global.deviceDataSendToMaster.boolDeviceData = boolDeviceData; global.deviceDataSendToMaster.boolVpmRepetitiveDataValid = 0; memcpy(&global.deviceDataSendToMaster.VpmRepetitiveData.adjusted_critical_radius_he, &global.vpm.adjusted_critical_radius_he, sizeof(16*4)); memcpy(&global.deviceDataSendToMaster.VpmRepetitiveData.adjusted_critical_radius_n2, &global.vpm.adjusted_critical_radius_n2, sizeof(16*4)); memcpy(&global.deviceDataSendToMaster.VpmRepetitiveData.adjusted_crushing_pressure_he, &global.vpm.adjusted_crushing_pressure_he, sizeof(16*4)); memcpy(&global.deviceDataSendToMaster.VpmRepetitiveData.adjusted_crushing_pressure_n2, &global.vpm.adjusted_crushing_pressure_n2, sizeof(16*4)); memcpy(&global.deviceDataSendToMaster.VpmRepetitiveData.initial_allowable_gradient_he, &global.vpm.initial_allowable_gradient_he, sizeof(16*4)); memcpy(&global.deviceDataSendToMaster.VpmRepetitiveData.initial_allowable_gradient_n2, &global.vpm.initial_allowable_gradient_n2, sizeof(16*4)); memcpy(&global.deviceDataSendToMaster.VpmRepetitiveData.max_actual_gradient, &global.vpm.max_actual_gradient, sizeof(16*4)); global.deviceDataSendToMaster.VpmRepetitiveData.repetitive_variables_not_valid = global.vpm.repetitive_variables_not_valid; global.deviceDataSendToMaster.boolVpmRepetitiveDataValid = 1; } /* copyPICdata(); is used in spi.c */ void copyPICdata(void) { uint8_t boolPICdata = !global.dataSendToMaster.boolPICdata; for(int i = 0; i < 3; i++) { global.dataSendToMaster.data[boolPICdata].button_setting[i] = global.ButtonPICdata[i]; } global.dataSendToMaster.boolPICdata = boolPICdata; } void copyExtADCdata() { float value; uint8_t channel = 0; uint8_t boolADCBuffer = ~(global.dataSendToMaster.boolADCO2Data & DATA_BUFFER_ADC); boolADCBuffer &= DATA_BUFFER_ADC; global.dataSendToMaster.boolADCO2Data &= ~DATA_BUFFER_ADC; for(channel = 0; channel < MAX_ADC_CHANNEL; channel++) { value = getExternalInterfaceChannel(channel); global.dataSendToMaster.data[boolADCBuffer && DATA_BUFFER_ADC].extADC_voltage[channel] = value; } global.dataSendToMaster.data[boolADCBuffer && DATA_BUFFER_ADC].externalInterface_SensorID = externalInterface_GetSensorData(0xFF, (uint8_t*)&global.dataSendToMaster.data[boolADCBuffer && DATA_BUFFER_ADC].sensor_data); memcpy(global.dataSendToMaster.data[boolADCBuffer && DATA_BUFFER_ADC].sensor_map,externalInterface_GetSensorMapPointer(1),EXT_INTERFACE_SENSOR_CNT); global.dataSendToMaster.boolADCO2Data |= boolADCBuffer; } void copyExtCO2data() { uint16_t value; uint8_t boolCO2Buffer = ~(global.dataSendToMaster.boolADCO2Data & DATA_BUFFER_CO2); global.dataSendToMaster.boolADCO2Data &= ~DATA_BUFFER_CO2; boolCO2Buffer &= DATA_BUFFER_CO2; if(externalInterface_GetCO2State()) { value = externalInterface_GetCO2Value(); global.dataSendToMaster.data[(boolCO2Buffer && DATA_BUFFER_CO2)].CO2_ppm = value; value = externalInterface_GetCO2SignalStrength(); global.dataSendToMaster.data[(boolCO2Buffer && DATA_BUFFER_CO2)].CO2_signalStrength = value; global.dataSendToMaster.data[(boolCO2Buffer && DATA_BUFFER_CO2)].externalInterface_CmdAnswer = externalInterface_GetCO2State(); externalInterface_SetCO2State(EXT_INTERFACE_33V_ON); /* clear command responses */ } else { global.dataSendToMaster.data[(boolCO2Buffer && DATA_BUFFER_CO2)].CO2_ppm = 0; global.dataSendToMaster.data[(boolCO2Buffer && DATA_BUFFER_CO2)].CO2_signalStrength = 0; global.dataSendToMaster.data[(boolCO2Buffer && DATA_BUFFER_CO2)].externalInterface_CmdAnswer = 0; } global.dataSendToMaster.boolADCO2Data |= boolCO2Buffer; } void copyGNSSdata(void) { RTC_TimeTypeDef sTimeNow; global.dataSendToMaster.data[0].gnssInfo.coord.fLat = GNSS_Handle.fLat; global.dataSendToMaster.data[0].gnssInfo.coord.fLon = GNSS_Handle.fLon; global.dataSendToMaster.data[0].gnssInfo.fixType = GNSS_Handle.fixType; global.dataSendToMaster.data[0].gnssInfo.numSat = GNSS_Handle.numSat; global.dataSendToMaster.data[0].gnssInfo.DateTime.year = (uint8_t) (GNSS_Handle.year - 2000); global.dataSendToMaster.data[0].gnssInfo.DateTime.month = GNSS_Handle.month; global.dataSendToMaster.data[0].gnssInfo.DateTime.day = GNSS_Handle.day; global.dataSendToMaster.data[0].gnssInfo.DateTime.hour = GNSS_Handle.hour; global.dataSendToMaster.data[0].gnssInfo.DateTime.min = GNSS_Handle.min; global.dataSendToMaster.data[0].gnssInfo.DateTime.sec = GNSS_Handle.sec; global.dataSendToMaster.data[0].gnssInfo.alive = GNSS_Handle.alive; if(( GNSS_Handle.fixType < 2) && (GNSS_Handle.alive & GNSS_ALIVE_BACKUP_POS)) /* fallback to last known position ? */ { RTC_GetTime(&sTimeNow); if(GNSS_Handle.last_hour > sTimeNow.Hours) { sTimeNow.Hours += 24; /* compensate date change */ } if(sTimeNow.Hours - GNSS_Handle.last_hour > 2) { GNSS_Handle.alive &= ~GNSS_ALIVE_BACKUP_POS; /* position outdated */ } else { global.dataSendToMaster.data[0].gnssInfo.coord.fLat = GNSS_Handle.last_fLat; global.dataSendToMaster.data[0].gnssInfo.coord.fLon = GNSS_Handle.last_fLon; } } memcpy(&global.dataSendToMaster.data[0].gnssInfo.signalQual,&GNSS_Handle.statSat, sizeof(GNSS_Handle.statSat)); } typedef enum { SPI3_OK = 0x00, SPI3_DEINIT = 0x01, } SPI3_StatusTypeDef; /* if spi3 is running and the SPI3_ButtonAdjust call returns OK, all is fine if the SPI3_ButtonAdjust call returns error, the spi3 is DeInit and will be init the next call of scheduleSetButtonResponsiveness() and data will be send again on the third call therefore on return 0 of scheduleSetButtonResponsiveness() the caller flag should kept active */ uint8_t scheduleSetButtonResponsiveness(void) { static uint8_t SPI3status = SPI3_OK; if((SPI3status == SPI3_OK) && (SPI3_ButtonAdjust(global.ButtonResponsiveness, global.ButtonPICdata))) { copyPICdata(); return 1; } else { for(int i=0;i<3;i++) { global.ButtonPICdata[i] = 0xFF; } copyPICdata(); if(SPI3status == SPI3_OK) { MX_SPI3_DeInit(); SPI3status = SPI3_DEINIT; } else { MX_SPI3_Init(); SPI3status = SPI3_OK; } return 0; } } //save time difference uint32_t time_elapsed_ms(uint32_t ticksstart,uint32_t ticksnow) { if(ticksstart <= ticksnow) { return ticksnow - ticksstart; } else { return 0xFFFFFFFF - ticksstart + ticksnow; } } /* same as in data_central.c */ _Bool is_ambient_pressure_close_to_surface(SLifeData *lifeData) { _Bool retval = true; if(lifeData->pressure_ambient_bar != INVALID_PREASURE_VALUE) /* as long as no valid data is available expect we are close to surface */ { /* this will e.g. apply in case of a significant pressure change during last 30 minutes => use increased offset for surface detection */ if (lifeData->pressure_ambient_bar > START_DIVE_IMMEDIATLY_BAR) { retval = false; } else if(is_surface_pressure_stable()) /* this is the expected start condition */ { if((lifeData->pressure_ambient_bar >= (lifeData->pressure_surface_bar + 0.1f)) && (ManualExitDiveCounter == 0)) /* only if diver did not request to exit dive mode */ { retval = false; } } } return retval; } void evaluateAscentSpeed() { static uint32_t lastPressureTick = 0; static float lastPressure_bar = 0.0f; static AscentStates_t ascentState = ASCENT_NONE; static uint8_t ascentStableCnt = 0; uint32_t tickPressureDiff = 0; uint32_t lasttick = HAL_GetTick(); float localAscentRate = 0.0; tickPressureDiff = time_elapsed_ms(lastPressureTick,lasttick); /* Calculate ascent rate every 400ms use timer to take care for small time shifts */ if(tickPressureDiff != 0) { if(lastPressure_bar >= 0) { localAscentRate = (lastPressure_bar - global.lifeData.pressure_ambient_bar) * (60000.0 / tickPressureDiff) * 10; /* bar * 10 = meter */ if((fabs(localAscentRate) < 1.0) || (global.lifeData.pressure_ambient_bar < START_DIVE_IMMEDIATLY_BAR)) { ascentState = ASCENT_NONE; ascentStableCnt = 0; } else if(localAscentRate > 0.0) { if(ascentState != ASCENT_FALLING) { if(ascentStableCnt < 5) { ascentStableCnt++; } else { ascentState = ASCENT_RISING; } } else { ascentState = ASCENT_NONE; ascentStableCnt = 0; } } else /* must be falling */ { if(ascentState != ASCENT_RISING) { if(ascentStableCnt < 5) { ascentStableCnt++; } else { ascentState = ASCENT_FALLING; } } else { ascentState = ASCENT_NONE; ascentStableCnt = 0; } } if(ascentState != ASCENT_NONE) { global.lifeData.ascent_rate_meter_per_min = localAscentRate; } else { global.lifeData.ascent_rate_meter_per_min = 0; } } } lastPressure_bar = global.lifeData.pressure_ambient_bar; lastPressureTick = lasttick; } /************************ (C) COPYRIGHT heinrichs weikamp *****END OF FILE****/