Fix stupid commit error
Forgot to add one file, so add this to make things compile.
Signed-off-by: Jan Mulder <jlmulder@xs4all.nl>
line source
/* ----------------------------------------------------------------------+ −
* Copyright (C) 2010-2015 ARM Limited. All rights reserved.+ −
*+ −
* $Date: 20. October 2015+ −
* $Revision: V1.4.5 b+ −
*+ −
* Project: CMSIS DSP Library+ −
* Title: arm_math.h+ −
*+ −
* Description: Public header file for CMSIS DSP Library+ −
*+ −
* Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0+ −
*+ −
* Redistribution and use in source and binary forms, with or without+ −
* modification, are permitted provided that the following conditions+ −
* are met:+ −
* - Redistributions of source code must retain the above copyright+ −
* notice, this list of conditions and the following disclaimer.+ −
* - Redistributions in binary form must reproduce the above copyright+ −
* notice, this list of conditions and the following disclaimer in+ −
* the documentation and/or other materials provided with the+ −
* distribution.+ −
* - Neither the name of ARM LIMITED nor the names of its contributors+ −
* may be used to endorse or promote products derived from this+ −
* software without specific prior written permission.+ −
*+ −
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS+ −
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT+ −
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS+ −
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE+ −
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,+ −
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,+ −
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;+ −
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER+ −
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT+ −
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN+ −
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE+ −
* POSSIBILITY OF SUCH DAMAGE.+ −
* -------------------------------------------------------------------- */+ −
+ −
/**+ −
\mainpage CMSIS DSP Software Library+ −
*+ −
* Introduction+ −
* ------------+ −
*+ −
* This user manual describes the CMSIS DSP software library,+ −
* a suite of common signal processing functions for use on Cortex-M processor based devices.+ −
*+ −
* The library is divided into a number of functions each covering a specific category:+ −
* - Basic math functions+ −
* - Fast math functions+ −
* - Complex math functions+ −
* - Filters+ −
* - Matrix functions+ −
* - Transforms+ −
* - Motor control functions+ −
* - Statistical functions+ −
* - Support functions+ −
* - Interpolation functions+ −
*+ −
* The library has separate functions for operating on 8-bit integers, 16-bit integers,+ −
* 32-bit integer and 32-bit floating-point values.+ −
*+ −
* Using the Library+ −
* ------------+ −
*+ −
* The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.+ −
* - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7)+ −
* - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7)+ −
* - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7)+ −
* - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7)+ −
* - arm_cortexM7l_math.lib (Little endian on Cortex-M7)+ −
* - arm_cortexM7b_math.lib (Big endian on Cortex-M7)+ −
* - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)+ −
* - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)+ −
* - arm_cortexM4l_math.lib (Little endian on Cortex-M4)+ −
* - arm_cortexM4b_math.lib (Big endian on Cortex-M4)+ −
* - arm_cortexM3l_math.lib (Little endian on Cortex-M3)+ −
* - arm_cortexM3b_math.lib (Big endian on Cortex-M3)+ −
* - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+)+ −
* - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+)+ −
*+ −
* The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.+ −
* Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single+ −
* public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.+ −
* Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or+ −
* ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.+ −
*+ −
* Examples+ −
* --------+ −
*+ −
* The library ships with a number of examples which demonstrate how to use the library functions.+ −
*+ −
* Toolchain Support+ −
* ------------+ −
*+ −
* The library has been developed and tested with MDK-ARM version 5.14.0.0+ −
* The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.+ −
*+ −
* Building the Library+ −
* ------------+ −
*+ −
* The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.+ −
* - arm_cortexM_math.uvprojx+ −
*+ −
*+ −
* The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.+ −
*+ −
* Pre-processor Macros+ −
* ------------+ −
*+ −
* Each library project have differant pre-processor macros.+ −
*+ −
* - UNALIGNED_SUPPORT_DISABLE:+ −
*+ −
* Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access+ −
*+ −
* - ARM_MATH_BIG_ENDIAN:+ −
*+ −
* Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.+ −
*+ −
* - ARM_MATH_MATRIX_CHECK:+ −
*+ −
* Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices+ −
*+ −
* - ARM_MATH_ROUNDING:+ −
*+ −
* Define macro ARM_MATH_ROUNDING for rounding on support functions+ −
*+ −
* - ARM_MATH_CMx:+ −
*+ −
* Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target+ −
* and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and+ −
* ARM_MATH_CM7 for building the library on cortex-M7.+ −
*+ −
* - __FPU_PRESENT:+ −
*+ −
* Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries+ −
*+ −
* <hr>+ −
* CMSIS-DSP in ARM::CMSIS Pack+ −
* -----------------------------+ −
*+ −
* The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:+ −
* |File/Folder |Content |+ −
* |------------------------------|------------------------------------------------------------------------|+ −
* |\b CMSIS\\Documentation\\DSP | This documentation |+ −
* |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |+ −
* |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |+ −
* |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |+ −
*+ −
* <hr>+ −
* Revision History of CMSIS-DSP+ −
* ------------+ −
* Please refer to \ref ChangeLog_pg.+ −
*+ −
* Copyright Notice+ −
* ------------+ −
*+ −
* Copyright (C) 2010-2015 ARM Limited. All rights reserved.+ −
*/+ −
+ −
+ −
/**+ −
* @defgroup groupMath Basic Math Functions+ −
*/+ −
+ −
/**+ −
* @defgroup groupFastMath Fast Math Functions+ −
* This set of functions provides a fast approximation to sine, cosine, and square root.+ −
* As compared to most of the other functions in the CMSIS math library, the fast math functions+ −
* operate on individual values and not arrays.+ −
* There are separate functions for Q15, Q31, and floating-point data.+ −
*+ −
*/+ −
+ −
/**+ −
* @defgroup groupCmplxMath Complex Math Functions+ −
* This set of functions operates on complex data vectors.+ −
* The data in the complex arrays is stored in an interleaved fashion+ −
* (real, imag, real, imag, ...).+ −
* In the API functions, the number of samples in a complex array refers+ −
* to the number of complex values; the array contains twice this number of+ −
* real values.+ −
*/+ −
+ −
/**+ −
* @defgroup groupFilters Filtering Functions+ −
*/+ −
+ −
/**+ −
* @defgroup groupMatrix Matrix Functions+ −
*+ −
* This set of functions provides basic matrix math operations.+ −
* The functions operate on matrix data structures. For example,+ −
* the type+ −
* definition for the floating-point matrix structure is shown+ −
* below:+ −
* <pre>+ −
* typedef struct+ −
* {+ −
* uint16_t numRows; // number of rows of the matrix.+ −
* uint16_t numCols; // number of columns of the matrix.+ −
* float32_t *pData; // points to the data of the matrix.+ −
* } arm_matrix_instance_f32;+ −
* </pre>+ −
* There are similar definitions for Q15 and Q31 data types.+ −
*+ −
* The structure specifies the size of the matrix and then points to+ −
* an array of data. The array is of size <code>numRows X numCols</code>+ −
* and the values are arranged in row order. That is, the+ −
* matrix element (i, j) is stored at:+ −
* <pre>+ −
* pData[i*numCols + j]+ −
* </pre>+ −
*+ −
* \par Init Functions+ −
* There is an associated initialization function for each type of matrix+ −
* data structure.+ −
* The initialization function sets the values of the internal structure fields.+ −
* Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>+ −
* and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.+ −
*+ −
* \par+ −
* Use of the initialization function is optional. However, if initialization function is used+ −
* then the instance structure cannot be placed into a const data section.+ −
* To place the instance structure in a const data+ −
* section, manually initialize the data structure. For example:+ −
* <pre>+ −
* <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>+ −
* <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>+ −
* <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>+ −
* </pre>+ −
* where <code>nRows</code> specifies the number of rows, <code>nColumns</code>+ −
* specifies the number of columns, and <code>pData</code> points to the+ −
* data array.+ −
*+ −
* \par Size Checking+ −
* By default all of the matrix functions perform size checking on the input and+ −
* output matrices. For example, the matrix addition function verifies that the+ −
* two input matrices and the output matrix all have the same number of rows and+ −
* columns. If the size check fails the functions return:+ −
* <pre>+ −
* ARM_MATH_SIZE_MISMATCH+ −
* </pre>+ −
* Otherwise the functions return+ −
* <pre>+ −
* ARM_MATH_SUCCESS+ −
* </pre>+ −
* There is some overhead associated with this matrix size checking.+ −
* The matrix size checking is enabled via the \#define+ −
* <pre>+ −
* ARM_MATH_MATRIX_CHECK+ −
* </pre>+ −
* within the library project settings. By default this macro is defined+ −
* and size checking is enabled. By changing the project settings and+ −
* undefining this macro size checking is eliminated and the functions+ −
* run a bit faster. With size checking disabled the functions always+ −
* return <code>ARM_MATH_SUCCESS</code>.+ −
*/+ −
+ −
/**+ −
* @defgroup groupTransforms Transform Functions+ −
*/+ −
+ −
/**+ −
* @defgroup groupController Controller Functions+ −
*/+ −
+ −
/**+ −
* @defgroup groupStats Statistics Functions+ −
*/+ −
/**+ −
* @defgroup groupSupport Support Functions+ −
*/+ −
+ −
/**+ −
* @defgroup groupInterpolation Interpolation Functions+ −
* These functions perform 1- and 2-dimensional interpolation of data.+ −
* Linear interpolation is used for 1-dimensional data and+ −
* bilinear interpolation is used for 2-dimensional data.+ −
*/+ −
+ −
/**+ −
* @defgroup groupExamples Examples+ −
*/+ −
#ifndef _ARM_MATH_H+ −
#define _ARM_MATH_H+ −
+ −
/* ignore some GCC warnings */+ −
#if defined ( __GNUC__ )+ −
#pragma GCC diagnostic push+ −
#pragma GCC diagnostic ignored "-Wsign-conversion"+ −
#pragma GCC diagnostic ignored "-Wconversion"+ −
#pragma GCC diagnostic ignored "-Wunused-parameter"+ −
#endif+ −
+ −
#define __CMSIS_GENERIC /* disable NVIC and Systick functions */+ −
+ −
#if defined(ARM_MATH_CM7)+ −
#include "core_cm7.h"+ −
#elif defined (ARM_MATH_CM4)+ −
#include "core_cm4.h"+ −
#elif defined (ARM_MATH_CM3)+ −
#include "core_cm3.h"+ −
#elif defined (ARM_MATH_CM0)+ −
#include "core_cm0.h"+ −
#define ARM_MATH_CM0_FAMILY+ −
#elif defined (ARM_MATH_CM0PLUS)+ −
#include "core_cm0plus.h"+ −
#define ARM_MATH_CM0_FAMILY+ −
#else+ −
#error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"+ −
#endif+ −
+ −
#undef __CMSIS_GENERIC /* enable NVIC and Systick functions */+ −
#include "string.h"+ −
#include "math.h"+ −
#ifdef __cplusplus+ −
extern "C"+ −
{+ −
#endif+ −
+ −
+ −
/**+ −
* @brief Macros required for reciprocal calculation in Normalized LMS+ −
*/+ −
+ −
#define DELTA_Q31 (0x100)+ −
#define DELTA_Q15 0x5+ −
#define INDEX_MASK 0x0000003F+ −
#ifndef PI+ −
#define PI 3.14159265358979f+ −
#endif+ −
+ −
/**+ −
* @brief Macros required for SINE and COSINE Fast math approximations+ −
*/+ −
+ −
#define FAST_MATH_TABLE_SIZE 512+ −
#define FAST_MATH_Q31_SHIFT (32 - 10)+ −
#define FAST_MATH_Q15_SHIFT (16 - 10)+ −
#define CONTROLLER_Q31_SHIFT (32 - 9)+ −
#define TABLE_SIZE 256+ −
#define TABLE_SPACING_Q31 0x400000+ −
#define TABLE_SPACING_Q15 0x80+ −
+ −
/**+ −
* @brief Macros required for SINE and COSINE Controller functions+ −
*/+ −
/* 1.31(q31) Fixed value of 2/360 */+ −
/* -1 to +1 is divided into 360 values so total spacing is (2/360) */+ −
#define INPUT_SPACING 0xB60B61+ −
+ −
/**+ −
* @brief Macro for Unaligned Support+ −
*/+ −
#ifndef UNALIGNED_SUPPORT_DISABLE+ −
#define ALIGN4+ −
#else+ −
#if defined (__GNUC__)+ −
#define ALIGN4 __attribute__((aligned(4)))+ −
#else+ −
#define ALIGN4 __align(4)+ −
#endif+ −
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */+ −
+ −
/**+ −
* @brief Error status returned by some functions in the library.+ −
*/+ −
+ −
typedef enum+ −
{+ −
ARM_MATH_SUCCESS = 0, /**< No error */+ −
ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */+ −
ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */+ −
ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */+ −
ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */+ −
ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */+ −
ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */+ −
} arm_status;+ −
+ −
/**+ −
* @brief 8-bit fractional data type in 1.7 format.+ −
*/+ −
typedef int8_t q7_t;+ −
+ −
/**+ −
* @brief 16-bit fractional data type in 1.15 format.+ −
*/+ −
typedef int16_t q15_t;+ −
+ −
/**+ −
* @brief 32-bit fractional data type in 1.31 format.+ −
*/+ −
typedef int32_t q31_t;+ −
+ −
/**+ −
* @brief 64-bit fractional data type in 1.63 format.+ −
*/+ −
typedef int64_t q63_t;+ −
+ −
/**+ −
* @brief 32-bit floating-point type definition.+ −
*/+ −
typedef float float32_t;+ −
+ −
/**+ −
* @brief 64-bit floating-point type definition.+ −
*/+ −
typedef double float64_t;+ −
+ −
/**+ −
* @brief definition to read/write two 16 bit values.+ −
*/+ −
#if defined __CC_ARM+ −
#define __SIMD32_TYPE int32_t __packed+ −
#define CMSIS_UNUSED __attribute__((unused))+ −
+ −
#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)+ −
#define __SIMD32_TYPE int32_t+ −
#define CMSIS_UNUSED __attribute__((unused))+ −
+ −
#elif defined __GNUC__+ −
#define __SIMD32_TYPE int32_t+ −
#define CMSIS_UNUSED __attribute__((unused))+ −
+ −
#elif defined __ICCARM__+ −
#define __SIMD32_TYPE int32_t __packed+ −
#define CMSIS_UNUSED+ −
+ −
#elif defined __CSMC__+ −
#define __SIMD32_TYPE int32_t+ −
#define CMSIS_UNUSED+ −
+ −
#elif defined __TASKING__+ −
#define __SIMD32_TYPE __unaligned int32_t+ −
#define CMSIS_UNUSED+ −
+ −
#else+ −
#error Unknown compiler+ −
#endif+ −
+ −
#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))+ −
#define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))+ −
#define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))+ −
#define __SIMD64(addr) (*(int64_t **) & (addr))+ −
+ −
#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)+ −
/**+ −
* @brief definition to pack two 16 bit values.+ −
*/+ −
#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \+ −
(((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )+ −
#define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \+ −
(((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )+ −
+ −
#endif+ −
+ −
+ −
/**+ −
* @brief definition to pack four 8 bit values.+ −
*/+ −
#ifndef ARM_MATH_BIG_ENDIAN+ −
+ −
#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \+ −
(((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \+ −
(((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \+ −
(((int32_t)(v3) << 24) & (int32_t)0xFF000000) )+ −
#else+ −
+ −
#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \+ −
(((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \+ −
(((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \+ −
(((int32_t)(v0) << 24) & (int32_t)0xFF000000) )+ −
+ −
#endif+ −
+ −
+ −
/**+ −
* @brief Clips Q63 to Q31 values.+ −
*/+ −
static __INLINE q31_t clip_q63_to_q31(+ −
q63_t x)+ −
{+ −
return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?+ −
((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;+ −
}+ −
+ −
/**+ −
* @brief Clips Q63 to Q15 values.+ −
*/+ −
static __INLINE q15_t clip_q63_to_q15(+ −
q63_t x)+ −
{+ −
return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?+ −
((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);+ −
}+ −
+ −
/**+ −
* @brief Clips Q31 to Q7 values.+ −
*/+ −
static __INLINE q7_t clip_q31_to_q7(+ −
q31_t x)+ −
{+ −
return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?+ −
((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;+ −
}+ −
+ −
/**+ −
* @brief Clips Q31 to Q15 values.+ −
*/+ −
static __INLINE q15_t clip_q31_to_q15(+ −
q31_t x)+ −
{+ −
return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?+ −
((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;+ −
}+ −
+ −
/**+ −
* @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.+ −
*/+ −
+ −
static __INLINE q63_t mult32x64(+ −
q63_t x,+ −
q31_t y)+ −
{+ −
return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) ++ −
(((q63_t) (x >> 32) * y)));+ −
}+ −
+ −
/*+ −
#if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )+ −
#define __CLZ __clz+ −
#endif+ −
*/+ −
/* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */+ −
#if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) )+ −
static __INLINE uint32_t __CLZ(+ −
q31_t data);+ −
+ −
static __INLINE uint32_t __CLZ(+ −
q31_t data)+ −
{+ −
uint32_t count = 0;+ −
uint32_t mask = 0x80000000;+ −
+ −
while((data & mask) == 0)+ −
{+ −
count += 1u;+ −
mask = mask >> 1u;+ −
}+ −
+ −
return (count);+ −
}+ −
#endif+ −
+ −
/**+ −
* @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.+ −
*/+ −
+ −
static __INLINE uint32_t arm_recip_q31(+ −
q31_t in,+ −
q31_t * dst,+ −
q31_t * pRecipTable)+ −
{+ −
q31_t out;+ −
uint32_t tempVal;+ −
uint32_t index, i;+ −
uint32_t signBits;+ −
+ −
if(in > 0)+ −
{+ −
signBits = ((uint32_t) (__CLZ( in) - 1));+ −
}+ −
else+ −
{+ −
signBits = ((uint32_t) (__CLZ(-in) - 1));+ −
}+ −
+ −
/* Convert input sample to 1.31 format */+ −
in = (in << signBits);+ −
+ −
/* calculation of index for initial approximated Val */+ −
index = (uint32_t)(in >> 24);+ −
index = (index & INDEX_MASK);+ −
+ −
/* 1.31 with exp 1 */+ −
out = pRecipTable[index];+ −
+ −
/* calculation of reciprocal value */+ −
/* running approximation for two iterations */+ −
for (i = 0u; i < 2u; i++)+ −
{+ −
tempVal = (uint32_t) (((q63_t) in * out) >> 31);+ −
tempVal = 0x7FFFFFFFu - tempVal;+ −
/* 1.31 with exp 1 */+ −
/* out = (q31_t) (((q63_t) out * tempVal) >> 30); */+ −
out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30);+ −
}+ −
+ −
/* write output */+ −
*dst = out;+ −
+ −
/* return num of signbits of out = 1/in value */+ −
return (signBits + 1u);+ −
}+ −
+ −
+ −
/**+ −
* @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.+ −
*/+ −
static __INLINE uint32_t arm_recip_q15(+ −
q15_t in,+ −
q15_t * dst,+ −
q15_t * pRecipTable)+ −
{+ −
q15_t out = 0;+ −
uint32_t tempVal = 0;+ −
uint32_t index = 0, i = 0;+ −
uint32_t signBits = 0;+ −
+ −
if(in > 0)+ −
{+ −
signBits = ((uint32_t)(__CLZ( in) - 17));+ −
}+ −
else+ −
{+ −
signBits = ((uint32_t)(__CLZ(-in) - 17));+ −
}+ −
+ −
/* Convert input sample to 1.15 format */+ −
in = (in << signBits);+ −
+ −
/* calculation of index for initial approximated Val */+ −
index = (uint32_t)(in >> 8);+ −
index = (index & INDEX_MASK);+ −
+ −
/* 1.15 with exp 1 */+ −
out = pRecipTable[index];+ −
+ −
/* calculation of reciprocal value */+ −
/* running approximation for two iterations */+ −
for (i = 0u; i < 2u; i++)+ −
{+ −
tempVal = (uint32_t) (((q31_t) in * out) >> 15);+ −
tempVal = 0x7FFFu - tempVal;+ −
/* 1.15 with exp 1 */+ −
out = (q15_t) (((q31_t) out * tempVal) >> 14);+ −
/* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */+ −
}+ −
+ −
/* write output */+ −
*dst = out;+ −
+ −
/* return num of signbits of out = 1/in value */+ −
return (signBits + 1);+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined intrinisic function for only M0 processors+ −
*/+ −
#if defined(ARM_MATH_CM0_FAMILY)+ −
static __INLINE q31_t __SSAT(+ −
q31_t x,+ −
uint32_t y)+ −
{+ −
int32_t posMax, negMin;+ −
uint32_t i;+ −
+ −
posMax = 1;+ −
for (i = 0; i < (y - 1); i++)+ −
{+ −
posMax = posMax * 2;+ −
}+ −
+ −
if(x > 0)+ −
{+ −
posMax = (posMax - 1);+ −
+ −
if(x > posMax)+ −
{+ −
x = posMax;+ −
}+ −
}+ −
else+ −
{+ −
negMin = -posMax;+ −
+ −
if(x < negMin)+ −
{+ −
x = negMin;+ −
}+ −
}+ −
return (x);+ −
}+ −
#endif /* end of ARM_MATH_CM0_FAMILY */+ −
+ −
+ −
/*+ −
* @brief C custom defined intrinsic function for M3 and M0 processors+ −
*/+ −
#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)+ −
+ −
/*+ −
* @brief C custom defined QADD8 for M3 and M0 processors+ −
*/+ −
static __INLINE uint32_t __QADD8(+ −
uint32_t x,+ −
uint32_t y)+ −
{+ −
q31_t r, s, t, u;+ −
+ −
r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;+ −
s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;+ −
t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;+ −
u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;+ −
+ −
return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined QSUB8 for M3 and M0 processors+ −
*/+ −
static __INLINE uint32_t __QSUB8(+ −
uint32_t x,+ −
uint32_t y)+ −
{+ −
q31_t r, s, t, u;+ −
+ −
r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;+ −
s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;+ −
t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;+ −
u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;+ −
+ −
return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined QADD16 for M3 and M0 processors+ −
*/+ −
static __INLINE uint32_t __QADD16(+ −
uint32_t x,+ −
uint32_t y)+ −
{+ −
/* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */+ −
q31_t r = 0, s = 0;+ −
+ −
r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;+ −
s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;+ −
+ −
return ((uint32_t)((s << 16) | (r )));+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined SHADD16 for M3 and M0 processors+ −
*/+ −
static __INLINE uint32_t __SHADD16(+ −
uint32_t x,+ −
uint32_t y)+ −
{+ −
q31_t r, s;+ −
+ −
r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;+ −
s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;+ −
+ −
return ((uint32_t)((s << 16) | (r )));+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined QSUB16 for M3 and M0 processors+ −
*/+ −
static __INLINE uint32_t __QSUB16(+ −
uint32_t x,+ −
uint32_t y)+ −
{+ −
q31_t r, s;+ −
+ −
r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;+ −
s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;+ −
+ −
return ((uint32_t)((s << 16) | (r )));+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined SHSUB16 for M3 and M0 processors+ −
*/+ −
static __INLINE uint32_t __SHSUB16(+ −
uint32_t x,+ −
uint32_t y)+ −
{+ −
q31_t r, s;+ −
+ −
r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;+ −
s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;+ −
+ −
return ((uint32_t)((s << 16) | (r )));+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined QASX for M3 and M0 processors+ −
*/+ −
static __INLINE uint32_t __QASX(+ −
uint32_t x,+ −
uint32_t y)+ −
{+ −
q31_t r, s;+ −
+ −
r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;+ −
s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;+ −
+ −
return ((uint32_t)((s << 16) | (r )));+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined SHASX for M3 and M0 processors+ −
*/+ −
static __INLINE uint32_t __SHASX(+ −
uint32_t x,+ −
uint32_t y)+ −
{+ −
q31_t r, s;+ −
+ −
r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;+ −
s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;+ −
+ −
return ((uint32_t)((s << 16) | (r )));+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined QSAX for M3 and M0 processors+ −
*/+ −
static __INLINE uint32_t __QSAX(+ −
uint32_t x,+ −
uint32_t y)+ −
{+ −
q31_t r, s;+ −
+ −
r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;+ −
s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;+ −
+ −
return ((uint32_t)((s << 16) | (r )));+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined SHSAX for M3 and M0 processors+ −
*/+ −
static __INLINE uint32_t __SHSAX(+ −
uint32_t x,+ −
uint32_t y)+ −
{+ −
q31_t r, s;+ −
+ −
r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;+ −
s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;+ −
+ −
return ((uint32_t)((s << 16) | (r )));+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined SMUSDX for M3 and M0 processors+ −
*/+ −
static __INLINE uint32_t __SMUSDX(+ −
uint32_t x,+ −
uint32_t y)+ −
{+ −
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -+ −
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));+ −
}+ −
+ −
/*+ −
* @brief C custom defined SMUADX for M3 and M0 processors+ −
*/+ −
static __INLINE uint32_t __SMUADX(+ −
uint32_t x,+ −
uint32_t y)+ −
{+ −
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) ++ −
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined QADD for M3 and M0 processors+ −
*/+ −
static __INLINE int32_t __QADD(+ −
int32_t x,+ −
int32_t y)+ −
{+ −
return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y)));+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined QSUB for M3 and M0 processors+ −
*/+ −
static __INLINE int32_t __QSUB(+ −
int32_t x,+ −
int32_t y)+ −
{+ −
return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y)));+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined SMLAD for M3 and M0 processors+ −
*/+ −
static __INLINE uint32_t __SMLAD(+ −
uint32_t x,+ −
uint32_t y,+ −
uint32_t sum)+ −
{+ −
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) ++ −
((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ++ −
( ((q31_t)sum ) ) ));+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined SMLADX for M3 and M0 processors+ −
*/+ −
static __INLINE uint32_t __SMLADX(+ −
uint32_t x,+ −
uint32_t y,+ −
uint32_t sum)+ −
{+ −
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) ++ −
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ++ −
( ((q31_t)sum ) ) ));+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined SMLSDX for M3 and M0 processors+ −
*/+ −
static __INLINE uint32_t __SMLSDX(+ −
uint32_t x,+ −
uint32_t y,+ −
uint32_t sum)+ −
{+ −
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -+ −
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ++ −
( ((q31_t)sum ) ) ));+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined SMLALD for M3 and M0 processors+ −
*/+ −
static __INLINE uint64_t __SMLALD(+ −
uint32_t x,+ −
uint32_t y,+ −
uint64_t sum)+ −
{+ −
/* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */+ −
return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) ++ −
((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ++ −
( ((q63_t)sum ) ) ));+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined SMLALDX for M3 and M0 processors+ −
*/+ −
static __INLINE uint64_t __SMLALDX(+ −
uint32_t x,+ −
uint32_t y,+ −
uint64_t sum)+ −
{+ −
/* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */+ −
return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) ++ −
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ++ −
( ((q63_t)sum ) ) ));+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined SMUAD for M3 and M0 processors+ −
*/+ −
static __INLINE uint32_t __SMUAD(+ −
uint32_t x,+ −
uint32_t y)+ −
{+ −
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) ++ −
((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined SMUSD for M3 and M0 processors+ −
*/+ −
static __INLINE uint32_t __SMUSD(+ −
uint32_t x,+ −
uint32_t y)+ −
{+ −
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) -+ −
((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));+ −
}+ −
+ −
+ −
/*+ −
* @brief C custom defined SXTB16 for M3 and M0 processors+ −
*/+ −
static __INLINE uint32_t __SXTB16(+ −
uint32_t x)+ −
{+ −
return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) |+ −
((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) ));+ −
}+ −
+ −
#endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */+ −
+ −
+ −
/**+ −
* @brief Instance structure for the Q7 FIR filter.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numTaps; /**< number of filter coefficients in the filter. */+ −
q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */+ −
q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/+ −
} arm_fir_instance_q7;+ −
+ −
/**+ −
* @brief Instance structure for the Q15 FIR filter.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numTaps; /**< number of filter coefficients in the filter. */+ −
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */+ −
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/+ −
} arm_fir_instance_q15;+ −
+ −
/**+ −
* @brief Instance structure for the Q31 FIR filter.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numTaps; /**< number of filter coefficients in the filter. */+ −
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */+ −
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */+ −
} arm_fir_instance_q31;+ −
+ −
/**+ −
* @brief Instance structure for the floating-point FIR filter.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numTaps; /**< number of filter coefficients in the filter. */+ −
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */+ −
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */+ −
} arm_fir_instance_f32;+ −
+ −
+ −
/**+ −
* @brief Processing function for the Q7 FIR filter.+ −
* @param[in] S points to an instance of the Q7 FIR filter structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_fir_q7(+ −
const arm_fir_instance_q7 * S,+ −
q7_t * pSrc,+ −
q7_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q7 FIR filter.+ −
* @param[in,out] S points to an instance of the Q7 FIR structure.+ −
* @param[in] numTaps Number of filter coefficients in the filter.+ −
* @param[in] pCoeffs points to the filter coefficients.+ −
* @param[in] pState points to the state buffer.+ −
* @param[in] blockSize number of samples that are processed.+ −
*/+ −
void arm_fir_init_q7(+ −
arm_fir_instance_q7 * S,+ −
uint16_t numTaps,+ −
q7_t * pCoeffs,+ −
q7_t * pState,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the Q15 FIR filter.+ −
* @param[in] S points to an instance of the Q15 FIR structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_fir_q15(+ −
const arm_fir_instance_q15 * S,+ −
q15_t * pSrc,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.+ −
* @param[in] S points to an instance of the Q15 FIR filter structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_fir_fast_q15(+ −
const arm_fir_instance_q15 * S,+ −
q15_t * pSrc,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q15 FIR filter.+ −
* @param[in,out] S points to an instance of the Q15 FIR filter structure.+ −
* @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.+ −
* @param[in] pCoeffs points to the filter coefficients.+ −
* @param[in] pState points to the state buffer.+ −
* @param[in] blockSize number of samples that are processed at a time.+ −
* @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if+ −
* <code>numTaps</code> is not a supported value.+ −
*/+ −
arm_status arm_fir_init_q15(+ −
arm_fir_instance_q15 * S,+ −
uint16_t numTaps,+ −
q15_t * pCoeffs,+ −
q15_t * pState,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the Q31 FIR filter.+ −
* @param[in] S points to an instance of the Q31 FIR filter structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_fir_q31(+ −
const arm_fir_instance_q31 * S,+ −
q31_t * pSrc,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.+ −
* @param[in] S points to an instance of the Q31 FIR structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_fir_fast_q31(+ −
const arm_fir_instance_q31 * S,+ −
q31_t * pSrc,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q31 FIR filter.+ −
* @param[in,out] S points to an instance of the Q31 FIR structure.+ −
* @param[in] numTaps Number of filter coefficients in the filter.+ −
* @param[in] pCoeffs points to the filter coefficients.+ −
* @param[in] pState points to the state buffer.+ −
* @param[in] blockSize number of samples that are processed at a time.+ −
*/+ −
void arm_fir_init_q31(+ −
arm_fir_instance_q31 * S,+ −
uint16_t numTaps,+ −
q31_t * pCoeffs,+ −
q31_t * pState,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the floating-point FIR filter.+ −
* @param[in] S points to an instance of the floating-point FIR structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_fir_f32(+ −
const arm_fir_instance_f32 * S,+ −
float32_t * pSrc,+ −
float32_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the floating-point FIR filter.+ −
* @param[in,out] S points to an instance of the floating-point FIR filter structure.+ −
* @param[in] numTaps Number of filter coefficients in the filter.+ −
* @param[in] pCoeffs points to the filter coefficients.+ −
* @param[in] pState points to the state buffer.+ −
* @param[in] blockSize number of samples that are processed at a time.+ −
*/+ −
void arm_fir_init_f32(+ −
arm_fir_instance_f32 * S,+ −
uint16_t numTaps,+ −
float32_t * pCoeffs,+ −
float32_t * pState,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Instance structure for the Q15 Biquad cascade filter.+ −
*/+ −
typedef struct+ −
{+ −
int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */+ −
q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */+ −
q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */+ −
int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */+ −
} arm_biquad_casd_df1_inst_q15;+ −
+ −
/**+ −
* @brief Instance structure for the Q31 Biquad cascade filter.+ −
*/+ −
typedef struct+ −
{+ −
uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */+ −
q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */+ −
q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */+ −
uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */+ −
} arm_biquad_casd_df1_inst_q31;+ −
+ −
/**+ −
* @brief Instance structure for the floating-point Biquad cascade filter.+ −
*/+ −
typedef struct+ −
{+ −
uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */+ −
float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */+ −
float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */+ −
} arm_biquad_casd_df1_inst_f32;+ −
+ −
+ −
/**+ −
* @brief Processing function for the Q15 Biquad cascade filter.+ −
* @param[in] S points to an instance of the Q15 Biquad cascade structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_biquad_cascade_df1_q15(+ −
const arm_biquad_casd_df1_inst_q15 * S,+ −
q15_t * pSrc,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q15 Biquad cascade filter.+ −
* @param[in,out] S points to an instance of the Q15 Biquad cascade structure.+ −
* @param[in] numStages number of 2nd order stages in the filter.+ −
* @param[in] pCoeffs points to the filter coefficients.+ −
* @param[in] pState points to the state buffer.+ −
* @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format+ −
*/+ −
void arm_biquad_cascade_df1_init_q15(+ −
arm_biquad_casd_df1_inst_q15 * S,+ −
uint8_t numStages,+ −
q15_t * pCoeffs,+ −
q15_t * pState,+ −
int8_t postShift);+ −
+ −
+ −
/**+ −
* @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.+ −
* @param[in] S points to an instance of the Q15 Biquad cascade structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_biquad_cascade_df1_fast_q15(+ −
const arm_biquad_casd_df1_inst_q15 * S,+ −
q15_t * pSrc,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the Q31 Biquad cascade filter+ −
* @param[in] S points to an instance of the Q31 Biquad cascade structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_biquad_cascade_df1_q31(+ −
const arm_biquad_casd_df1_inst_q31 * S,+ −
q31_t * pSrc,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.+ −
* @param[in] S points to an instance of the Q31 Biquad cascade structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_biquad_cascade_df1_fast_q31(+ −
const arm_biquad_casd_df1_inst_q31 * S,+ −
q31_t * pSrc,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q31 Biquad cascade filter.+ −
* @param[in,out] S points to an instance of the Q31 Biquad cascade structure.+ −
* @param[in] numStages number of 2nd order stages in the filter.+ −
* @param[in] pCoeffs points to the filter coefficients.+ −
* @param[in] pState points to the state buffer.+ −
* @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format+ −
*/+ −
void arm_biquad_cascade_df1_init_q31(+ −
arm_biquad_casd_df1_inst_q31 * S,+ −
uint8_t numStages,+ −
q31_t * pCoeffs,+ −
q31_t * pState,+ −
int8_t postShift);+ −
+ −
+ −
/**+ −
* @brief Processing function for the floating-point Biquad cascade filter.+ −
* @param[in] S points to an instance of the floating-point Biquad cascade structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_biquad_cascade_df1_f32(+ −
const arm_biquad_casd_df1_inst_f32 * S,+ −
float32_t * pSrc,+ −
float32_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the floating-point Biquad cascade filter.+ −
* @param[in,out] S points to an instance of the floating-point Biquad cascade structure.+ −
* @param[in] numStages number of 2nd order stages in the filter.+ −
* @param[in] pCoeffs points to the filter coefficients.+ −
* @param[in] pState points to the state buffer.+ −
*/+ −
void arm_biquad_cascade_df1_init_f32(+ −
arm_biquad_casd_df1_inst_f32 * S,+ −
uint8_t numStages,+ −
float32_t * pCoeffs,+ −
float32_t * pState);+ −
+ −
+ −
/**+ −
* @brief Instance structure for the floating-point matrix structure.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numRows; /**< number of rows of the matrix. */+ −
uint16_t numCols; /**< number of columns of the matrix. */+ −
float32_t *pData; /**< points to the data of the matrix. */+ −
} arm_matrix_instance_f32;+ −
+ −
+ −
/**+ −
* @brief Instance structure for the floating-point matrix structure.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numRows; /**< number of rows of the matrix. */+ −
uint16_t numCols; /**< number of columns of the matrix. */+ −
float64_t *pData; /**< points to the data of the matrix. */+ −
} arm_matrix_instance_f64;+ −
+ −
/**+ −
* @brief Instance structure for the Q15 matrix structure.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numRows; /**< number of rows of the matrix. */+ −
uint16_t numCols; /**< number of columns of the matrix. */+ −
q15_t *pData; /**< points to the data of the matrix. */+ −
} arm_matrix_instance_q15;+ −
+ −
/**+ −
* @brief Instance structure for the Q31 matrix structure.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numRows; /**< number of rows of the matrix. */+ −
uint16_t numCols; /**< number of columns of the matrix. */+ −
q31_t *pData; /**< points to the data of the matrix. */+ −
} arm_matrix_instance_q31;+ −
+ −
+ −
/**+ −
* @brief Floating-point matrix addition.+ −
* @param[in] pSrcA points to the first input matrix structure+ −
* @param[in] pSrcB points to the second input matrix structure+ −
* @param[out] pDst points to output matrix structure+ −
* @return The function returns either+ −
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.+ −
*/+ −
arm_status arm_mat_add_f32(+ −
const arm_matrix_instance_f32 * pSrcA,+ −
const arm_matrix_instance_f32 * pSrcB,+ −
arm_matrix_instance_f32 * pDst);+ −
+ −
+ −
/**+ −
* @brief Q15 matrix addition.+ −
* @param[in] pSrcA points to the first input matrix structure+ −
* @param[in] pSrcB points to the second input matrix structure+ −
* @param[out] pDst points to output matrix structure+ −
* @return The function returns either+ −
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.+ −
*/+ −
arm_status arm_mat_add_q15(+ −
const arm_matrix_instance_q15 * pSrcA,+ −
const arm_matrix_instance_q15 * pSrcB,+ −
arm_matrix_instance_q15 * pDst);+ −
+ −
+ −
/**+ −
* @brief Q31 matrix addition.+ −
* @param[in] pSrcA points to the first input matrix structure+ −
* @param[in] pSrcB points to the second input matrix structure+ −
* @param[out] pDst points to output matrix structure+ −
* @return The function returns either+ −
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.+ −
*/+ −
arm_status arm_mat_add_q31(+ −
const arm_matrix_instance_q31 * pSrcA,+ −
const arm_matrix_instance_q31 * pSrcB,+ −
arm_matrix_instance_q31 * pDst);+ −
+ −
+ −
/**+ −
* @brief Floating-point, complex, matrix multiplication.+ −
* @param[in] pSrcA points to the first input matrix structure+ −
* @param[in] pSrcB points to the second input matrix structure+ −
* @param[out] pDst points to output matrix structure+ −
* @return The function returns either+ −
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.+ −
*/+ −
arm_status arm_mat_cmplx_mult_f32(+ −
const arm_matrix_instance_f32 * pSrcA,+ −
const arm_matrix_instance_f32 * pSrcB,+ −
arm_matrix_instance_f32 * pDst);+ −
+ −
+ −
/**+ −
* @brief Q15, complex, matrix multiplication.+ −
* @param[in] pSrcA points to the first input matrix structure+ −
* @param[in] pSrcB points to the second input matrix structure+ −
* @param[out] pDst points to output matrix structure+ −
* @return The function returns either+ −
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.+ −
*/+ −
arm_status arm_mat_cmplx_mult_q15(+ −
const arm_matrix_instance_q15 * pSrcA,+ −
const arm_matrix_instance_q15 * pSrcB,+ −
arm_matrix_instance_q15 * pDst,+ −
q15_t * pScratch);+ −
+ −
+ −
/**+ −
* @brief Q31, complex, matrix multiplication.+ −
* @param[in] pSrcA points to the first input matrix structure+ −
* @param[in] pSrcB points to the second input matrix structure+ −
* @param[out] pDst points to output matrix structure+ −
* @return The function returns either+ −
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.+ −
*/+ −
arm_status arm_mat_cmplx_mult_q31(+ −
const arm_matrix_instance_q31 * pSrcA,+ −
const arm_matrix_instance_q31 * pSrcB,+ −
arm_matrix_instance_q31 * pDst);+ −
+ −
+ −
/**+ −
* @brief Floating-point matrix transpose.+ −
* @param[in] pSrc points to the input matrix+ −
* @param[out] pDst points to the output matrix+ −
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>+ −
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.+ −
*/+ −
arm_status arm_mat_trans_f32(+ −
const arm_matrix_instance_f32 * pSrc,+ −
arm_matrix_instance_f32 * pDst);+ −
+ −
+ −
/**+ −
* @brief Q15 matrix transpose.+ −
* @param[in] pSrc points to the input matrix+ −
* @param[out] pDst points to the output matrix+ −
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>+ −
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.+ −
*/+ −
arm_status arm_mat_trans_q15(+ −
const arm_matrix_instance_q15 * pSrc,+ −
arm_matrix_instance_q15 * pDst);+ −
+ −
+ −
/**+ −
* @brief Q31 matrix transpose.+ −
* @param[in] pSrc points to the input matrix+ −
* @param[out] pDst points to the output matrix+ −
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>+ −
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.+ −
*/+ −
arm_status arm_mat_trans_q31(+ −
const arm_matrix_instance_q31 * pSrc,+ −
arm_matrix_instance_q31 * pDst);+ −
+ −
+ −
/**+ −
* @brief Floating-point matrix multiplication+ −
* @param[in] pSrcA points to the first input matrix structure+ −
* @param[in] pSrcB points to the second input matrix structure+ −
* @param[out] pDst points to output matrix structure+ −
* @return The function returns either+ −
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.+ −
*/+ −
arm_status arm_mat_mult_f32(+ −
const arm_matrix_instance_f32 * pSrcA,+ −
const arm_matrix_instance_f32 * pSrcB,+ −
arm_matrix_instance_f32 * pDst);+ −
+ −
+ −
/**+ −
* @brief Q15 matrix multiplication+ −
* @param[in] pSrcA points to the first input matrix structure+ −
* @param[in] pSrcB points to the second input matrix structure+ −
* @param[out] pDst points to output matrix structure+ −
* @param[in] pState points to the array for storing intermediate results+ −
* @return The function returns either+ −
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.+ −
*/+ −
arm_status arm_mat_mult_q15(+ −
const arm_matrix_instance_q15 * pSrcA,+ −
const arm_matrix_instance_q15 * pSrcB,+ −
arm_matrix_instance_q15 * pDst,+ −
q15_t * pState);+ −
+ −
+ −
/**+ −
* @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4+ −
* @param[in] pSrcA points to the first input matrix structure+ −
* @param[in] pSrcB points to the second input matrix structure+ −
* @param[out] pDst points to output matrix structure+ −
* @param[in] pState points to the array for storing intermediate results+ −
* @return The function returns either+ −
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.+ −
*/+ −
arm_status arm_mat_mult_fast_q15(+ −
const arm_matrix_instance_q15 * pSrcA,+ −
const arm_matrix_instance_q15 * pSrcB,+ −
arm_matrix_instance_q15 * pDst,+ −
q15_t * pState);+ −
+ −
+ −
/**+ −
* @brief Q31 matrix multiplication+ −
* @param[in] pSrcA points to the first input matrix structure+ −
* @param[in] pSrcB points to the second input matrix structure+ −
* @param[out] pDst points to output matrix structure+ −
* @return The function returns either+ −
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.+ −
*/+ −
arm_status arm_mat_mult_q31(+ −
const arm_matrix_instance_q31 * pSrcA,+ −
const arm_matrix_instance_q31 * pSrcB,+ −
arm_matrix_instance_q31 * pDst);+ −
+ −
+ −
/**+ −
* @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4+ −
* @param[in] pSrcA points to the first input matrix structure+ −
* @param[in] pSrcB points to the second input matrix structure+ −
* @param[out] pDst points to output matrix structure+ −
* @return The function returns either+ −
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.+ −
*/+ −
arm_status arm_mat_mult_fast_q31(+ −
const arm_matrix_instance_q31 * pSrcA,+ −
const arm_matrix_instance_q31 * pSrcB,+ −
arm_matrix_instance_q31 * pDst);+ −
+ −
+ −
/**+ −
* @brief Floating-point matrix subtraction+ −
* @param[in] pSrcA points to the first input matrix structure+ −
* @param[in] pSrcB points to the second input matrix structure+ −
* @param[out] pDst points to output matrix structure+ −
* @return The function returns either+ −
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.+ −
*/+ −
arm_status arm_mat_sub_f32(+ −
const arm_matrix_instance_f32 * pSrcA,+ −
const arm_matrix_instance_f32 * pSrcB,+ −
arm_matrix_instance_f32 * pDst);+ −
+ −
+ −
/**+ −
* @brief Q15 matrix subtraction+ −
* @param[in] pSrcA points to the first input matrix structure+ −
* @param[in] pSrcB points to the second input matrix structure+ −
* @param[out] pDst points to output matrix structure+ −
* @return The function returns either+ −
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.+ −
*/+ −
arm_status arm_mat_sub_q15(+ −
const arm_matrix_instance_q15 * pSrcA,+ −
const arm_matrix_instance_q15 * pSrcB,+ −
arm_matrix_instance_q15 * pDst);+ −
+ −
+ −
/**+ −
* @brief Q31 matrix subtraction+ −
* @param[in] pSrcA points to the first input matrix structure+ −
* @param[in] pSrcB points to the second input matrix structure+ −
* @param[out] pDst points to output matrix structure+ −
* @return The function returns either+ −
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.+ −
*/+ −
arm_status arm_mat_sub_q31(+ −
const arm_matrix_instance_q31 * pSrcA,+ −
const arm_matrix_instance_q31 * pSrcB,+ −
arm_matrix_instance_q31 * pDst);+ −
+ −
+ −
/**+ −
* @brief Floating-point matrix scaling.+ −
* @param[in] pSrc points to the input matrix+ −
* @param[in] scale scale factor+ −
* @param[out] pDst points to the output matrix+ −
* @return The function returns either+ −
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.+ −
*/+ −
arm_status arm_mat_scale_f32(+ −
const arm_matrix_instance_f32 * pSrc,+ −
float32_t scale,+ −
arm_matrix_instance_f32 * pDst);+ −
+ −
+ −
/**+ −
* @brief Q15 matrix scaling.+ −
* @param[in] pSrc points to input matrix+ −
* @param[in] scaleFract fractional portion of the scale factor+ −
* @param[in] shift number of bits to shift the result by+ −
* @param[out] pDst points to output matrix+ −
* @return The function returns either+ −
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.+ −
*/+ −
arm_status arm_mat_scale_q15(+ −
const arm_matrix_instance_q15 * pSrc,+ −
q15_t scaleFract,+ −
int32_t shift,+ −
arm_matrix_instance_q15 * pDst);+ −
+ −
+ −
/**+ −
* @brief Q31 matrix scaling.+ −
* @param[in] pSrc points to input matrix+ −
* @param[in] scaleFract fractional portion of the scale factor+ −
* @param[in] shift number of bits to shift the result by+ −
* @param[out] pDst points to output matrix structure+ −
* @return The function returns either+ −
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.+ −
*/+ −
arm_status arm_mat_scale_q31(+ −
const arm_matrix_instance_q31 * pSrc,+ −
q31_t scaleFract,+ −
int32_t shift,+ −
arm_matrix_instance_q31 * pDst);+ −
+ −
+ −
/**+ −
* @brief Q31 matrix initialization.+ −
* @param[in,out] S points to an instance of the floating-point matrix structure.+ −
* @param[in] nRows number of rows in the matrix.+ −
* @param[in] nColumns number of columns in the matrix.+ −
* @param[in] pData points to the matrix data array.+ −
*/+ −
void arm_mat_init_q31(+ −
arm_matrix_instance_q31 * S,+ −
uint16_t nRows,+ −
uint16_t nColumns,+ −
q31_t * pData);+ −
+ −
+ −
/**+ −
* @brief Q15 matrix initialization.+ −
* @param[in,out] S points to an instance of the floating-point matrix structure.+ −
* @param[in] nRows number of rows in the matrix.+ −
* @param[in] nColumns number of columns in the matrix.+ −
* @param[in] pData points to the matrix data array.+ −
*/+ −
void arm_mat_init_q15(+ −
arm_matrix_instance_q15 * S,+ −
uint16_t nRows,+ −
uint16_t nColumns,+ −
q15_t * pData);+ −
+ −
+ −
/**+ −
* @brief Floating-point matrix initialization.+ −
* @param[in,out] S points to an instance of the floating-point matrix structure.+ −
* @param[in] nRows number of rows in the matrix.+ −
* @param[in] nColumns number of columns in the matrix.+ −
* @param[in] pData points to the matrix data array.+ −
*/+ −
void arm_mat_init_f32(+ −
arm_matrix_instance_f32 * S,+ −
uint16_t nRows,+ −
uint16_t nColumns,+ −
float32_t * pData);+ −
+ −
+ −
+ −
/**+ −
* @brief Instance structure for the Q15 PID Control.+ −
*/+ −
typedef struct+ −
{+ −
q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */+ −
#ifdef ARM_MATH_CM0_FAMILY+ −
q15_t A1;+ −
q15_t A2;+ −
#else+ −
q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/+ −
#endif+ −
q15_t state[3]; /**< The state array of length 3. */+ −
q15_t Kp; /**< The proportional gain. */+ −
q15_t Ki; /**< The integral gain. */+ −
q15_t Kd; /**< The derivative gain. */+ −
} arm_pid_instance_q15;+ −
+ −
/**+ −
* @brief Instance structure for the Q31 PID Control.+ −
*/+ −
typedef struct+ −
{+ −
q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */+ −
q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */+ −
q31_t A2; /**< The derived gain, A2 = Kd . */+ −
q31_t state[3]; /**< The state array of length 3. */+ −
q31_t Kp; /**< The proportional gain. */+ −
q31_t Ki; /**< The integral gain. */+ −
q31_t Kd; /**< The derivative gain. */+ −
} arm_pid_instance_q31;+ −
+ −
/**+ −
* @brief Instance structure for the floating-point PID Control.+ −
*/+ −
typedef struct+ −
{+ −
float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */+ −
float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */+ −
float32_t A2; /**< The derived gain, A2 = Kd . */+ −
float32_t state[3]; /**< The state array of length 3. */+ −
float32_t Kp; /**< The proportional gain. */+ −
float32_t Ki; /**< The integral gain. */+ −
float32_t Kd; /**< The derivative gain. */+ −
} arm_pid_instance_f32;+ −
+ −
+ −
+ −
/**+ −
* @brief Initialization function for the floating-point PID Control.+ −
* @param[in,out] S points to an instance of the PID structure.+ −
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.+ −
*/+ −
void arm_pid_init_f32(+ −
arm_pid_instance_f32 * S,+ −
int32_t resetStateFlag);+ −
+ −
+ −
/**+ −
* @brief Reset function for the floating-point PID Control.+ −
* @param[in,out] S is an instance of the floating-point PID Control structure+ −
*/+ −
void arm_pid_reset_f32(+ −
arm_pid_instance_f32 * S);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q31 PID Control.+ −
* @param[in,out] S points to an instance of the Q15 PID structure.+ −
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.+ −
*/+ −
void arm_pid_init_q31(+ −
arm_pid_instance_q31 * S,+ −
int32_t resetStateFlag);+ −
+ −
+ −
/**+ −
* @brief Reset function for the Q31 PID Control.+ −
* @param[in,out] S points to an instance of the Q31 PID Control structure+ −
*/+ −
+ −
void arm_pid_reset_q31(+ −
arm_pid_instance_q31 * S);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q15 PID Control.+ −
* @param[in,out] S points to an instance of the Q15 PID structure.+ −
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.+ −
*/+ −
void arm_pid_init_q15(+ −
arm_pid_instance_q15 * S,+ −
int32_t resetStateFlag);+ −
+ −
+ −
/**+ −
* @brief Reset function for the Q15 PID Control.+ −
* @param[in,out] S points to an instance of the q15 PID Control structure+ −
*/+ −
void arm_pid_reset_q15(+ −
arm_pid_instance_q15 * S);+ −
+ −
+ −
/**+ −
* @brief Instance structure for the floating-point Linear Interpolate function.+ −
*/+ −
typedef struct+ −
{+ −
uint32_t nValues; /**< nValues */+ −
float32_t x1; /**< x1 */+ −
float32_t xSpacing; /**< xSpacing */+ −
float32_t *pYData; /**< pointer to the table of Y values */+ −
} arm_linear_interp_instance_f32;+ −
+ −
/**+ −
* @brief Instance structure for the floating-point bilinear interpolation function.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numRows; /**< number of rows in the data table. */+ −
uint16_t numCols; /**< number of columns in the data table. */+ −
float32_t *pData; /**< points to the data table. */+ −
} arm_bilinear_interp_instance_f32;+ −
+ −
/**+ −
* @brief Instance structure for the Q31 bilinear interpolation function.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numRows; /**< number of rows in the data table. */+ −
uint16_t numCols; /**< number of columns in the data table. */+ −
q31_t *pData; /**< points to the data table. */+ −
} arm_bilinear_interp_instance_q31;+ −
+ −
/**+ −
* @brief Instance structure for the Q15 bilinear interpolation function.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numRows; /**< number of rows in the data table. */+ −
uint16_t numCols; /**< number of columns in the data table. */+ −
q15_t *pData; /**< points to the data table. */+ −
} arm_bilinear_interp_instance_q15;+ −
+ −
/**+ −
* @brief Instance structure for the Q15 bilinear interpolation function.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numRows; /**< number of rows in the data table. */+ −
uint16_t numCols; /**< number of columns in the data table. */+ −
q7_t *pData; /**< points to the data table. */+ −
} arm_bilinear_interp_instance_q7;+ −
+ −
+ −
/**+ −
* @brief Q7 vector multiplication.+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in each vector+ −
*/+ −
void arm_mult_q7(+ −
q7_t * pSrcA,+ −
q7_t * pSrcB,+ −
q7_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Q15 vector multiplication.+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in each vector+ −
*/+ −
void arm_mult_q15(+ −
q15_t * pSrcA,+ −
q15_t * pSrcB,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Q31 vector multiplication.+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in each vector+ −
*/+ −
void arm_mult_q31(+ −
q31_t * pSrcA,+ −
q31_t * pSrcB,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Floating-point vector multiplication.+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in each vector+ −
*/+ −
void arm_mult_f32(+ −
float32_t * pSrcA,+ −
float32_t * pSrcB,+ −
float32_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Instance structure for the Q15 CFFT/CIFFT function.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t fftLen; /**< length of the FFT. */+ −
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */+ −
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */+ −
q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */+ −
uint16_t *pBitRevTable; /**< points to the bit reversal table. */+ −
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */+ −
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */+ −
} arm_cfft_radix2_instance_q15;+ −
+ −
/* Deprecated */+ −
arm_status arm_cfft_radix2_init_q15(+ −
arm_cfft_radix2_instance_q15 * S,+ −
uint16_t fftLen,+ −
uint8_t ifftFlag,+ −
uint8_t bitReverseFlag);+ −
+ −
/* Deprecated */+ −
void arm_cfft_radix2_q15(+ −
const arm_cfft_radix2_instance_q15 * S,+ −
q15_t * pSrc);+ −
+ −
+ −
/**+ −
* @brief Instance structure for the Q15 CFFT/CIFFT function.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t fftLen; /**< length of the FFT. */+ −
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */+ −
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */+ −
q15_t *pTwiddle; /**< points to the twiddle factor table. */+ −
uint16_t *pBitRevTable; /**< points to the bit reversal table. */+ −
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */+ −
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */+ −
} arm_cfft_radix4_instance_q15;+ −
+ −
/* Deprecated */+ −
arm_status arm_cfft_radix4_init_q15(+ −
arm_cfft_radix4_instance_q15 * S,+ −
uint16_t fftLen,+ −
uint8_t ifftFlag,+ −
uint8_t bitReverseFlag);+ −
+ −
/* Deprecated */+ −
void arm_cfft_radix4_q15(+ −
const arm_cfft_radix4_instance_q15 * S,+ −
q15_t * pSrc);+ −
+ −
/**+ −
* @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t fftLen; /**< length of the FFT. */+ −
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */+ −
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */+ −
q31_t *pTwiddle; /**< points to the Twiddle factor table. */+ −
uint16_t *pBitRevTable; /**< points to the bit reversal table. */+ −
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */+ −
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */+ −
} arm_cfft_radix2_instance_q31;+ −
+ −
/* Deprecated */+ −
arm_status arm_cfft_radix2_init_q31(+ −
arm_cfft_radix2_instance_q31 * S,+ −
uint16_t fftLen,+ −
uint8_t ifftFlag,+ −
uint8_t bitReverseFlag);+ −
+ −
/* Deprecated */+ −
void arm_cfft_radix2_q31(+ −
const arm_cfft_radix2_instance_q31 * S,+ −
q31_t * pSrc);+ −
+ −
/**+ −
* @brief Instance structure for the Q31 CFFT/CIFFT function.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t fftLen; /**< length of the FFT. */+ −
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */+ −
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */+ −
q31_t *pTwiddle; /**< points to the twiddle factor table. */+ −
uint16_t *pBitRevTable; /**< points to the bit reversal table. */+ −
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */+ −
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */+ −
} arm_cfft_radix4_instance_q31;+ −
+ −
/* Deprecated */+ −
void arm_cfft_radix4_q31(+ −
const arm_cfft_radix4_instance_q31 * S,+ −
q31_t * pSrc);+ −
+ −
/* Deprecated */+ −
arm_status arm_cfft_radix4_init_q31(+ −
arm_cfft_radix4_instance_q31 * S,+ −
uint16_t fftLen,+ −
uint8_t ifftFlag,+ −
uint8_t bitReverseFlag);+ −
+ −
/**+ −
* @brief Instance structure for the floating-point CFFT/CIFFT function.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t fftLen; /**< length of the FFT. */+ −
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */+ −
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */+ −
float32_t *pTwiddle; /**< points to the Twiddle factor table. */+ −
uint16_t *pBitRevTable; /**< points to the bit reversal table. */+ −
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */+ −
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */+ −
float32_t onebyfftLen; /**< value of 1/fftLen. */+ −
} arm_cfft_radix2_instance_f32;+ −
+ −
/* Deprecated */+ −
arm_status arm_cfft_radix2_init_f32(+ −
arm_cfft_radix2_instance_f32 * S,+ −
uint16_t fftLen,+ −
uint8_t ifftFlag,+ −
uint8_t bitReverseFlag);+ −
+ −
/* Deprecated */+ −
void arm_cfft_radix2_f32(+ −
const arm_cfft_radix2_instance_f32 * S,+ −
float32_t * pSrc);+ −
+ −
/**+ −
* @brief Instance structure for the floating-point CFFT/CIFFT function.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t fftLen; /**< length of the FFT. */+ −
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */+ −
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */+ −
float32_t *pTwiddle; /**< points to the Twiddle factor table. */+ −
uint16_t *pBitRevTable; /**< points to the bit reversal table. */+ −
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */+ −
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */+ −
float32_t onebyfftLen; /**< value of 1/fftLen. */+ −
} arm_cfft_radix4_instance_f32;+ −
+ −
/* Deprecated */+ −
arm_status arm_cfft_radix4_init_f32(+ −
arm_cfft_radix4_instance_f32 * S,+ −
uint16_t fftLen,+ −
uint8_t ifftFlag,+ −
uint8_t bitReverseFlag);+ −
+ −
/* Deprecated */+ −
void arm_cfft_radix4_f32(+ −
const arm_cfft_radix4_instance_f32 * S,+ −
float32_t * pSrc);+ −
+ −
/**+ −
* @brief Instance structure for the fixed-point CFFT/CIFFT function.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t fftLen; /**< length of the FFT. */+ −
const q15_t *pTwiddle; /**< points to the Twiddle factor table. */+ −
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */+ −
uint16_t bitRevLength; /**< bit reversal table length. */+ −
} arm_cfft_instance_q15;+ −
+ −
void arm_cfft_q15(+ −
const arm_cfft_instance_q15 * S,+ −
q15_t * p1,+ −
uint8_t ifftFlag,+ −
uint8_t bitReverseFlag);+ −
+ −
/**+ −
* @brief Instance structure for the fixed-point CFFT/CIFFT function.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t fftLen; /**< length of the FFT. */+ −
const q31_t *pTwiddle; /**< points to the Twiddle factor table. */+ −
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */+ −
uint16_t bitRevLength; /**< bit reversal table length. */+ −
} arm_cfft_instance_q31;+ −
+ −
void arm_cfft_q31(+ −
const arm_cfft_instance_q31 * S,+ −
q31_t * p1,+ −
uint8_t ifftFlag,+ −
uint8_t bitReverseFlag);+ −
+ −
/**+ −
* @brief Instance structure for the floating-point CFFT/CIFFT function.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t fftLen; /**< length of the FFT. */+ −
const float32_t *pTwiddle; /**< points to the Twiddle factor table. */+ −
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */+ −
uint16_t bitRevLength; /**< bit reversal table length. */+ −
} arm_cfft_instance_f32;+ −
+ −
void arm_cfft_f32(+ −
const arm_cfft_instance_f32 * S,+ −
float32_t * p1,+ −
uint8_t ifftFlag,+ −
uint8_t bitReverseFlag);+ −
+ −
/**+ −
* @brief Instance structure for the Q15 RFFT/RIFFT function.+ −
*/+ −
typedef struct+ −
{+ −
uint32_t fftLenReal; /**< length of the real FFT. */+ −
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */+ −
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */+ −
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */+ −
q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */+ −
q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */+ −
const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */+ −
} arm_rfft_instance_q15;+ −
+ −
arm_status arm_rfft_init_q15(+ −
arm_rfft_instance_q15 * S,+ −
uint32_t fftLenReal,+ −
uint32_t ifftFlagR,+ −
uint32_t bitReverseFlag);+ −
+ −
void arm_rfft_q15(+ −
const arm_rfft_instance_q15 * S,+ −
q15_t * pSrc,+ −
q15_t * pDst);+ −
+ −
/**+ −
* @brief Instance structure for the Q31 RFFT/RIFFT function.+ −
*/+ −
typedef struct+ −
{+ −
uint32_t fftLenReal; /**< length of the real FFT. */+ −
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */+ −
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */+ −
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */+ −
q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */+ −
q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */+ −
const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */+ −
} arm_rfft_instance_q31;+ −
+ −
arm_status arm_rfft_init_q31(+ −
arm_rfft_instance_q31 * S,+ −
uint32_t fftLenReal,+ −
uint32_t ifftFlagR,+ −
uint32_t bitReverseFlag);+ −
+ −
void arm_rfft_q31(+ −
const arm_rfft_instance_q31 * S,+ −
q31_t * pSrc,+ −
q31_t * pDst);+ −
+ −
/**+ −
* @brief Instance structure for the floating-point RFFT/RIFFT function.+ −
*/+ −
typedef struct+ −
{+ −
uint32_t fftLenReal; /**< length of the real FFT. */+ −
uint16_t fftLenBy2; /**< length of the complex FFT. */+ −
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */+ −
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */+ −
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */+ −
float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */+ −
float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */+ −
arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */+ −
} arm_rfft_instance_f32;+ −
+ −
arm_status arm_rfft_init_f32(+ −
arm_rfft_instance_f32 * S,+ −
arm_cfft_radix4_instance_f32 * S_CFFT,+ −
uint32_t fftLenReal,+ −
uint32_t ifftFlagR,+ −
uint32_t bitReverseFlag);+ −
+ −
void arm_rfft_f32(+ −
const arm_rfft_instance_f32 * S,+ −
float32_t * pSrc,+ −
float32_t * pDst);+ −
+ −
/**+ −
* @brief Instance structure for the floating-point RFFT/RIFFT function.+ −
*/+ −
typedef struct+ −
{+ −
arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */+ −
uint16_t fftLenRFFT; /**< length of the real sequence */+ −
float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */+ −
} arm_rfft_fast_instance_f32 ;+ −
+ −
arm_status arm_rfft_fast_init_f32 (+ −
arm_rfft_fast_instance_f32 * S,+ −
uint16_t fftLen);+ −
+ −
void arm_rfft_fast_f32(+ −
arm_rfft_fast_instance_f32 * S,+ −
float32_t * p, float32_t * pOut,+ −
uint8_t ifftFlag);+ −
+ −
/**+ −
* @brief Instance structure for the floating-point DCT4/IDCT4 function.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t N; /**< length of the DCT4. */+ −
uint16_t Nby2; /**< half of the length of the DCT4. */+ −
float32_t normalize; /**< normalizing factor. */+ −
float32_t *pTwiddle; /**< points to the twiddle factor table. */+ −
float32_t *pCosFactor; /**< points to the cosFactor table. */+ −
arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */+ −
arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */+ −
} arm_dct4_instance_f32;+ −
+ −
+ −
/**+ −
* @brief Initialization function for the floating-point DCT4/IDCT4.+ −
* @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure.+ −
* @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure.+ −
* @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure.+ −
* @param[in] N length of the DCT4.+ −
* @param[in] Nby2 half of the length of the DCT4.+ −
* @param[in] normalize normalizing factor.+ −
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.+ −
*/+ −
arm_status arm_dct4_init_f32(+ −
arm_dct4_instance_f32 * S,+ −
arm_rfft_instance_f32 * S_RFFT,+ −
arm_cfft_radix4_instance_f32 * S_CFFT,+ −
uint16_t N,+ −
uint16_t Nby2,+ −
float32_t normalize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the floating-point DCT4/IDCT4.+ −
* @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure.+ −
* @param[in] pState points to state buffer.+ −
* @param[in,out] pInlineBuffer points to the in-place input and output buffer.+ −
*/+ −
void arm_dct4_f32(+ −
const arm_dct4_instance_f32 * S,+ −
float32_t * pState,+ −
float32_t * pInlineBuffer);+ −
+ −
+ −
/**+ −
* @brief Instance structure for the Q31 DCT4/IDCT4 function.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t N; /**< length of the DCT4. */+ −
uint16_t Nby2; /**< half of the length of the DCT4. */+ −
q31_t normalize; /**< normalizing factor. */+ −
q31_t *pTwiddle; /**< points to the twiddle factor table. */+ −
q31_t *pCosFactor; /**< points to the cosFactor table. */+ −
arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */+ −
arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */+ −
} arm_dct4_instance_q31;+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q31 DCT4/IDCT4.+ −
* @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure.+ −
* @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure+ −
* @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure+ −
* @param[in] N length of the DCT4.+ −
* @param[in] Nby2 half of the length of the DCT4.+ −
* @param[in] normalize normalizing factor.+ −
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.+ −
*/+ −
arm_status arm_dct4_init_q31(+ −
arm_dct4_instance_q31 * S,+ −
arm_rfft_instance_q31 * S_RFFT,+ −
arm_cfft_radix4_instance_q31 * S_CFFT,+ −
uint16_t N,+ −
uint16_t Nby2,+ −
q31_t normalize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the Q31 DCT4/IDCT4.+ −
* @param[in] S points to an instance of the Q31 DCT4 structure.+ −
* @param[in] pState points to state buffer.+ −
* @param[in,out] pInlineBuffer points to the in-place input and output buffer.+ −
*/+ −
void arm_dct4_q31(+ −
const arm_dct4_instance_q31 * S,+ −
q31_t * pState,+ −
q31_t * pInlineBuffer);+ −
+ −
+ −
/**+ −
* @brief Instance structure for the Q15 DCT4/IDCT4 function.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t N; /**< length of the DCT4. */+ −
uint16_t Nby2; /**< half of the length of the DCT4. */+ −
q15_t normalize; /**< normalizing factor. */+ −
q15_t *pTwiddle; /**< points to the twiddle factor table. */+ −
q15_t *pCosFactor; /**< points to the cosFactor table. */+ −
arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */+ −
arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */+ −
} arm_dct4_instance_q15;+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q15 DCT4/IDCT4.+ −
* @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure.+ −
* @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure.+ −
* @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure.+ −
* @param[in] N length of the DCT4.+ −
* @param[in] Nby2 half of the length of the DCT4.+ −
* @param[in] normalize normalizing factor.+ −
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.+ −
*/+ −
arm_status arm_dct4_init_q15(+ −
arm_dct4_instance_q15 * S,+ −
arm_rfft_instance_q15 * S_RFFT,+ −
arm_cfft_radix4_instance_q15 * S_CFFT,+ −
uint16_t N,+ −
uint16_t Nby2,+ −
q15_t normalize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the Q15 DCT4/IDCT4.+ −
* @param[in] S points to an instance of the Q15 DCT4 structure.+ −
* @param[in] pState points to state buffer.+ −
* @param[in,out] pInlineBuffer points to the in-place input and output buffer.+ −
*/+ −
void arm_dct4_q15(+ −
const arm_dct4_instance_q15 * S,+ −
q15_t * pState,+ −
q15_t * pInlineBuffer);+ −
+ −
+ −
/**+ −
* @brief Floating-point vector addition.+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in each vector+ −
*/+ −
void arm_add_f32(+ −
float32_t * pSrcA,+ −
float32_t * pSrcB,+ −
float32_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Q7 vector addition.+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in each vector+ −
*/+ −
void arm_add_q7(+ −
q7_t * pSrcA,+ −
q7_t * pSrcB,+ −
q7_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Q15 vector addition.+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in each vector+ −
*/+ −
void arm_add_q15(+ −
q15_t * pSrcA,+ −
q15_t * pSrcB,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Q31 vector addition.+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in each vector+ −
*/+ −
void arm_add_q31(+ −
q31_t * pSrcA,+ −
q31_t * pSrcB,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Floating-point vector subtraction.+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in each vector+ −
*/+ −
void arm_sub_f32(+ −
float32_t * pSrcA,+ −
float32_t * pSrcB,+ −
float32_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Q7 vector subtraction.+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in each vector+ −
*/+ −
void arm_sub_q7(+ −
q7_t * pSrcA,+ −
q7_t * pSrcB,+ −
q7_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Q15 vector subtraction.+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in each vector+ −
*/+ −
void arm_sub_q15(+ −
q15_t * pSrcA,+ −
q15_t * pSrcB,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Q31 vector subtraction.+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in each vector+ −
*/+ −
void arm_sub_q31(+ −
q31_t * pSrcA,+ −
q31_t * pSrcB,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Multiplies a floating-point vector by a scalar.+ −
* @param[in] pSrc points to the input vector+ −
* @param[in] scale scale factor to be applied+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in the vector+ −
*/+ −
void arm_scale_f32(+ −
float32_t * pSrc,+ −
float32_t scale,+ −
float32_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Multiplies a Q7 vector by a scalar.+ −
* @param[in] pSrc points to the input vector+ −
* @param[in] scaleFract fractional portion of the scale value+ −
* @param[in] shift number of bits to shift the result by+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in the vector+ −
*/+ −
void arm_scale_q7(+ −
q7_t * pSrc,+ −
q7_t scaleFract,+ −
int8_t shift,+ −
q7_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Multiplies a Q15 vector by a scalar.+ −
* @param[in] pSrc points to the input vector+ −
* @param[in] scaleFract fractional portion of the scale value+ −
* @param[in] shift number of bits to shift the result by+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in the vector+ −
*/+ −
void arm_scale_q15(+ −
q15_t * pSrc,+ −
q15_t scaleFract,+ −
int8_t shift,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Multiplies a Q31 vector by a scalar.+ −
* @param[in] pSrc points to the input vector+ −
* @param[in] scaleFract fractional portion of the scale value+ −
* @param[in] shift number of bits to shift the result by+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in the vector+ −
*/+ −
void arm_scale_q31(+ −
q31_t * pSrc,+ −
q31_t scaleFract,+ −
int8_t shift,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Q7 vector absolute value.+ −
* @param[in] pSrc points to the input buffer+ −
* @param[out] pDst points to the output buffer+ −
* @param[in] blockSize number of samples in each vector+ −
*/+ −
void arm_abs_q7(+ −
q7_t * pSrc,+ −
q7_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Floating-point vector absolute value.+ −
* @param[in] pSrc points to the input buffer+ −
* @param[out] pDst points to the output buffer+ −
* @param[in] blockSize number of samples in each vector+ −
*/+ −
void arm_abs_f32(+ −
float32_t * pSrc,+ −
float32_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Q15 vector absolute value.+ −
* @param[in] pSrc points to the input buffer+ −
* @param[out] pDst points to the output buffer+ −
* @param[in] blockSize number of samples in each vector+ −
*/+ −
void arm_abs_q15(+ −
q15_t * pSrc,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Q31 vector absolute value.+ −
* @param[in] pSrc points to the input buffer+ −
* @param[out] pDst points to the output buffer+ −
* @param[in] blockSize number of samples in each vector+ −
*/+ −
void arm_abs_q31(+ −
q31_t * pSrc,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Dot product of floating-point vectors.+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[in] blockSize number of samples in each vector+ −
* @param[out] result output result returned here+ −
*/+ −
void arm_dot_prod_f32(+ −
float32_t * pSrcA,+ −
float32_t * pSrcB,+ −
uint32_t blockSize,+ −
float32_t * result);+ −
+ −
+ −
/**+ −
* @brief Dot product of Q7 vectors.+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[in] blockSize number of samples in each vector+ −
* @param[out] result output result returned here+ −
*/+ −
void arm_dot_prod_q7(+ −
q7_t * pSrcA,+ −
q7_t * pSrcB,+ −
uint32_t blockSize,+ −
q31_t * result);+ −
+ −
+ −
/**+ −
* @brief Dot product of Q15 vectors.+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[in] blockSize number of samples in each vector+ −
* @param[out] result output result returned here+ −
*/+ −
void arm_dot_prod_q15(+ −
q15_t * pSrcA,+ −
q15_t * pSrcB,+ −
uint32_t blockSize,+ −
q63_t * result);+ −
+ −
+ −
/**+ −
* @brief Dot product of Q31 vectors.+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[in] blockSize number of samples in each vector+ −
* @param[out] result output result returned here+ −
*/+ −
void arm_dot_prod_q31(+ −
q31_t * pSrcA,+ −
q31_t * pSrcB,+ −
uint32_t blockSize,+ −
q63_t * result);+ −
+ −
+ −
/**+ −
* @brief Shifts the elements of a Q7 vector a specified number of bits.+ −
* @param[in] pSrc points to the input vector+ −
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in the vector+ −
*/+ −
void arm_shift_q7(+ −
q7_t * pSrc,+ −
int8_t shiftBits,+ −
q7_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Shifts the elements of a Q15 vector a specified number of bits.+ −
* @param[in] pSrc points to the input vector+ −
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in the vector+ −
*/+ −
void arm_shift_q15(+ −
q15_t * pSrc,+ −
int8_t shiftBits,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Shifts the elements of a Q31 vector a specified number of bits.+ −
* @param[in] pSrc points to the input vector+ −
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in the vector+ −
*/+ −
void arm_shift_q31(+ −
q31_t * pSrc,+ −
int8_t shiftBits,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Adds a constant offset to a floating-point vector.+ −
* @param[in] pSrc points to the input vector+ −
* @param[in] offset is the offset to be added+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in the vector+ −
*/+ −
void arm_offset_f32(+ −
float32_t * pSrc,+ −
float32_t offset,+ −
float32_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Adds a constant offset to a Q7 vector.+ −
* @param[in] pSrc points to the input vector+ −
* @param[in] offset is the offset to be added+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in the vector+ −
*/+ −
void arm_offset_q7(+ −
q7_t * pSrc,+ −
q7_t offset,+ −
q7_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Adds a constant offset to a Q15 vector.+ −
* @param[in] pSrc points to the input vector+ −
* @param[in] offset is the offset to be added+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in the vector+ −
*/+ −
void arm_offset_q15(+ −
q15_t * pSrc,+ −
q15_t offset,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Adds a constant offset to a Q31 vector.+ −
* @param[in] pSrc points to the input vector+ −
* @param[in] offset is the offset to be added+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in the vector+ −
*/+ −
void arm_offset_q31(+ −
q31_t * pSrc,+ −
q31_t offset,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Negates the elements of a floating-point vector.+ −
* @param[in] pSrc points to the input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in the vector+ −
*/+ −
void arm_negate_f32(+ −
float32_t * pSrc,+ −
float32_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Negates the elements of a Q7 vector.+ −
* @param[in] pSrc points to the input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in the vector+ −
*/+ −
void arm_negate_q7(+ −
q7_t * pSrc,+ −
q7_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Negates the elements of a Q15 vector.+ −
* @param[in] pSrc points to the input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in the vector+ −
*/+ −
void arm_negate_q15(+ −
q15_t * pSrc,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Negates the elements of a Q31 vector.+ −
* @param[in] pSrc points to the input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] blockSize number of samples in the vector+ −
*/+ −
void arm_negate_q31(+ −
q31_t * pSrc,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Copies the elements of a floating-point vector.+ −
* @param[in] pSrc input pointer+ −
* @param[out] pDst output pointer+ −
* @param[in] blockSize number of samples to process+ −
*/+ −
void arm_copy_f32(+ −
float32_t * pSrc,+ −
float32_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Copies the elements of a Q7 vector.+ −
* @param[in] pSrc input pointer+ −
* @param[out] pDst output pointer+ −
* @param[in] blockSize number of samples to process+ −
*/+ −
void arm_copy_q7(+ −
q7_t * pSrc,+ −
q7_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Copies the elements of a Q15 vector.+ −
* @param[in] pSrc input pointer+ −
* @param[out] pDst output pointer+ −
* @param[in] blockSize number of samples to process+ −
*/+ −
void arm_copy_q15(+ −
q15_t * pSrc,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Copies the elements of a Q31 vector.+ −
* @param[in] pSrc input pointer+ −
* @param[out] pDst output pointer+ −
* @param[in] blockSize number of samples to process+ −
*/+ −
void arm_copy_q31(+ −
q31_t * pSrc,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Fills a constant value into a floating-point vector.+ −
* @param[in] value input value to be filled+ −
* @param[out] pDst output pointer+ −
* @param[in] blockSize number of samples to process+ −
*/+ −
void arm_fill_f32(+ −
float32_t value,+ −
float32_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Fills a constant value into a Q7 vector.+ −
* @param[in] value input value to be filled+ −
* @param[out] pDst output pointer+ −
* @param[in] blockSize number of samples to process+ −
*/+ −
void arm_fill_q7(+ −
q7_t value,+ −
q7_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Fills a constant value into a Q15 vector.+ −
* @param[in] value input value to be filled+ −
* @param[out] pDst output pointer+ −
* @param[in] blockSize number of samples to process+ −
*/+ −
void arm_fill_q15(+ −
q15_t value,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Fills a constant value into a Q31 vector.+ −
* @param[in] value input value to be filled+ −
* @param[out] pDst output pointer+ −
* @param[in] blockSize number of samples to process+ −
*/+ −
void arm_fill_q31(+ −
q31_t value,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Convolution of floating-point sequences.+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.+ −
*/+ −
void arm_conv_f32(+ −
float32_t * pSrcA,+ −
uint32_t srcALen,+ −
float32_t * pSrcB,+ −
uint32_t srcBLen,+ −
float32_t * pDst);+ −
+ −
+ −
/**+ −
* @brief Convolution of Q15 sequences.+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.+ −
* @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.+ −
* @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).+ −
*/+ −
void arm_conv_opt_q15(+ −
q15_t * pSrcA,+ −
uint32_t srcALen,+ −
q15_t * pSrcB,+ −
uint32_t srcBLen,+ −
q15_t * pDst,+ −
q15_t * pScratch1,+ −
q15_t * pScratch2);+ −
+ −
+ −
/**+ −
* @brief Convolution of Q15 sequences.+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.+ −
*/+ −
void arm_conv_q15(+ −
q15_t * pSrcA,+ −
uint32_t srcALen,+ −
q15_t * pSrcB,+ −
uint32_t srcBLen,+ −
q15_t * pDst);+ −
+ −
+ −
/**+ −
* @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.+ −
*/+ −
void arm_conv_fast_q15(+ −
q15_t * pSrcA,+ −
uint32_t srcALen,+ −
q15_t * pSrcB,+ −
uint32_t srcBLen,+ −
q15_t * pDst);+ −
+ −
+ −
/**+ −
* @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.+ −
* @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.+ −
* @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).+ −
*/+ −
void arm_conv_fast_opt_q15(+ −
q15_t * pSrcA,+ −
uint32_t srcALen,+ −
q15_t * pSrcB,+ −
uint32_t srcBLen,+ −
q15_t * pDst,+ −
q15_t * pScratch1,+ −
q15_t * pScratch2);+ −
+ −
+ −
/**+ −
* @brief Convolution of Q31 sequences.+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.+ −
*/+ −
void arm_conv_q31(+ −
q31_t * pSrcA,+ −
uint32_t srcALen,+ −
q31_t * pSrcB,+ −
uint32_t srcBLen,+ −
q31_t * pDst);+ −
+ −
+ −
/**+ −
* @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.+ −
*/+ −
void arm_conv_fast_q31(+ −
q31_t * pSrcA,+ −
uint32_t srcALen,+ −
q31_t * pSrcB,+ −
uint32_t srcBLen,+ −
q31_t * pDst);+ −
+ −
+ −
/**+ −
* @brief Convolution of Q7 sequences.+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.+ −
* @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.+ −
* @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).+ −
*/+ −
void arm_conv_opt_q7(+ −
q7_t * pSrcA,+ −
uint32_t srcALen,+ −
q7_t * pSrcB,+ −
uint32_t srcBLen,+ −
q7_t * pDst,+ −
q15_t * pScratch1,+ −
q15_t * pScratch2);+ −
+ −
+ −
/**+ −
* @brief Convolution of Q7 sequences.+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.+ −
*/+ −
void arm_conv_q7(+ −
q7_t * pSrcA,+ −
uint32_t srcALen,+ −
q7_t * pSrcB,+ −
uint32_t srcBLen,+ −
q7_t * pDst);+ −
+ −
+ −
/**+ −
* @brief Partial convolution of floating-point sequences.+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] firstIndex is the first output sample to start with.+ −
* @param[in] numPoints is the number of output points to be computed.+ −
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].+ −
*/+ −
arm_status arm_conv_partial_f32(+ −
float32_t * pSrcA,+ −
uint32_t srcALen,+ −
float32_t * pSrcB,+ −
uint32_t srcBLen,+ −
float32_t * pDst,+ −
uint32_t firstIndex,+ −
uint32_t numPoints);+ −
+ −
+ −
/**+ −
* @brief Partial convolution of Q15 sequences.+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] firstIndex is the first output sample to start with.+ −
* @param[in] numPoints is the number of output points to be computed.+ −
* @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.+ −
* @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).+ −
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].+ −
*/+ −
arm_status arm_conv_partial_opt_q15(+ −
q15_t * pSrcA,+ −
uint32_t srcALen,+ −
q15_t * pSrcB,+ −
uint32_t srcBLen,+ −
q15_t * pDst,+ −
uint32_t firstIndex,+ −
uint32_t numPoints,+ −
q15_t * pScratch1,+ −
q15_t * pScratch2);+ −
+ −
+ −
/**+ −
* @brief Partial convolution of Q15 sequences.+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] firstIndex is the first output sample to start with.+ −
* @param[in] numPoints is the number of output points to be computed.+ −
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].+ −
*/+ −
arm_status arm_conv_partial_q15(+ −
q15_t * pSrcA,+ −
uint32_t srcALen,+ −
q15_t * pSrcB,+ −
uint32_t srcBLen,+ −
q15_t * pDst,+ −
uint32_t firstIndex,+ −
uint32_t numPoints);+ −
+ −
+ −
/**+ −
* @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] firstIndex is the first output sample to start with.+ −
* @param[in] numPoints is the number of output points to be computed.+ −
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].+ −
*/+ −
arm_status arm_conv_partial_fast_q15(+ −
q15_t * pSrcA,+ −
uint32_t srcALen,+ −
q15_t * pSrcB,+ −
uint32_t srcBLen,+ −
q15_t * pDst,+ −
uint32_t firstIndex,+ −
uint32_t numPoints);+ −
+ −
+ −
/**+ −
* @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] firstIndex is the first output sample to start with.+ −
* @param[in] numPoints is the number of output points to be computed.+ −
* @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.+ −
* @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).+ −
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].+ −
*/+ −
arm_status arm_conv_partial_fast_opt_q15(+ −
q15_t * pSrcA,+ −
uint32_t srcALen,+ −
q15_t * pSrcB,+ −
uint32_t srcBLen,+ −
q15_t * pDst,+ −
uint32_t firstIndex,+ −
uint32_t numPoints,+ −
q15_t * pScratch1,+ −
q15_t * pScratch2);+ −
+ −
+ −
/**+ −
* @brief Partial convolution of Q31 sequences.+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] firstIndex is the first output sample to start with.+ −
* @param[in] numPoints is the number of output points to be computed.+ −
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].+ −
*/+ −
arm_status arm_conv_partial_q31(+ −
q31_t * pSrcA,+ −
uint32_t srcALen,+ −
q31_t * pSrcB,+ −
uint32_t srcBLen,+ −
q31_t * pDst,+ −
uint32_t firstIndex,+ −
uint32_t numPoints);+ −
+ −
+ −
/**+ −
* @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] firstIndex is the first output sample to start with.+ −
* @param[in] numPoints is the number of output points to be computed.+ −
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].+ −
*/+ −
arm_status arm_conv_partial_fast_q31(+ −
q31_t * pSrcA,+ −
uint32_t srcALen,+ −
q31_t * pSrcB,+ −
uint32_t srcBLen,+ −
q31_t * pDst,+ −
uint32_t firstIndex,+ −
uint32_t numPoints);+ −
+ −
+ −
/**+ −
* @brief Partial convolution of Q7 sequences+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] firstIndex is the first output sample to start with.+ −
* @param[in] numPoints is the number of output points to be computed.+ −
* @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.+ −
* @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).+ −
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].+ −
*/+ −
arm_status arm_conv_partial_opt_q7(+ −
q7_t * pSrcA,+ −
uint32_t srcALen,+ −
q7_t * pSrcB,+ −
uint32_t srcBLen,+ −
q7_t * pDst,+ −
uint32_t firstIndex,+ −
uint32_t numPoints,+ −
q15_t * pScratch1,+ −
q15_t * pScratch2);+ −
+ −
+ −
/**+ −
* @brief Partial convolution of Q7 sequences.+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] firstIndex is the first output sample to start with.+ −
* @param[in] numPoints is the number of output points to be computed.+ −
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].+ −
*/+ −
arm_status arm_conv_partial_q7(+ −
q7_t * pSrcA,+ −
uint32_t srcALen,+ −
q7_t * pSrcB,+ −
uint32_t srcBLen,+ −
q7_t * pDst,+ −
uint32_t firstIndex,+ −
uint32_t numPoints);+ −
+ −
+ −
/**+ −
* @brief Instance structure for the Q15 FIR decimator.+ −
*/+ −
typedef struct+ −
{+ −
uint8_t M; /**< decimation factor. */+ −
uint16_t numTaps; /**< number of coefficients in the filter. */+ −
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/+ −
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */+ −
} arm_fir_decimate_instance_q15;+ −
+ −
/**+ −
* @brief Instance structure for the Q31 FIR decimator.+ −
*/+ −
typedef struct+ −
{+ −
uint8_t M; /**< decimation factor. */+ −
uint16_t numTaps; /**< number of coefficients in the filter. */+ −
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/+ −
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */+ −
} arm_fir_decimate_instance_q31;+ −
+ −
/**+ −
* @brief Instance structure for the floating-point FIR decimator.+ −
*/+ −
typedef struct+ −
{+ −
uint8_t M; /**< decimation factor. */+ −
uint16_t numTaps; /**< number of coefficients in the filter. */+ −
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/+ −
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */+ −
} arm_fir_decimate_instance_f32;+ −
+ −
+ −
/**+ −
* @brief Processing function for the floating-point FIR decimator.+ −
* @param[in] S points to an instance of the floating-point FIR decimator structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] blockSize number of input samples to process per call.+ −
*/+ −
void arm_fir_decimate_f32(+ −
const arm_fir_decimate_instance_f32 * S,+ −
float32_t * pSrc,+ −
float32_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the floating-point FIR decimator.+ −
* @param[in,out] S points to an instance of the floating-point FIR decimator structure.+ −
* @param[in] numTaps number of coefficients in the filter.+ −
* @param[in] M decimation factor.+ −
* @param[in] pCoeffs points to the filter coefficients.+ −
* @param[in] pState points to the state buffer.+ −
* @param[in] blockSize number of input samples to process per call.+ −
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if+ −
* <code>blockSize</code> is not a multiple of <code>M</code>.+ −
*/+ −
arm_status arm_fir_decimate_init_f32(+ −
arm_fir_decimate_instance_f32 * S,+ −
uint16_t numTaps,+ −
uint8_t M,+ −
float32_t * pCoeffs,+ −
float32_t * pState,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the Q15 FIR decimator.+ −
* @param[in] S points to an instance of the Q15 FIR decimator structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] blockSize number of input samples to process per call.+ −
*/+ −
void arm_fir_decimate_q15(+ −
const arm_fir_decimate_instance_q15 * S,+ −
q15_t * pSrc,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.+ −
* @param[in] S points to an instance of the Q15 FIR decimator structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] blockSize number of input samples to process per call.+ −
*/+ −
void arm_fir_decimate_fast_q15(+ −
const arm_fir_decimate_instance_q15 * S,+ −
q15_t * pSrc,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q15 FIR decimator.+ −
* @param[in,out] S points to an instance of the Q15 FIR decimator structure.+ −
* @param[in] numTaps number of coefficients in the filter.+ −
* @param[in] M decimation factor.+ −
* @param[in] pCoeffs points to the filter coefficients.+ −
* @param[in] pState points to the state buffer.+ −
* @param[in] blockSize number of input samples to process per call.+ −
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if+ −
* <code>blockSize</code> is not a multiple of <code>M</code>.+ −
*/+ −
arm_status arm_fir_decimate_init_q15(+ −
arm_fir_decimate_instance_q15 * S,+ −
uint16_t numTaps,+ −
uint8_t M,+ −
q15_t * pCoeffs,+ −
q15_t * pState,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the Q31 FIR decimator.+ −
* @param[in] S points to an instance of the Q31 FIR decimator structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] blockSize number of input samples to process per call.+ −
*/+ −
void arm_fir_decimate_q31(+ −
const arm_fir_decimate_instance_q31 * S,+ −
q31_t * pSrc,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
/**+ −
* @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.+ −
* @param[in] S points to an instance of the Q31 FIR decimator structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] blockSize number of input samples to process per call.+ −
*/+ −
void arm_fir_decimate_fast_q31(+ −
arm_fir_decimate_instance_q31 * S,+ −
q31_t * pSrc,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q31 FIR decimator.+ −
* @param[in,out] S points to an instance of the Q31 FIR decimator structure.+ −
* @param[in] numTaps number of coefficients in the filter.+ −
* @param[in] M decimation factor.+ −
* @param[in] pCoeffs points to the filter coefficients.+ −
* @param[in] pState points to the state buffer.+ −
* @param[in] blockSize number of input samples to process per call.+ −
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if+ −
* <code>blockSize</code> is not a multiple of <code>M</code>.+ −
*/+ −
arm_status arm_fir_decimate_init_q31(+ −
arm_fir_decimate_instance_q31 * S,+ −
uint16_t numTaps,+ −
uint8_t M,+ −
q31_t * pCoeffs,+ −
q31_t * pState,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Instance structure for the Q15 FIR interpolator.+ −
*/+ −
typedef struct+ −
{+ −
uint8_t L; /**< upsample factor. */+ −
uint16_t phaseLength; /**< length of each polyphase filter component. */+ −
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */+ −
q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */+ −
} arm_fir_interpolate_instance_q15;+ −
+ −
/**+ −
* @brief Instance structure for the Q31 FIR interpolator.+ −
*/+ −
typedef struct+ −
{+ −
uint8_t L; /**< upsample factor. */+ −
uint16_t phaseLength; /**< length of each polyphase filter component. */+ −
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */+ −
q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */+ −
} arm_fir_interpolate_instance_q31;+ −
+ −
/**+ −
* @brief Instance structure for the floating-point FIR interpolator.+ −
*/+ −
typedef struct+ −
{+ −
uint8_t L; /**< upsample factor. */+ −
uint16_t phaseLength; /**< length of each polyphase filter component. */+ −
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */+ −
float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */+ −
} arm_fir_interpolate_instance_f32;+ −
+ −
+ −
/**+ −
* @brief Processing function for the Q15 FIR interpolator.+ −
* @param[in] S points to an instance of the Q15 FIR interpolator structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data.+ −
* @param[in] blockSize number of input samples to process per call.+ −
*/+ −
void arm_fir_interpolate_q15(+ −
const arm_fir_interpolate_instance_q15 * S,+ −
q15_t * pSrc,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q15 FIR interpolator.+ −
* @param[in,out] S points to an instance of the Q15 FIR interpolator structure.+ −
* @param[in] L upsample factor.+ −
* @param[in] numTaps number of filter coefficients in the filter.+ −
* @param[in] pCoeffs points to the filter coefficient buffer.+ −
* @param[in] pState points to the state buffer.+ −
* @param[in] blockSize number of input samples to process per call.+ −
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if+ −
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.+ −
*/+ −
arm_status arm_fir_interpolate_init_q15(+ −
arm_fir_interpolate_instance_q15 * S,+ −
uint8_t L,+ −
uint16_t numTaps,+ −
q15_t * pCoeffs,+ −
q15_t * pState,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the Q31 FIR interpolator.+ −
* @param[in] S points to an instance of the Q15 FIR interpolator structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data.+ −
* @param[in] blockSize number of input samples to process per call.+ −
*/+ −
void arm_fir_interpolate_q31(+ −
const arm_fir_interpolate_instance_q31 * S,+ −
q31_t * pSrc,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q31 FIR interpolator.+ −
* @param[in,out] S points to an instance of the Q31 FIR interpolator structure.+ −
* @param[in] L upsample factor.+ −
* @param[in] numTaps number of filter coefficients in the filter.+ −
* @param[in] pCoeffs points to the filter coefficient buffer.+ −
* @param[in] pState points to the state buffer.+ −
* @param[in] blockSize number of input samples to process per call.+ −
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if+ −
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.+ −
*/+ −
arm_status arm_fir_interpolate_init_q31(+ −
arm_fir_interpolate_instance_q31 * S,+ −
uint8_t L,+ −
uint16_t numTaps,+ −
q31_t * pCoeffs,+ −
q31_t * pState,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the floating-point FIR interpolator.+ −
* @param[in] S points to an instance of the floating-point FIR interpolator structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data.+ −
* @param[in] blockSize number of input samples to process per call.+ −
*/+ −
void arm_fir_interpolate_f32(+ −
const arm_fir_interpolate_instance_f32 * S,+ −
float32_t * pSrc,+ −
float32_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the floating-point FIR interpolator.+ −
* @param[in,out] S points to an instance of the floating-point FIR interpolator structure.+ −
* @param[in] L upsample factor.+ −
* @param[in] numTaps number of filter coefficients in the filter.+ −
* @param[in] pCoeffs points to the filter coefficient buffer.+ −
* @param[in] pState points to the state buffer.+ −
* @param[in] blockSize number of input samples to process per call.+ −
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if+ −
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.+ −
*/+ −
arm_status arm_fir_interpolate_init_f32(+ −
arm_fir_interpolate_instance_f32 * S,+ −
uint8_t L,+ −
uint16_t numTaps,+ −
float32_t * pCoeffs,+ −
float32_t * pState,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Instance structure for the high precision Q31 Biquad cascade filter.+ −
*/+ −
typedef struct+ −
{+ −
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */+ −
q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */+ −
q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */+ −
uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */+ −
} arm_biquad_cas_df1_32x64_ins_q31;+ −
+ −
+ −
/**+ −
* @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_biquad_cas_df1_32x64_q31(+ −
const arm_biquad_cas_df1_32x64_ins_q31 * S,+ −
q31_t * pSrc,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure.+ −
* @param[in] numStages number of 2nd order stages in the filter.+ −
* @param[in] pCoeffs points to the filter coefficients.+ −
* @param[in] pState points to the state buffer.+ −
* @param[in] postShift shift to be applied to the output. Varies according to the coefficients format+ −
*/+ −
void arm_biquad_cas_df1_32x64_init_q31(+ −
arm_biquad_cas_df1_32x64_ins_q31 * S,+ −
uint8_t numStages,+ −
q31_t * pCoeffs,+ −
q63_t * pState,+ −
uint8_t postShift);+ −
+ −
+ −
/**+ −
* @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.+ −
*/+ −
typedef struct+ −
{+ −
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */+ −
float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */+ −
float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */+ −
} arm_biquad_cascade_df2T_instance_f32;+ −
+ −
/**+ −
* @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.+ −
*/+ −
typedef struct+ −
{+ −
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */+ −
float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */+ −
float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */+ −
} arm_biquad_cascade_stereo_df2T_instance_f32;+ −
+ −
/**+ −
* @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.+ −
*/+ −
typedef struct+ −
{+ −
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */+ −
float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */+ −
float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */+ −
} arm_biquad_cascade_df2T_instance_f64;+ −
+ −
+ −
/**+ −
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.+ −
* @param[in] S points to an instance of the filter data structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_biquad_cascade_df2T_f32(+ −
const arm_biquad_cascade_df2T_instance_f32 * S,+ −
float32_t * pSrc,+ −
float32_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels+ −
* @param[in] S points to an instance of the filter data structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_biquad_cascade_stereo_df2T_f32(+ −
const arm_biquad_cascade_stereo_df2T_instance_f32 * S,+ −
float32_t * pSrc,+ −
float32_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.+ −
* @param[in] S points to an instance of the filter data structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_biquad_cascade_df2T_f64(+ −
const arm_biquad_cascade_df2T_instance_f64 * S,+ −
float64_t * pSrc,+ −
float64_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.+ −
* @param[in,out] S points to an instance of the filter data structure.+ −
* @param[in] numStages number of 2nd order stages in the filter.+ −
* @param[in] pCoeffs points to the filter coefficients.+ −
* @param[in] pState points to the state buffer.+ −
*/+ −
void arm_biquad_cascade_df2T_init_f32(+ −
arm_biquad_cascade_df2T_instance_f32 * S,+ −
uint8_t numStages,+ −
float32_t * pCoeffs,+ −
float32_t * pState);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.+ −
* @param[in,out] S points to an instance of the filter data structure.+ −
* @param[in] numStages number of 2nd order stages in the filter.+ −
* @param[in] pCoeffs points to the filter coefficients.+ −
* @param[in] pState points to the state buffer.+ −
*/+ −
void arm_biquad_cascade_stereo_df2T_init_f32(+ −
arm_biquad_cascade_stereo_df2T_instance_f32 * S,+ −
uint8_t numStages,+ −
float32_t * pCoeffs,+ −
float32_t * pState);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.+ −
* @param[in,out] S points to an instance of the filter data structure.+ −
* @param[in] numStages number of 2nd order stages in the filter.+ −
* @param[in] pCoeffs points to the filter coefficients.+ −
* @param[in] pState points to the state buffer.+ −
*/+ −
void arm_biquad_cascade_df2T_init_f64(+ −
arm_biquad_cascade_df2T_instance_f64 * S,+ −
uint8_t numStages,+ −
float64_t * pCoeffs,+ −
float64_t * pState);+ −
+ −
+ −
/**+ −
* @brief Instance structure for the Q15 FIR lattice filter.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numStages; /**< number of filter stages. */+ −
q15_t *pState; /**< points to the state variable array. The array is of length numStages. */+ −
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */+ −
} arm_fir_lattice_instance_q15;+ −
+ −
/**+ −
* @brief Instance structure for the Q31 FIR lattice filter.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numStages; /**< number of filter stages. */+ −
q31_t *pState; /**< points to the state variable array. The array is of length numStages. */+ −
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */+ −
} arm_fir_lattice_instance_q31;+ −
+ −
/**+ −
* @brief Instance structure for the floating-point FIR lattice filter.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numStages; /**< number of filter stages. */+ −
float32_t *pState; /**< points to the state variable array. The array is of length numStages. */+ −
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */+ −
} arm_fir_lattice_instance_f32;+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q15 FIR lattice filter.+ −
* @param[in] S points to an instance of the Q15 FIR lattice structure.+ −
* @param[in] numStages number of filter stages.+ −
* @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.+ −
* @param[in] pState points to the state buffer. The array is of length numStages.+ −
*/+ −
void arm_fir_lattice_init_q15(+ −
arm_fir_lattice_instance_q15 * S,+ −
uint16_t numStages,+ −
q15_t * pCoeffs,+ −
q15_t * pState);+ −
+ −
+ −
/**+ −
* @brief Processing function for the Q15 FIR lattice filter.+ −
* @param[in] S points to an instance of the Q15 FIR lattice structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_fir_lattice_q15(+ −
const arm_fir_lattice_instance_q15 * S,+ −
q15_t * pSrc,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q31 FIR lattice filter.+ −
* @param[in] S points to an instance of the Q31 FIR lattice structure.+ −
* @param[in] numStages number of filter stages.+ −
* @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.+ −
* @param[in] pState points to the state buffer. The array is of length numStages.+ −
*/+ −
void arm_fir_lattice_init_q31(+ −
arm_fir_lattice_instance_q31 * S,+ −
uint16_t numStages,+ −
q31_t * pCoeffs,+ −
q31_t * pState);+ −
+ −
+ −
/**+ −
* @brief Processing function for the Q31 FIR lattice filter.+ −
* @param[in] S points to an instance of the Q31 FIR lattice structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_fir_lattice_q31(+ −
const arm_fir_lattice_instance_q31 * S,+ −
q31_t * pSrc,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the floating-point FIR lattice filter.+ −
* @param[in] S points to an instance of the floating-point FIR lattice structure.+ −
* @param[in] numStages number of filter stages.+ −
* @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.+ −
* @param[in] pState points to the state buffer. The array is of length numStages.+ −
*/+ −
void arm_fir_lattice_init_f32(+ −
arm_fir_lattice_instance_f32 * S,+ −
uint16_t numStages,+ −
float32_t * pCoeffs,+ −
float32_t * pState);+ −
+ −
+ −
/**+ −
* @brief Processing function for the floating-point FIR lattice filter.+ −
* @param[in] S points to an instance of the floating-point FIR lattice structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_fir_lattice_f32(+ −
const arm_fir_lattice_instance_f32 * S,+ −
float32_t * pSrc,+ −
float32_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Instance structure for the Q15 IIR lattice filter.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numStages; /**< number of stages in the filter. */+ −
q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */+ −
q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */+ −
q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */+ −
} arm_iir_lattice_instance_q15;+ −
+ −
/**+ −
* @brief Instance structure for the Q31 IIR lattice filter.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numStages; /**< number of stages in the filter. */+ −
q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */+ −
q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */+ −
q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */+ −
} arm_iir_lattice_instance_q31;+ −
+ −
/**+ −
* @brief Instance structure for the floating-point IIR lattice filter.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numStages; /**< number of stages in the filter. */+ −
float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */+ −
float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */+ −
float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */+ −
} arm_iir_lattice_instance_f32;+ −
+ −
+ −
/**+ −
* @brief Processing function for the floating-point IIR lattice filter.+ −
* @param[in] S points to an instance of the floating-point IIR lattice structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_iir_lattice_f32(+ −
const arm_iir_lattice_instance_f32 * S,+ −
float32_t * pSrc,+ −
float32_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the floating-point IIR lattice filter.+ −
* @param[in] S points to an instance of the floating-point IIR lattice structure.+ −
* @param[in] numStages number of stages in the filter.+ −
* @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.+ −
* @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.+ −
* @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_iir_lattice_init_f32(+ −
arm_iir_lattice_instance_f32 * S,+ −
uint16_t numStages,+ −
float32_t * pkCoeffs,+ −
float32_t * pvCoeffs,+ −
float32_t * pState,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the Q31 IIR lattice filter.+ −
* @param[in] S points to an instance of the Q31 IIR lattice structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_iir_lattice_q31(+ −
const arm_iir_lattice_instance_q31 * S,+ −
q31_t * pSrc,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q31 IIR lattice filter.+ −
* @param[in] S points to an instance of the Q31 IIR lattice structure.+ −
* @param[in] numStages number of stages in the filter.+ −
* @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.+ −
* @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.+ −
* @param[in] pState points to the state buffer. The array is of length numStages+blockSize.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_iir_lattice_init_q31(+ −
arm_iir_lattice_instance_q31 * S,+ −
uint16_t numStages,+ −
q31_t * pkCoeffs,+ −
q31_t * pvCoeffs,+ −
q31_t * pState,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the Q15 IIR lattice filter.+ −
* @param[in] S points to an instance of the Q15 IIR lattice structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_iir_lattice_q15(+ −
const arm_iir_lattice_instance_q15 * S,+ −
q15_t * pSrc,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q15 IIR lattice filter.+ −
* @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure.+ −
* @param[in] numStages number of stages in the filter.+ −
* @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages.+ −
* @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.+ −
* @param[in] pState points to state buffer. The array is of length numStages+blockSize.+ −
* @param[in] blockSize number of samples to process per call.+ −
*/+ −
void arm_iir_lattice_init_q15(+ −
arm_iir_lattice_instance_q15 * S,+ −
uint16_t numStages,+ −
q15_t * pkCoeffs,+ −
q15_t * pvCoeffs,+ −
q15_t * pState,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Instance structure for the floating-point LMS filter.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numTaps; /**< number of coefficients in the filter. */+ −
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */+ −
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */+ −
float32_t mu; /**< step size that controls filter coefficient updates. */+ −
} arm_lms_instance_f32;+ −
+ −
+ −
/**+ −
* @brief Processing function for floating-point LMS filter.+ −
* @param[in] S points to an instance of the floating-point LMS filter structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[in] pRef points to the block of reference data.+ −
* @param[out] pOut points to the block of output data.+ −
* @param[out] pErr points to the block of error data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_lms_f32(+ −
const arm_lms_instance_f32 * S,+ −
float32_t * pSrc,+ −
float32_t * pRef,+ −
float32_t * pOut,+ −
float32_t * pErr,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for floating-point LMS filter.+ −
* @param[in] S points to an instance of the floating-point LMS filter structure.+ −
* @param[in] numTaps number of filter coefficients.+ −
* @param[in] pCoeffs points to the coefficient buffer.+ −
* @param[in] pState points to state buffer.+ −
* @param[in] mu step size that controls filter coefficient updates.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_lms_init_f32(+ −
arm_lms_instance_f32 * S,+ −
uint16_t numTaps,+ −
float32_t * pCoeffs,+ −
float32_t * pState,+ −
float32_t mu,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Instance structure for the Q15 LMS filter.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numTaps; /**< number of coefficients in the filter. */+ −
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */+ −
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */+ −
q15_t mu; /**< step size that controls filter coefficient updates. */+ −
uint32_t postShift; /**< bit shift applied to coefficients. */+ −
} arm_lms_instance_q15;+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q15 LMS filter.+ −
* @param[in] S points to an instance of the Q15 LMS filter structure.+ −
* @param[in] numTaps number of filter coefficients.+ −
* @param[in] pCoeffs points to the coefficient buffer.+ −
* @param[in] pState points to the state buffer.+ −
* @param[in] mu step size that controls filter coefficient updates.+ −
* @param[in] blockSize number of samples to process.+ −
* @param[in] postShift bit shift applied to coefficients.+ −
*/+ −
void arm_lms_init_q15(+ −
arm_lms_instance_q15 * S,+ −
uint16_t numTaps,+ −
q15_t * pCoeffs,+ −
q15_t * pState,+ −
q15_t mu,+ −
uint32_t blockSize,+ −
uint32_t postShift);+ −
+ −
+ −
/**+ −
* @brief Processing function for Q15 LMS filter.+ −
* @param[in] S points to an instance of the Q15 LMS filter structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[in] pRef points to the block of reference data.+ −
* @param[out] pOut points to the block of output data.+ −
* @param[out] pErr points to the block of error data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_lms_q15(+ −
const arm_lms_instance_q15 * S,+ −
q15_t * pSrc,+ −
q15_t * pRef,+ −
q15_t * pOut,+ −
q15_t * pErr,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Instance structure for the Q31 LMS filter.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numTaps; /**< number of coefficients in the filter. */+ −
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */+ −
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */+ −
q31_t mu; /**< step size that controls filter coefficient updates. */+ −
uint32_t postShift; /**< bit shift applied to coefficients. */+ −
} arm_lms_instance_q31;+ −
+ −
+ −
/**+ −
* @brief Processing function for Q31 LMS filter.+ −
* @param[in] S points to an instance of the Q15 LMS filter structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[in] pRef points to the block of reference data.+ −
* @param[out] pOut points to the block of output data.+ −
* @param[out] pErr points to the block of error data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_lms_q31(+ −
const arm_lms_instance_q31 * S,+ −
q31_t * pSrc,+ −
q31_t * pRef,+ −
q31_t * pOut,+ −
q31_t * pErr,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for Q31 LMS filter.+ −
* @param[in] S points to an instance of the Q31 LMS filter structure.+ −
* @param[in] numTaps number of filter coefficients.+ −
* @param[in] pCoeffs points to coefficient buffer.+ −
* @param[in] pState points to state buffer.+ −
* @param[in] mu step size that controls filter coefficient updates.+ −
* @param[in] blockSize number of samples to process.+ −
* @param[in] postShift bit shift applied to coefficients.+ −
*/+ −
void arm_lms_init_q31(+ −
arm_lms_instance_q31 * S,+ −
uint16_t numTaps,+ −
q31_t * pCoeffs,+ −
q31_t * pState,+ −
q31_t mu,+ −
uint32_t blockSize,+ −
uint32_t postShift);+ −
+ −
+ −
/**+ −
* @brief Instance structure for the floating-point normalized LMS filter.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numTaps; /**< number of coefficients in the filter. */+ −
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */+ −
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */+ −
float32_t mu; /**< step size that control filter coefficient updates. */+ −
float32_t energy; /**< saves previous frame energy. */+ −
float32_t x0; /**< saves previous input sample. */+ −
} arm_lms_norm_instance_f32;+ −
+ −
+ −
/**+ −
* @brief Processing function for floating-point normalized LMS filter.+ −
* @param[in] S points to an instance of the floating-point normalized LMS filter structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[in] pRef points to the block of reference data.+ −
* @param[out] pOut points to the block of output data.+ −
* @param[out] pErr points to the block of error data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_lms_norm_f32(+ −
arm_lms_norm_instance_f32 * S,+ −
float32_t * pSrc,+ −
float32_t * pRef,+ −
float32_t * pOut,+ −
float32_t * pErr,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for floating-point normalized LMS filter.+ −
* @param[in] S points to an instance of the floating-point LMS filter structure.+ −
* @param[in] numTaps number of filter coefficients.+ −
* @param[in] pCoeffs points to coefficient buffer.+ −
* @param[in] pState points to state buffer.+ −
* @param[in] mu step size that controls filter coefficient updates.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_lms_norm_init_f32(+ −
arm_lms_norm_instance_f32 * S,+ −
uint16_t numTaps,+ −
float32_t * pCoeffs,+ −
float32_t * pState,+ −
float32_t mu,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Instance structure for the Q31 normalized LMS filter.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numTaps; /**< number of coefficients in the filter. */+ −
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */+ −
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */+ −
q31_t mu; /**< step size that controls filter coefficient updates. */+ −
uint8_t postShift; /**< bit shift applied to coefficients. */+ −
q31_t *recipTable; /**< points to the reciprocal initial value table. */+ −
q31_t energy; /**< saves previous frame energy. */+ −
q31_t x0; /**< saves previous input sample. */+ −
} arm_lms_norm_instance_q31;+ −
+ −
+ −
/**+ −
* @brief Processing function for Q31 normalized LMS filter.+ −
* @param[in] S points to an instance of the Q31 normalized LMS filter structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[in] pRef points to the block of reference data.+ −
* @param[out] pOut points to the block of output data.+ −
* @param[out] pErr points to the block of error data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_lms_norm_q31(+ −
arm_lms_norm_instance_q31 * S,+ −
q31_t * pSrc,+ −
q31_t * pRef,+ −
q31_t * pOut,+ −
q31_t * pErr,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for Q31 normalized LMS filter.+ −
* @param[in] S points to an instance of the Q31 normalized LMS filter structure.+ −
* @param[in] numTaps number of filter coefficients.+ −
* @param[in] pCoeffs points to coefficient buffer.+ −
* @param[in] pState points to state buffer.+ −
* @param[in] mu step size that controls filter coefficient updates.+ −
* @param[in] blockSize number of samples to process.+ −
* @param[in] postShift bit shift applied to coefficients.+ −
*/+ −
void arm_lms_norm_init_q31(+ −
arm_lms_norm_instance_q31 * S,+ −
uint16_t numTaps,+ −
q31_t * pCoeffs,+ −
q31_t * pState,+ −
q31_t mu,+ −
uint32_t blockSize,+ −
uint8_t postShift);+ −
+ −
+ −
/**+ −
* @brief Instance structure for the Q15 normalized LMS filter.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numTaps; /**< Number of coefficients in the filter. */+ −
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */+ −
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */+ −
q15_t mu; /**< step size that controls filter coefficient updates. */+ −
uint8_t postShift; /**< bit shift applied to coefficients. */+ −
q15_t *recipTable; /**< Points to the reciprocal initial value table. */+ −
q15_t energy; /**< saves previous frame energy. */+ −
q15_t x0; /**< saves previous input sample. */+ −
} arm_lms_norm_instance_q15;+ −
+ −
+ −
/**+ −
* @brief Processing function for Q15 normalized LMS filter.+ −
* @param[in] S points to an instance of the Q15 normalized LMS filter structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[in] pRef points to the block of reference data.+ −
* @param[out] pOut points to the block of output data.+ −
* @param[out] pErr points to the block of error data.+ −
* @param[in] blockSize number of samples to process.+ −
*/+ −
void arm_lms_norm_q15(+ −
arm_lms_norm_instance_q15 * S,+ −
q15_t * pSrc,+ −
q15_t * pRef,+ −
q15_t * pOut,+ −
q15_t * pErr,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for Q15 normalized LMS filter.+ −
* @param[in] S points to an instance of the Q15 normalized LMS filter structure.+ −
* @param[in] numTaps number of filter coefficients.+ −
* @param[in] pCoeffs points to coefficient buffer.+ −
* @param[in] pState points to state buffer.+ −
* @param[in] mu step size that controls filter coefficient updates.+ −
* @param[in] blockSize number of samples to process.+ −
* @param[in] postShift bit shift applied to coefficients.+ −
*/+ −
void arm_lms_norm_init_q15(+ −
arm_lms_norm_instance_q15 * S,+ −
uint16_t numTaps,+ −
q15_t * pCoeffs,+ −
q15_t * pState,+ −
q15_t mu,+ −
uint32_t blockSize,+ −
uint8_t postShift);+ −
+ −
+ −
/**+ −
* @brief Correlation of floating-point sequences.+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.+ −
*/+ −
void arm_correlate_f32(+ −
float32_t * pSrcA,+ −
uint32_t srcALen,+ −
float32_t * pSrcB,+ −
uint32_t srcBLen,+ −
float32_t * pDst);+ −
+ −
+ −
/**+ −
* @brief Correlation of Q15 sequences+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.+ −
* @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.+ −
*/+ −
void arm_correlate_opt_q15(+ −
q15_t * pSrcA,+ −
uint32_t srcALen,+ −
q15_t * pSrcB,+ −
uint32_t srcBLen,+ −
q15_t * pDst,+ −
q15_t * pScratch);+ −
+ −
+ −
/**+ −
* @brief Correlation of Q15 sequences.+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.+ −
*/+ −
+ −
void arm_correlate_q15(+ −
q15_t * pSrcA,+ −
uint32_t srcALen,+ −
q15_t * pSrcB,+ −
uint32_t srcBLen,+ −
q15_t * pDst);+ −
+ −
+ −
/**+ −
* @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.+ −
*/+ −
+ −
void arm_correlate_fast_q15(+ −
q15_t * pSrcA,+ −
uint32_t srcALen,+ −
q15_t * pSrcB,+ −
uint32_t srcBLen,+ −
q15_t * pDst);+ −
+ −
+ −
/**+ −
* @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.+ −
* @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.+ −
*/+ −
void arm_correlate_fast_opt_q15(+ −
q15_t * pSrcA,+ −
uint32_t srcALen,+ −
q15_t * pSrcB,+ −
uint32_t srcBLen,+ −
q15_t * pDst,+ −
q15_t * pScratch);+ −
+ −
+ −
/**+ −
* @brief Correlation of Q31 sequences.+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.+ −
*/+ −
void arm_correlate_q31(+ −
q31_t * pSrcA,+ −
uint32_t srcALen,+ −
q31_t * pSrcB,+ −
uint32_t srcBLen,+ −
q31_t * pDst);+ −
+ −
+ −
/**+ −
* @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.+ −
*/+ −
void arm_correlate_fast_q31(+ −
q31_t * pSrcA,+ −
uint32_t srcALen,+ −
q31_t * pSrcB,+ −
uint32_t srcBLen,+ −
q31_t * pDst);+ −
+ −
+ −
/**+ −
* @brief Correlation of Q7 sequences.+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.+ −
* @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.+ −
* @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).+ −
*/+ −
void arm_correlate_opt_q7(+ −
q7_t * pSrcA,+ −
uint32_t srcALen,+ −
q7_t * pSrcB,+ −
uint32_t srcBLen,+ −
q7_t * pDst,+ −
q15_t * pScratch1,+ −
q15_t * pScratch2);+ −
+ −
+ −
/**+ −
* @brief Correlation of Q7 sequences.+ −
* @param[in] pSrcA points to the first input sequence.+ −
* @param[in] srcALen length of the first input sequence.+ −
* @param[in] pSrcB points to the second input sequence.+ −
* @param[in] srcBLen length of the second input sequence.+ −
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.+ −
*/+ −
void arm_correlate_q7(+ −
q7_t * pSrcA,+ −
uint32_t srcALen,+ −
q7_t * pSrcB,+ −
uint32_t srcBLen,+ −
q7_t * pDst);+ −
+ −
+ −
/**+ −
* @brief Instance structure for the floating-point sparse FIR filter.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numTaps; /**< number of coefficients in the filter. */+ −
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */+ −
float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */+ −
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/+ −
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */+ −
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */+ −
} arm_fir_sparse_instance_f32;+ −
+ −
/**+ −
* @brief Instance structure for the Q31 sparse FIR filter.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numTaps; /**< number of coefficients in the filter. */+ −
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */+ −
q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */+ −
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/+ −
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */+ −
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */+ −
} arm_fir_sparse_instance_q31;+ −
+ −
/**+ −
* @brief Instance structure for the Q15 sparse FIR filter.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numTaps; /**< number of coefficients in the filter. */+ −
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */+ −
q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */+ −
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/+ −
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */+ −
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */+ −
} arm_fir_sparse_instance_q15;+ −
+ −
/**+ −
* @brief Instance structure for the Q7 sparse FIR filter.+ −
*/+ −
typedef struct+ −
{+ −
uint16_t numTaps; /**< number of coefficients in the filter. */+ −
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */+ −
q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */+ −
q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/+ −
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */+ −
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */+ −
} arm_fir_sparse_instance_q7;+ −
+ −
+ −
/**+ −
* @brief Processing function for the floating-point sparse FIR filter.+ −
* @param[in] S points to an instance of the floating-point sparse FIR structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] pScratchIn points to a temporary buffer of size blockSize.+ −
* @param[in] blockSize number of input samples to process per call.+ −
*/+ −
void arm_fir_sparse_f32(+ −
arm_fir_sparse_instance_f32 * S,+ −
float32_t * pSrc,+ −
float32_t * pDst,+ −
float32_t * pScratchIn,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the floating-point sparse FIR filter.+ −
* @param[in,out] S points to an instance of the floating-point sparse FIR structure.+ −
* @param[in] numTaps number of nonzero coefficients in the filter.+ −
* @param[in] pCoeffs points to the array of filter coefficients.+ −
* @param[in] pState points to the state buffer.+ −
* @param[in] pTapDelay points to the array of offset times.+ −
* @param[in] maxDelay maximum offset time supported.+ −
* @param[in] blockSize number of samples that will be processed per block.+ −
*/+ −
void arm_fir_sparse_init_f32(+ −
arm_fir_sparse_instance_f32 * S,+ −
uint16_t numTaps,+ −
float32_t * pCoeffs,+ −
float32_t * pState,+ −
int32_t * pTapDelay,+ −
uint16_t maxDelay,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the Q31 sparse FIR filter.+ −
* @param[in] S points to an instance of the Q31 sparse FIR structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] pScratchIn points to a temporary buffer of size blockSize.+ −
* @param[in] blockSize number of input samples to process per call.+ −
*/+ −
void arm_fir_sparse_q31(+ −
arm_fir_sparse_instance_q31 * S,+ −
q31_t * pSrc,+ −
q31_t * pDst,+ −
q31_t * pScratchIn,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q31 sparse FIR filter.+ −
* @param[in,out] S points to an instance of the Q31 sparse FIR structure.+ −
* @param[in] numTaps number of nonzero coefficients in the filter.+ −
* @param[in] pCoeffs points to the array of filter coefficients.+ −
* @param[in] pState points to the state buffer.+ −
* @param[in] pTapDelay points to the array of offset times.+ −
* @param[in] maxDelay maximum offset time supported.+ −
* @param[in] blockSize number of samples that will be processed per block.+ −
*/+ −
void arm_fir_sparse_init_q31(+ −
arm_fir_sparse_instance_q31 * S,+ −
uint16_t numTaps,+ −
q31_t * pCoeffs,+ −
q31_t * pState,+ −
int32_t * pTapDelay,+ −
uint16_t maxDelay,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the Q15 sparse FIR filter.+ −
* @param[in] S points to an instance of the Q15 sparse FIR structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] pScratchIn points to a temporary buffer of size blockSize.+ −
* @param[in] pScratchOut points to a temporary buffer of size blockSize.+ −
* @param[in] blockSize number of input samples to process per call.+ −
*/+ −
void arm_fir_sparse_q15(+ −
arm_fir_sparse_instance_q15 * S,+ −
q15_t * pSrc,+ −
q15_t * pDst,+ −
q15_t * pScratchIn,+ −
q31_t * pScratchOut,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q15 sparse FIR filter.+ −
* @param[in,out] S points to an instance of the Q15 sparse FIR structure.+ −
* @param[in] numTaps number of nonzero coefficients in the filter.+ −
* @param[in] pCoeffs points to the array of filter coefficients.+ −
* @param[in] pState points to the state buffer.+ −
* @param[in] pTapDelay points to the array of offset times.+ −
* @param[in] maxDelay maximum offset time supported.+ −
* @param[in] blockSize number of samples that will be processed per block.+ −
*/+ −
void arm_fir_sparse_init_q15(+ −
arm_fir_sparse_instance_q15 * S,+ −
uint16_t numTaps,+ −
q15_t * pCoeffs,+ −
q15_t * pState,+ −
int32_t * pTapDelay,+ −
uint16_t maxDelay,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Processing function for the Q7 sparse FIR filter.+ −
* @param[in] S points to an instance of the Q7 sparse FIR structure.+ −
* @param[in] pSrc points to the block of input data.+ −
* @param[out] pDst points to the block of output data+ −
* @param[in] pScratchIn points to a temporary buffer of size blockSize.+ −
* @param[in] pScratchOut points to a temporary buffer of size blockSize.+ −
* @param[in] blockSize number of input samples to process per call.+ −
*/+ −
void arm_fir_sparse_q7(+ −
arm_fir_sparse_instance_q7 * S,+ −
q7_t * pSrc,+ −
q7_t * pDst,+ −
q7_t * pScratchIn,+ −
q31_t * pScratchOut,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Initialization function for the Q7 sparse FIR filter.+ −
* @param[in,out] S points to an instance of the Q7 sparse FIR structure.+ −
* @param[in] numTaps number of nonzero coefficients in the filter.+ −
* @param[in] pCoeffs points to the array of filter coefficients.+ −
* @param[in] pState points to the state buffer.+ −
* @param[in] pTapDelay points to the array of offset times.+ −
* @param[in] maxDelay maximum offset time supported.+ −
* @param[in] blockSize number of samples that will be processed per block.+ −
*/+ −
void arm_fir_sparse_init_q7(+ −
arm_fir_sparse_instance_q7 * S,+ −
uint16_t numTaps,+ −
q7_t * pCoeffs,+ −
q7_t * pState,+ −
int32_t * pTapDelay,+ −
uint16_t maxDelay,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Floating-point sin_cos function.+ −
* @param[in] theta input value in degrees+ −
* @param[out] pSinVal points to the processed sine output.+ −
* @param[out] pCosVal points to the processed cos output.+ −
*/+ −
void arm_sin_cos_f32(+ −
float32_t theta,+ −
float32_t * pSinVal,+ −
float32_t * pCosVal);+ −
+ −
+ −
/**+ −
* @brief Q31 sin_cos function.+ −
* @param[in] theta scaled input value in degrees+ −
* @param[out] pSinVal points to the processed sine output.+ −
* @param[out] pCosVal points to the processed cosine output.+ −
*/+ −
void arm_sin_cos_q31(+ −
q31_t theta,+ −
q31_t * pSinVal,+ −
q31_t * pCosVal);+ −
+ −
+ −
/**+ −
* @brief Floating-point complex conjugate.+ −
* @param[in] pSrc points to the input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] numSamples number of complex samples in each vector+ −
*/+ −
void arm_cmplx_conj_f32(+ −
float32_t * pSrc,+ −
float32_t * pDst,+ −
uint32_t numSamples);+ −
+ −
/**+ −
* @brief Q31 complex conjugate.+ −
* @param[in] pSrc points to the input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] numSamples number of complex samples in each vector+ −
*/+ −
void arm_cmplx_conj_q31(+ −
q31_t * pSrc,+ −
q31_t * pDst,+ −
uint32_t numSamples);+ −
+ −
+ −
/**+ −
* @brief Q15 complex conjugate.+ −
* @param[in] pSrc points to the input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] numSamples number of complex samples in each vector+ −
*/+ −
void arm_cmplx_conj_q15(+ −
q15_t * pSrc,+ −
q15_t * pDst,+ −
uint32_t numSamples);+ −
+ −
+ −
/**+ −
* @brief Floating-point complex magnitude squared+ −
* @param[in] pSrc points to the complex input vector+ −
* @param[out] pDst points to the real output vector+ −
* @param[in] numSamples number of complex samples in the input vector+ −
*/+ −
void arm_cmplx_mag_squared_f32(+ −
float32_t * pSrc,+ −
float32_t * pDst,+ −
uint32_t numSamples);+ −
+ −
+ −
/**+ −
* @brief Q31 complex magnitude squared+ −
* @param[in] pSrc points to the complex input vector+ −
* @param[out] pDst points to the real output vector+ −
* @param[in] numSamples number of complex samples in the input vector+ −
*/+ −
void arm_cmplx_mag_squared_q31(+ −
q31_t * pSrc,+ −
q31_t * pDst,+ −
uint32_t numSamples);+ −
+ −
+ −
/**+ −
* @brief Q15 complex magnitude squared+ −
* @param[in] pSrc points to the complex input vector+ −
* @param[out] pDst points to the real output vector+ −
* @param[in] numSamples number of complex samples in the input vector+ −
*/+ −
void arm_cmplx_mag_squared_q15(+ −
q15_t * pSrc,+ −
q15_t * pDst,+ −
uint32_t numSamples);+ −
+ −
+ −
/**+ −
* @ingroup groupController+ −
*/+ −
+ −
/**+ −
* @defgroup PID PID Motor Control+ −
*+ −
* A Proportional Integral Derivative (PID) controller is a generic feedback control+ −
* loop mechanism widely used in industrial control systems.+ −
* A PID controller is the most commonly used type of feedback controller.+ −
*+ −
* This set of functions implements (PID) controllers+ −
* for Q15, Q31, and floating-point data types. The functions operate on a single sample+ −
* of data and each call to the function returns a single processed value.+ −
* <code>S</code> points to an instance of the PID control data structure. <code>in</code>+ −
* is the input sample value. The functions return the output value.+ −
*+ −
* \par Algorithm:+ −
* <pre>+ −
* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]+ −
* A0 = Kp + Ki + Kd+ −
* A1 = (-Kp ) - (2 * Kd )+ −
* A2 = Kd </pre>+ −
*+ −
* \par+ −
* where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant+ −
*+ −
* \par+ −
* \image html PID.gif "Proportional Integral Derivative Controller"+ −
*+ −
* \par+ −
* The PID controller calculates an "error" value as the difference between+ −
* the measured output and the reference input.+ −
* The controller attempts to minimize the error by adjusting the process control inputs.+ −
* The proportional value determines the reaction to the current error,+ −
* the integral value determines the reaction based on the sum of recent errors,+ −
* and the derivative value determines the reaction based on the rate at which the error has been changing.+ −
*+ −
* \par Instance Structure+ −
* The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.+ −
* A separate instance structure must be defined for each PID Controller.+ −
* There are separate instance structure declarations for each of the 3 supported data types.+ −
*+ −
* \par Reset Functions+ −
* There is also an associated reset function for each data type which clears the state array.+ −
*+ −
* \par Initialization Functions+ −
* There is also an associated initialization function for each data type.+ −
* The initialization function performs the following operations:+ −
* - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.+ −
* - Zeros out the values in the state buffer.+ −
*+ −
* \par+ −
* Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.+ −
*+ −
* \par Fixed-Point Behavior+ −
* Care must be taken when using the fixed-point versions of the PID Controller functions.+ −
* In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.+ −
* Refer to the function specific documentation below for usage guidelines.+ −
*/+ −
+ −
/**+ −
* @addtogroup PID+ −
* @{+ −
*/+ −
+ −
/**+ −
* @brief Process function for the floating-point PID Control.+ −
* @param[in,out] S is an instance of the floating-point PID Control structure+ −
* @param[in] in input sample to process+ −
* @return out processed output sample.+ −
*/+ −
static __INLINE float32_t arm_pid_f32(+ −
arm_pid_instance_f32 * S,+ −
float32_t in)+ −
{+ −
float32_t out;+ −
+ −
/* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */+ −
out = (S->A0 * in) ++ −
(S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);+ −
+ −
/* Update state */+ −
S->state[1] = S->state[0];+ −
S->state[0] = in;+ −
S->state[2] = out;+ −
+ −
/* return to application */+ −
return (out);+ −
+ −
}+ −
+ −
/**+ −
* @brief Process function for the Q31 PID Control.+ −
* @param[in,out] S points to an instance of the Q31 PID Control structure+ −
* @param[in] in input sample to process+ −
* @return out processed output sample.+ −
*+ −
* <b>Scaling and Overflow Behavior:</b>+ −
* \par+ −
* The function is implemented using an internal 64-bit accumulator.+ −
* The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.+ −
* Thus, if the accumulator result overflows it wraps around rather than clip.+ −
* In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.+ −
* After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.+ −
*/+ −
static __INLINE q31_t arm_pid_q31(+ −
arm_pid_instance_q31 * S,+ −
q31_t in)+ −
{+ −
q63_t acc;+ −
q31_t out;+ −
+ −
/* acc = A0 * x[n] */+ −
acc = (q63_t) S->A0 * in;+ −
+ −
/* acc += A1 * x[n-1] */+ −
acc += (q63_t) S->A1 * S->state[0];+ −
+ −
/* acc += A2 * x[n-2] */+ −
acc += (q63_t) S->A2 * S->state[1];+ −
+ −
/* convert output to 1.31 format to add y[n-1] */+ −
out = (q31_t) (acc >> 31u);+ −
+ −
/* out += y[n-1] */+ −
out += S->state[2];+ −
+ −
/* Update state */+ −
S->state[1] = S->state[0];+ −
S->state[0] = in;+ −
S->state[2] = out;+ −
+ −
/* return to application */+ −
return (out);+ −
}+ −
+ −
+ −
/**+ −
* @brief Process function for the Q15 PID Control.+ −
* @param[in,out] S points to an instance of the Q15 PID Control structure+ −
* @param[in] in input sample to process+ −
* @return out processed output sample.+ −
*+ −
* <b>Scaling and Overflow Behavior:</b>+ −
* \par+ −
* The function is implemented using a 64-bit internal accumulator.+ −
* Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.+ −
* The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.+ −
* There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.+ −
* After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.+ −
* Lastly, the accumulator is saturated to yield a result in 1.15 format.+ −
*/+ −
static __INLINE q15_t arm_pid_q15(+ −
arm_pid_instance_q15 * S,+ −
q15_t in)+ −
{+ −
q63_t acc;+ −
q15_t out;+ −
+ −
#ifndef ARM_MATH_CM0_FAMILY+ −
__SIMD32_TYPE *vstate;+ −
+ −
/* Implementation of PID controller */+ −
+ −
/* acc = A0 * x[n] */+ −
acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in);+ −
+ −
/* acc += A1 * x[n-1] + A2 * x[n-2] */+ −
vstate = __SIMD32_CONST(S->state);+ −
acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc);+ −
#else+ −
/* acc = A0 * x[n] */+ −
acc = ((q31_t) S->A0) * in;+ −
+ −
/* acc += A1 * x[n-1] + A2 * x[n-2] */+ −
acc += (q31_t) S->A1 * S->state[0];+ −
acc += (q31_t) S->A2 * S->state[1];+ −
#endif+ −
+ −
/* acc += y[n-1] */+ −
acc += (q31_t) S->state[2] << 15;+ −
+ −
/* saturate the output */+ −
out = (q15_t) (__SSAT((acc >> 15), 16));+ −
+ −
/* Update state */+ −
S->state[1] = S->state[0];+ −
S->state[0] = in;+ −
S->state[2] = out;+ −
+ −
/* return to application */+ −
return (out);+ −
}+ −
+ −
/**+ −
* @} end of PID group+ −
*/+ −
+ −
+ −
/**+ −
* @brief Floating-point matrix inverse.+ −
* @param[in] src points to the instance of the input floating-point matrix structure.+ −
* @param[out] dst points to the instance of the output floating-point matrix structure.+ −
* @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.+ −
* If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.+ −
*/+ −
arm_status arm_mat_inverse_f32(+ −
const arm_matrix_instance_f32 * src,+ −
arm_matrix_instance_f32 * dst);+ −
+ −
+ −
/**+ −
* @brief Floating-point matrix inverse.+ −
* @param[in] src points to the instance of the input floating-point matrix structure.+ −
* @param[out] dst points to the instance of the output floating-point matrix structure.+ −
* @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.+ −
* If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.+ −
*/+ −
arm_status arm_mat_inverse_f64(+ −
const arm_matrix_instance_f64 * src,+ −
arm_matrix_instance_f64 * dst);+ −
+ −
+ −
+ −
/**+ −
* @ingroup groupController+ −
*/+ −
+ −
/**+ −
* @defgroup clarke Vector Clarke Transform+ −
* Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.+ −
* Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents+ −
* in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.+ −
* When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below+ −
* \image html clarke.gif Stator current space vector and its components in (a,b).+ −
* and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>+ −
* can be calculated using only <code>Ia</code> and <code>Ib</code>.+ −
*+ −
* The function operates on a single sample of data and each call to the function returns the processed output.+ −
* The library provides separate functions for Q31 and floating-point data types.+ −
* \par Algorithm+ −
* \image html clarkeFormula.gif+ −
* where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and+ −
* <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.+ −
* \par Fixed-Point Behavior+ −
* Care must be taken when using the Q31 version of the Clarke transform.+ −
* In particular, the overflow and saturation behavior of the accumulator used must be considered.+ −
* Refer to the function specific documentation below for usage guidelines.+ −
*/+ −
+ −
/**+ −
* @addtogroup clarke+ −
* @{+ −
*/+ −
+ −
/**+ −
*+ −
* @brief Floating-point Clarke transform+ −
* @param[in] Ia input three-phase coordinate <code>a</code>+ −
* @param[in] Ib input three-phase coordinate <code>b</code>+ −
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha+ −
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta+ −
*/+ −
static __INLINE void arm_clarke_f32(+ −
float32_t Ia,+ −
float32_t Ib,+ −
float32_t * pIalpha,+ −
float32_t * pIbeta)+ −
{+ −
/* Calculate pIalpha using the equation, pIalpha = Ia */+ −
*pIalpha = Ia;+ −
+ −
/* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */+ −
*pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);+ −
}+ −
+ −
+ −
/**+ −
* @brief Clarke transform for Q31 version+ −
* @param[in] Ia input three-phase coordinate <code>a</code>+ −
* @param[in] Ib input three-phase coordinate <code>b</code>+ −
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha+ −
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta+ −
*+ −
* <b>Scaling and Overflow Behavior:</b>+ −
* \par+ −
* The function is implemented using an internal 32-bit accumulator.+ −
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.+ −
* There is saturation on the addition, hence there is no risk of overflow.+ −
*/+ −
static __INLINE void arm_clarke_q31(+ −
q31_t Ia,+ −
q31_t Ib,+ −
q31_t * pIalpha,+ −
q31_t * pIbeta)+ −
{+ −
q31_t product1, product2; /* Temporary variables used to store intermediate results */+ −
+ −
/* Calculating pIalpha from Ia by equation pIalpha = Ia */+ −
*pIalpha = Ia;+ −
+ −
/* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */+ −
product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);+ −
+ −
/* Intermediate product is calculated by (2/sqrt(3) * Ib) */+ −
product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);+ −
+ −
/* pIbeta is calculated by adding the intermediate products */+ −
*pIbeta = __QADD(product1, product2);+ −
}+ −
+ −
/**+ −
* @} end of clarke group+ −
*/+ −
+ −
/**+ −
* @brief Converts the elements of the Q7 vector to Q31 vector.+ −
* @param[in] pSrc input pointer+ −
* @param[out] pDst output pointer+ −
* @param[in] blockSize number of samples to process+ −
*/+ −
void arm_q7_to_q31(+ −
q7_t * pSrc,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
+ −
/**+ −
* @ingroup groupController+ −
*/+ −
+ −
/**+ −
* @defgroup inv_clarke Vector Inverse Clarke Transform+ −
* Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.+ −
*+ −
* The function operates on a single sample of data and each call to the function returns the processed output.+ −
* The library provides separate functions for Q31 and floating-point data types.+ −
* \par Algorithm+ −
* \image html clarkeInvFormula.gif+ −
* where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and+ −
* <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.+ −
* \par Fixed-Point Behavior+ −
* Care must be taken when using the Q31 version of the Clarke transform.+ −
* In particular, the overflow and saturation behavior of the accumulator used must be considered.+ −
* Refer to the function specific documentation below for usage guidelines.+ −
*/+ −
+ −
/**+ −
* @addtogroup inv_clarke+ −
* @{+ −
*/+ −
+ −
/**+ −
* @brief Floating-point Inverse Clarke transform+ −
* @param[in] Ialpha input two-phase orthogonal vector axis alpha+ −
* @param[in] Ibeta input two-phase orthogonal vector axis beta+ −
* @param[out] pIa points to output three-phase coordinate <code>a</code>+ −
* @param[out] pIb points to output three-phase coordinate <code>b</code>+ −
*/+ −
static __INLINE void arm_inv_clarke_f32(+ −
float32_t Ialpha,+ −
float32_t Ibeta,+ −
float32_t * pIa,+ −
float32_t * pIb)+ −
{+ −
/* Calculating pIa from Ialpha by equation pIa = Ialpha */+ −
*pIa = Ialpha;+ −
+ −
/* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */+ −
*pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta;+ −
}+ −
+ −
+ −
/**+ −
* @brief Inverse Clarke transform for Q31 version+ −
* @param[in] Ialpha input two-phase orthogonal vector axis alpha+ −
* @param[in] Ibeta input two-phase orthogonal vector axis beta+ −
* @param[out] pIa points to output three-phase coordinate <code>a</code>+ −
* @param[out] pIb points to output three-phase coordinate <code>b</code>+ −
*+ −
* <b>Scaling and Overflow Behavior:</b>+ −
* \par+ −
* The function is implemented using an internal 32-bit accumulator.+ −
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.+ −
* There is saturation on the subtraction, hence there is no risk of overflow.+ −
*/+ −
static __INLINE void arm_inv_clarke_q31(+ −
q31_t Ialpha,+ −
q31_t Ibeta,+ −
q31_t * pIa,+ −
q31_t * pIb)+ −
{+ −
q31_t product1, product2; /* Temporary variables used to store intermediate results */+ −
+ −
/* Calculating pIa from Ialpha by equation pIa = Ialpha */+ −
*pIa = Ialpha;+ −
+ −
/* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */+ −
product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);+ −
+ −
/* Intermediate product is calculated by (1/sqrt(3) * pIb) */+ −
product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);+ −
+ −
/* pIb is calculated by subtracting the products */+ −
*pIb = __QSUB(product2, product1);+ −
}+ −
+ −
/**+ −
* @} end of inv_clarke group+ −
*/+ −
+ −
/**+ −
* @brief Converts the elements of the Q7 vector to Q15 vector.+ −
* @param[in] pSrc input pointer+ −
* @param[out] pDst output pointer+ −
* @param[in] blockSize number of samples to process+ −
*/+ −
void arm_q7_to_q15(+ −
q7_t * pSrc,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
+ −
/**+ −
* @ingroup groupController+ −
*/+ −
+ −
/**+ −
* @defgroup park Vector Park Transform+ −
*+ −
* Forward Park transform converts the input two-coordinate vector to flux and torque components.+ −
* The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents+ −
* from the stationary to the moving reference frame and control the spatial relationship between+ −
* the stator vector current and rotor flux vector.+ −
* If we consider the d axis aligned with the rotor flux, the diagram below shows the+ −
* current vector and the relationship from the two reference frames:+ −
* \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"+ −
*+ −
* The function operates on a single sample of data and each call to the function returns the processed output.+ −
* The library provides separate functions for Q31 and floating-point data types.+ −
* \par Algorithm+ −
* \image html parkFormula.gif+ −
* where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,+ −
* <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the+ −
* cosine and sine values of theta (rotor flux position).+ −
* \par Fixed-Point Behavior+ −
* Care must be taken when using the Q31 version of the Park transform.+ −
* In particular, the overflow and saturation behavior of the accumulator used must be considered.+ −
* Refer to the function specific documentation below for usage guidelines.+ −
*/+ −
+ −
/**+ −
* @addtogroup park+ −
* @{+ −
*/+ −
+ −
/**+ −
* @brief Floating-point Park transform+ −
* @param[in] Ialpha input two-phase vector coordinate alpha+ −
* @param[in] Ibeta input two-phase vector coordinate beta+ −
* @param[out] pId points to output rotor reference frame d+ −
* @param[out] pIq points to output rotor reference frame q+ −
* @param[in] sinVal sine value of rotation angle theta+ −
* @param[in] cosVal cosine value of rotation angle theta+ −
*+ −
* The function implements the forward Park transform.+ −
*+ −
*/+ −
static __INLINE void arm_park_f32(+ −
float32_t Ialpha,+ −
float32_t Ibeta,+ −
float32_t * pId,+ −
float32_t * pIq,+ −
float32_t sinVal,+ −
float32_t cosVal)+ −
{+ −
/* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */+ −
*pId = Ialpha * cosVal + Ibeta * sinVal;+ −
+ −
/* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */+ −
*pIq = -Ialpha * sinVal + Ibeta * cosVal;+ −
}+ −
+ −
+ −
/**+ −
* @brief Park transform for Q31 version+ −
* @param[in] Ialpha input two-phase vector coordinate alpha+ −
* @param[in] Ibeta input two-phase vector coordinate beta+ −
* @param[out] pId points to output rotor reference frame d+ −
* @param[out] pIq points to output rotor reference frame q+ −
* @param[in] sinVal sine value of rotation angle theta+ −
* @param[in] cosVal cosine value of rotation angle theta+ −
*+ −
* <b>Scaling and Overflow Behavior:</b>+ −
* \par+ −
* The function is implemented using an internal 32-bit accumulator.+ −
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.+ −
* There is saturation on the addition and subtraction, hence there is no risk of overflow.+ −
*/+ −
static __INLINE void arm_park_q31(+ −
q31_t Ialpha,+ −
q31_t Ibeta,+ −
q31_t * pId,+ −
q31_t * pIq,+ −
q31_t sinVal,+ −
q31_t cosVal)+ −
{+ −
q31_t product1, product2; /* Temporary variables used to store intermediate results */+ −
q31_t product3, product4; /* Temporary variables used to store intermediate results */+ −
+ −
/* Intermediate product is calculated by (Ialpha * cosVal) */+ −
product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);+ −
+ −
/* Intermediate product is calculated by (Ibeta * sinVal) */+ −
product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);+ −
+ −
+ −
/* Intermediate product is calculated by (Ialpha * sinVal) */+ −
product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);+ −
+ −
/* Intermediate product is calculated by (Ibeta * cosVal) */+ −
product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);+ −
+ −
/* Calculate pId by adding the two intermediate products 1 and 2 */+ −
*pId = __QADD(product1, product2);+ −
+ −
/* Calculate pIq by subtracting the two intermediate products 3 from 4 */+ −
*pIq = __QSUB(product4, product3);+ −
}+ −
+ −
/**+ −
* @} end of park group+ −
*/+ −
+ −
/**+ −
* @brief Converts the elements of the Q7 vector to floating-point vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[out] pDst is output pointer+ −
* @param[in] blockSize is the number of samples to process+ −
*/+ −
void arm_q7_to_float(+ −
q7_t * pSrc,+ −
float32_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @ingroup groupController+ −
*/+ −
+ −
/**+ −
* @defgroup inv_park Vector Inverse Park transform+ −
* Inverse Park transform converts the input flux and torque components to two-coordinate vector.+ −
*+ −
* The function operates on a single sample of data and each call to the function returns the processed output.+ −
* The library provides separate functions for Q31 and floating-point data types.+ −
* \par Algorithm+ −
* \image html parkInvFormula.gif+ −
* where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,+ −
* <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the+ −
* cosine and sine values of theta (rotor flux position).+ −
* \par Fixed-Point Behavior+ −
* Care must be taken when using the Q31 version of the Park transform.+ −
* In particular, the overflow and saturation behavior of the accumulator used must be considered.+ −
* Refer to the function specific documentation below for usage guidelines.+ −
*/+ −
+ −
/**+ −
* @addtogroup inv_park+ −
* @{+ −
*/+ −
+ −
/**+ −
* @brief Floating-point Inverse Park transform+ −
* @param[in] Id input coordinate of rotor reference frame d+ −
* @param[in] Iq input coordinate of rotor reference frame q+ −
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha+ −
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta+ −
* @param[in] sinVal sine value of rotation angle theta+ −
* @param[in] cosVal cosine value of rotation angle theta+ −
*/+ −
static __INLINE void arm_inv_park_f32(+ −
float32_t Id,+ −
float32_t Iq,+ −
float32_t * pIalpha,+ −
float32_t * pIbeta,+ −
float32_t sinVal,+ −
float32_t cosVal)+ −
{+ −
/* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */+ −
*pIalpha = Id * cosVal - Iq * sinVal;+ −
+ −
/* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */+ −
*pIbeta = Id * sinVal + Iq * cosVal;+ −
}+ −
+ −
+ −
/**+ −
* @brief Inverse Park transform for Q31 version+ −
* @param[in] Id input coordinate of rotor reference frame d+ −
* @param[in] Iq input coordinate of rotor reference frame q+ −
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha+ −
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta+ −
* @param[in] sinVal sine value of rotation angle theta+ −
* @param[in] cosVal cosine value of rotation angle theta+ −
*+ −
* <b>Scaling and Overflow Behavior:</b>+ −
* \par+ −
* The function is implemented using an internal 32-bit accumulator.+ −
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.+ −
* There is saturation on the addition, hence there is no risk of overflow.+ −
*/+ −
static __INLINE void arm_inv_park_q31(+ −
q31_t Id,+ −
q31_t Iq,+ −
q31_t * pIalpha,+ −
q31_t * pIbeta,+ −
q31_t sinVal,+ −
q31_t cosVal)+ −
{+ −
q31_t product1, product2; /* Temporary variables used to store intermediate results */+ −
q31_t product3, product4; /* Temporary variables used to store intermediate results */+ −
+ −
/* Intermediate product is calculated by (Id * cosVal) */+ −
product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);+ −
+ −
/* Intermediate product is calculated by (Iq * sinVal) */+ −
product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);+ −
+ −
+ −
/* Intermediate product is calculated by (Id * sinVal) */+ −
product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);+ −
+ −
/* Intermediate product is calculated by (Iq * cosVal) */+ −
product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);+ −
+ −
/* Calculate pIalpha by using the two intermediate products 1 and 2 */+ −
*pIalpha = __QSUB(product1, product2);+ −
+ −
/* Calculate pIbeta by using the two intermediate products 3 and 4 */+ −
*pIbeta = __QADD(product4, product3);+ −
}+ −
+ −
/**+ −
* @} end of Inverse park group+ −
*/+ −
+ −
+ −
/**+ −
* @brief Converts the elements of the Q31 vector to floating-point vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[out] pDst is output pointer+ −
* @param[in] blockSize is the number of samples to process+ −
*/+ −
void arm_q31_to_float(+ −
q31_t * pSrc,+ −
float32_t * pDst,+ −
uint32_t blockSize);+ −
+ −
/**+ −
* @ingroup groupInterpolation+ −
*/+ −
+ −
/**+ −
* @defgroup LinearInterpolate Linear Interpolation+ −
*+ −
* Linear interpolation is a method of curve fitting using linear polynomials.+ −
* Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line+ −
*+ −
* \par+ −
* \image html LinearInterp.gif "Linear interpolation"+ −
*+ −
* \par+ −
* A Linear Interpolate function calculates an output value(y), for the input(x)+ −
* using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)+ −
*+ −
* \par Algorithm:+ −
* <pre>+ −
* y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))+ −
* where x0, x1 are nearest values of input x+ −
* y0, y1 are nearest values to output y+ −
* </pre>+ −
*+ −
* \par+ −
* This set of functions implements Linear interpolation process+ −
* for Q7, Q15, Q31, and floating-point data types. The functions operate on a single+ −
* sample of data and each call to the function returns a single processed value.+ −
* <code>S</code> points to an instance of the Linear Interpolate function data structure.+ −
* <code>x</code> is the input sample value. The functions returns the output value.+ −
*+ −
* \par+ −
* if x is outside of the table boundary, Linear interpolation returns first value of the table+ −
* if x is below input range and returns last value of table if x is above range.+ −
*/+ −
+ −
/**+ −
* @addtogroup LinearInterpolate+ −
* @{+ −
*/+ −
+ −
/**+ −
* @brief Process function for the floating-point Linear Interpolation Function.+ −
* @param[in,out] S is an instance of the floating-point Linear Interpolation structure+ −
* @param[in] x input sample to process+ −
* @return y processed output sample.+ −
*+ −
*/+ −
static __INLINE float32_t arm_linear_interp_f32(+ −
arm_linear_interp_instance_f32 * S,+ −
float32_t x)+ −
{+ −
float32_t y;+ −
float32_t x0, x1; /* Nearest input values */+ −
float32_t y0, y1; /* Nearest output values */+ −
float32_t xSpacing = S->xSpacing; /* spacing between input values */+ −
int32_t i; /* Index variable */+ −
float32_t *pYData = S->pYData; /* pointer to output table */+ −
+ −
/* Calculation of index */+ −
i = (int32_t) ((x - S->x1) / xSpacing);+ −
+ −
if(i < 0)+ −
{+ −
/* Iniatilize output for below specified range as least output value of table */+ −
y = pYData[0];+ −
}+ −
else if((uint32_t)i >= S->nValues)+ −
{+ −
/* Iniatilize output for above specified range as last output value of table */+ −
y = pYData[S->nValues - 1];+ −
}+ −
else+ −
{+ −
/* Calculation of nearest input values */+ −
x0 = S->x1 + i * xSpacing;+ −
x1 = S->x1 + (i + 1) * xSpacing;+ −
+ −
/* Read of nearest output values */+ −
y0 = pYData[i];+ −
y1 = pYData[i + 1];+ −
+ −
/* Calculation of output */+ −
y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));+ −
+ −
}+ −
+ −
/* returns output value */+ −
return (y);+ −
}+ −
+ −
+ −
/**+ −
*+ −
* @brief Process function for the Q31 Linear Interpolation Function.+ −
* @param[in] pYData pointer to Q31 Linear Interpolation table+ −
* @param[in] x input sample to process+ −
* @param[in] nValues number of table values+ −
* @return y processed output sample.+ −
*+ −
* \par+ −
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.+ −
* This function can support maximum of table size 2^12.+ −
*+ −
*/+ −
static __INLINE q31_t arm_linear_interp_q31(+ −
q31_t * pYData,+ −
q31_t x,+ −
uint32_t nValues)+ −
{+ −
q31_t y; /* output */+ −
q31_t y0, y1; /* Nearest output values */+ −
q31_t fract; /* fractional part */+ −
int32_t index; /* Index to read nearest output values */+ −
+ −
/* Input is in 12.20 format */+ −
/* 12 bits for the table index */+ −
/* Index value calculation */+ −
index = ((x & (q31_t)0xFFF00000) >> 20);+ −
+ −
if(index >= (int32_t)(nValues - 1))+ −
{+ −
return (pYData[nValues - 1]);+ −
}+ −
else if(index < 0)+ −
{+ −
return (pYData[0]);+ −
}+ −
else+ −
{+ −
/* 20 bits for the fractional part */+ −
/* shift left by 11 to keep fract in 1.31 format */+ −
fract = (x & 0x000FFFFF) << 11;+ −
+ −
/* Read two nearest output values from the index in 1.31(q31) format */+ −
y0 = pYData[index];+ −
y1 = pYData[index + 1];+ −
+ −
/* Calculation of y0 * (1-fract) and y is in 2.30 format */+ −
y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));+ −
+ −
/* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */+ −
y += ((q31_t) (((q63_t) y1 * fract) >> 32));+ −
+ −
/* Convert y to 1.31 format */+ −
return (y << 1u);+ −
}+ −
}+ −
+ −
+ −
/**+ −
*+ −
* @brief Process function for the Q15 Linear Interpolation Function.+ −
* @param[in] pYData pointer to Q15 Linear Interpolation table+ −
* @param[in] x input sample to process+ −
* @param[in] nValues number of table values+ −
* @return y processed output sample.+ −
*+ −
* \par+ −
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.+ −
* This function can support maximum of table size 2^12.+ −
*+ −
*/+ −
static __INLINE q15_t arm_linear_interp_q15(+ −
q15_t * pYData,+ −
q31_t x,+ −
uint32_t nValues)+ −
{+ −
q63_t y; /* output */+ −
q15_t y0, y1; /* Nearest output values */+ −
q31_t fract; /* fractional part */+ −
int32_t index; /* Index to read nearest output values */+ −
+ −
/* Input is in 12.20 format */+ −
/* 12 bits for the table index */+ −
/* Index value calculation */+ −
index = ((x & (int32_t)0xFFF00000) >> 20);+ −
+ −
if(index >= (int32_t)(nValues - 1))+ −
{+ −
return (pYData[nValues - 1]);+ −
}+ −
else if(index < 0)+ −
{+ −
return (pYData[0]);+ −
}+ −
else+ −
{+ −
/* 20 bits for the fractional part */+ −
/* fract is in 12.20 format */+ −
fract = (x & 0x000FFFFF);+ −
+ −
/* Read two nearest output values from the index */+ −
y0 = pYData[index];+ −
y1 = pYData[index + 1];+ −
+ −
/* Calculation of y0 * (1-fract) and y is in 13.35 format */+ −
y = ((q63_t) y0 * (0xFFFFF - fract));+ −
+ −
/* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */+ −
y += ((q63_t) y1 * (fract));+ −
+ −
/* convert y to 1.15 format */+ −
return (q15_t) (y >> 20);+ −
}+ −
}+ −
+ −
+ −
/**+ −
*+ −
* @brief Process function for the Q7 Linear Interpolation Function.+ −
* @param[in] pYData pointer to Q7 Linear Interpolation table+ −
* @param[in] x input sample to process+ −
* @param[in] nValues number of table values+ −
* @return y processed output sample.+ −
*+ −
* \par+ −
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.+ −
* This function can support maximum of table size 2^12.+ −
*/+ −
static __INLINE q7_t arm_linear_interp_q7(+ −
q7_t * pYData,+ −
q31_t x,+ −
uint32_t nValues)+ −
{+ −
q31_t y; /* output */+ −
q7_t y0, y1; /* Nearest output values */+ −
q31_t fract; /* fractional part */+ −
uint32_t index; /* Index to read nearest output values */+ −
+ −
/* Input is in 12.20 format */+ −
/* 12 bits for the table index */+ −
/* Index value calculation */+ −
if (x < 0)+ −
{+ −
return (pYData[0]);+ −
}+ −
index = (x >> 20) & 0xfff;+ −
+ −
if(index >= (nValues - 1))+ −
{+ −
return (pYData[nValues - 1]);+ −
}+ −
else+ −
{+ −
/* 20 bits for the fractional part */+ −
/* fract is in 12.20 format */+ −
fract = (x & 0x000FFFFF);+ −
+ −
/* Read two nearest output values from the index and are in 1.7(q7) format */+ −
y0 = pYData[index];+ −
y1 = pYData[index + 1];+ −
+ −
/* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */+ −
y = ((y0 * (0xFFFFF - fract)));+ −
+ −
/* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */+ −
y += (y1 * fract);+ −
+ −
/* convert y to 1.7(q7) format */+ −
return (q7_t) (y >> 20);+ −
}+ −
}+ −
+ −
/**+ −
* @} end of LinearInterpolate group+ −
*/+ −
+ −
/**+ −
* @brief Fast approximation to the trigonometric sine function for floating-point data.+ −
* @param[in] x input value in radians.+ −
* @return sin(x).+ −
*/+ −
float32_t arm_sin_f32(+ −
float32_t x);+ −
+ −
+ −
/**+ −
* @brief Fast approximation to the trigonometric sine function for Q31 data.+ −
* @param[in] x Scaled input value in radians.+ −
* @return sin(x).+ −
*/+ −
q31_t arm_sin_q31(+ −
q31_t x);+ −
+ −
+ −
/**+ −
* @brief Fast approximation to the trigonometric sine function for Q15 data.+ −
* @param[in] x Scaled input value in radians.+ −
* @return sin(x).+ −
*/+ −
q15_t arm_sin_q15(+ −
q15_t x);+ −
+ −
+ −
/**+ −
* @brief Fast approximation to the trigonometric cosine function for floating-point data.+ −
* @param[in] x input value in radians.+ −
* @return cos(x).+ −
*/+ −
float32_t arm_cos_f32(+ −
float32_t x);+ −
+ −
+ −
/**+ −
* @brief Fast approximation to the trigonometric cosine function for Q31 data.+ −
* @param[in] x Scaled input value in radians.+ −
* @return cos(x).+ −
*/+ −
q31_t arm_cos_q31(+ −
q31_t x);+ −
+ −
+ −
/**+ −
* @brief Fast approximation to the trigonometric cosine function for Q15 data.+ −
* @param[in] x Scaled input value in radians.+ −
* @return cos(x).+ −
*/+ −
q15_t arm_cos_q15(+ −
q15_t x);+ −
+ −
+ −
/**+ −
* @ingroup groupFastMath+ −
*/+ −
+ −
+ −
/**+ −
* @defgroup SQRT Square Root+ −
*+ −
* Computes the square root of a number.+ −
* There are separate functions for Q15, Q31, and floating-point data types.+ −
* The square root function is computed using the Newton-Raphson algorithm.+ −
* This is an iterative algorithm of the form:+ −
* <pre>+ −
* x1 = x0 - f(x0)/f'(x0)+ −
* </pre>+ −
* where <code>x1</code> is the current estimate,+ −
* <code>x0</code> is the previous estimate, and+ −
* <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.+ −
* For the square root function, the algorithm reduces to:+ −
* <pre>+ −
* x0 = in/2 [initial guess]+ −
* x1 = 1/2 * ( x0 + in / x0) [each iteration]+ −
* </pre>+ −
*/+ −
+ −
+ −
/**+ −
* @addtogroup SQRT+ −
* @{+ −
*/+ −
+ −
/**+ −
* @brief Floating-point square root function.+ −
* @param[in] in input value.+ −
* @param[out] pOut square root of input value.+ −
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if+ −
* <code>in</code> is negative value and returns zero output for negative values.+ −
*/+ −
static __INLINE arm_status arm_sqrt_f32(+ −
float32_t in,+ −
float32_t * pOut)+ −
{+ −
if(in >= 0.0f)+ −
{+ −
+ −
#if (__FPU_USED == 1) && defined ( __CC_ARM )+ −
*pOut = __sqrtf(in);+ −
#elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))+ −
*pOut = __builtin_sqrtf(in);+ −
#elif (__FPU_USED == 1) && defined(__GNUC__)+ −
*pOut = __builtin_sqrtf(in);+ −
#elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000)+ −
__ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in));+ −
#else+ −
*pOut = sqrtf(in);+ −
#endif+ −
+ −
return (ARM_MATH_SUCCESS);+ −
}+ −
else+ −
{+ −
*pOut = 0.0f;+ −
return (ARM_MATH_ARGUMENT_ERROR);+ −
}+ −
}+ −
+ −
+ −
/**+ −
* @brief Q31 square root function.+ −
* @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.+ −
* @param[out] pOut square root of input value.+ −
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if+ −
* <code>in</code> is negative value and returns zero output for negative values.+ −
*/+ −
arm_status arm_sqrt_q31(+ −
q31_t in,+ −
q31_t * pOut);+ −
+ −
+ −
/**+ −
* @brief Q15 square root function.+ −
* @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.+ −
* @param[out] pOut square root of input value.+ −
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if+ −
* <code>in</code> is negative value and returns zero output for negative values.+ −
*/+ −
arm_status arm_sqrt_q15(+ −
q15_t in,+ −
q15_t * pOut);+ −
+ −
/**+ −
* @} end of SQRT group+ −
*/+ −
+ −
+ −
/**+ −
* @brief floating-point Circular write function.+ −
*/+ −
static __INLINE void arm_circularWrite_f32(+ −
int32_t * circBuffer,+ −
int32_t L,+ −
uint16_t * writeOffset,+ −
int32_t bufferInc,+ −
const int32_t * src,+ −
int32_t srcInc,+ −
uint32_t blockSize)+ −
{+ −
uint32_t i = 0u;+ −
int32_t wOffset;+ −
+ −
/* Copy the value of Index pointer that points+ −
* to the current location where the input samples to be copied */+ −
wOffset = *writeOffset;+ −
+ −
/* Loop over the blockSize */+ −
i = blockSize;+ −
+ −
while(i > 0u)+ −
{+ −
/* copy the input sample to the circular buffer */+ −
circBuffer[wOffset] = *src;+ −
+ −
/* Update the input pointer */+ −
src += srcInc;+ −
+ −
/* Circularly update wOffset. Watch out for positive and negative value */+ −
wOffset += bufferInc;+ −
if(wOffset >= L)+ −
wOffset -= L;+ −
+ −
/* Decrement the loop counter */+ −
i--;+ −
}+ −
+ −
/* Update the index pointer */+ −
*writeOffset = (uint16_t)wOffset;+ −
}+ −
+ −
+ −
+ −
/**+ −
* @brief floating-point Circular Read function.+ −
*/+ −
static __INLINE void arm_circularRead_f32(+ −
int32_t * circBuffer,+ −
int32_t L,+ −
int32_t * readOffset,+ −
int32_t bufferInc,+ −
int32_t * dst,+ −
int32_t * dst_base,+ −
int32_t dst_length,+ −
int32_t dstInc,+ −
uint32_t blockSize)+ −
{+ −
uint32_t i = 0u;+ −
int32_t rOffset, dst_end;+ −
+ −
/* Copy the value of Index pointer that points+ −
* to the current location from where the input samples to be read */+ −
rOffset = *readOffset;+ −
dst_end = (int32_t) (dst_base + dst_length);+ −
+ −
/* Loop over the blockSize */+ −
i = blockSize;+ −
+ −
while(i > 0u)+ −
{+ −
/* copy the sample from the circular buffer to the destination buffer */+ −
*dst = circBuffer[rOffset];+ −
+ −
/* Update the input pointer */+ −
dst += dstInc;+ −
+ −
if(dst == (int32_t *) dst_end)+ −
{+ −
dst = dst_base;+ −
}+ −
+ −
/* Circularly update rOffset. Watch out for positive and negative value */+ −
rOffset += bufferInc;+ −
+ −
if(rOffset >= L)+ −
{+ −
rOffset -= L;+ −
}+ −
+ −
/* Decrement the loop counter */+ −
i--;+ −
}+ −
+ −
/* Update the index pointer */+ −
*readOffset = rOffset;+ −
}+ −
+ −
+ −
/**+ −
* @brief Q15 Circular write function.+ −
*/+ −
static __INLINE void arm_circularWrite_q15(+ −
q15_t * circBuffer,+ −
int32_t L,+ −
uint16_t * writeOffset,+ −
int32_t bufferInc,+ −
const q15_t * src,+ −
int32_t srcInc,+ −
uint32_t blockSize)+ −
{+ −
uint32_t i = 0u;+ −
int32_t wOffset;+ −
+ −
/* Copy the value of Index pointer that points+ −
* to the current location where the input samples to be copied */+ −
wOffset = *writeOffset;+ −
+ −
/* Loop over the blockSize */+ −
i = blockSize;+ −
+ −
while(i > 0u)+ −
{+ −
/* copy the input sample to the circular buffer */+ −
circBuffer[wOffset] = *src;+ −
+ −
/* Update the input pointer */+ −
src += srcInc;+ −
+ −
/* Circularly update wOffset. Watch out for positive and negative value */+ −
wOffset += bufferInc;+ −
if(wOffset >= L)+ −
wOffset -= L;+ −
+ −
/* Decrement the loop counter */+ −
i--;+ −
}+ −
+ −
/* Update the index pointer */+ −
*writeOffset = (uint16_t)wOffset;+ −
}+ −
+ −
+ −
/**+ −
* @brief Q15 Circular Read function.+ −
*/+ −
static __INLINE void arm_circularRead_q15(+ −
q15_t * circBuffer,+ −
int32_t L,+ −
int32_t * readOffset,+ −
int32_t bufferInc,+ −
q15_t * dst,+ −
q15_t * dst_base,+ −
int32_t dst_length,+ −
int32_t dstInc,+ −
uint32_t blockSize)+ −
{+ −
uint32_t i = 0;+ −
int32_t rOffset, dst_end;+ −
+ −
/* Copy the value of Index pointer that points+ −
* to the current location from where the input samples to be read */+ −
rOffset = *readOffset;+ −
+ −
dst_end = (int32_t) (dst_base + dst_length);+ −
+ −
/* Loop over the blockSize */+ −
i = blockSize;+ −
+ −
while(i > 0u)+ −
{+ −
/* copy the sample from the circular buffer to the destination buffer */+ −
*dst = circBuffer[rOffset];+ −
+ −
/* Update the input pointer */+ −
dst += dstInc;+ −
+ −
if(dst == (q15_t *) dst_end)+ −
{+ −
dst = dst_base;+ −
}+ −
+ −
/* Circularly update wOffset. Watch out for positive and negative value */+ −
rOffset += bufferInc;+ −
+ −
if(rOffset >= L)+ −
{+ −
rOffset -= L;+ −
}+ −
+ −
/* Decrement the loop counter */+ −
i--;+ −
}+ −
+ −
/* Update the index pointer */+ −
*readOffset = rOffset;+ −
}+ −
+ −
+ −
/**+ −
* @brief Q7 Circular write function.+ −
*/+ −
static __INLINE void arm_circularWrite_q7(+ −
q7_t * circBuffer,+ −
int32_t L,+ −
uint16_t * writeOffset,+ −
int32_t bufferInc,+ −
const q7_t * src,+ −
int32_t srcInc,+ −
uint32_t blockSize)+ −
{+ −
uint32_t i = 0u;+ −
int32_t wOffset;+ −
+ −
/* Copy the value of Index pointer that points+ −
* to the current location where the input samples to be copied */+ −
wOffset = *writeOffset;+ −
+ −
/* Loop over the blockSize */+ −
i = blockSize;+ −
+ −
while(i > 0u)+ −
{+ −
/* copy the input sample to the circular buffer */+ −
circBuffer[wOffset] = *src;+ −
+ −
/* Update the input pointer */+ −
src += srcInc;+ −
+ −
/* Circularly update wOffset. Watch out for positive and negative value */+ −
wOffset += bufferInc;+ −
if(wOffset >= L)+ −
wOffset -= L;+ −
+ −
/* Decrement the loop counter */+ −
i--;+ −
}+ −
+ −
/* Update the index pointer */+ −
*writeOffset = (uint16_t)wOffset;+ −
}+ −
+ −
+ −
/**+ −
* @brief Q7 Circular Read function.+ −
*/+ −
static __INLINE void arm_circularRead_q7(+ −
q7_t * circBuffer,+ −
int32_t L,+ −
int32_t * readOffset,+ −
int32_t bufferInc,+ −
q7_t * dst,+ −
q7_t * dst_base,+ −
int32_t dst_length,+ −
int32_t dstInc,+ −
uint32_t blockSize)+ −
{+ −
uint32_t i = 0;+ −
int32_t rOffset, dst_end;+ −
+ −
/* Copy the value of Index pointer that points+ −
* to the current location from where the input samples to be read */+ −
rOffset = *readOffset;+ −
+ −
dst_end = (int32_t) (dst_base + dst_length);+ −
+ −
/* Loop over the blockSize */+ −
i = blockSize;+ −
+ −
while(i > 0u)+ −
{+ −
/* copy the sample from the circular buffer to the destination buffer */+ −
*dst = circBuffer[rOffset];+ −
+ −
/* Update the input pointer */+ −
dst += dstInc;+ −
+ −
if(dst == (q7_t *) dst_end)+ −
{+ −
dst = dst_base;+ −
}+ −
+ −
/* Circularly update rOffset. Watch out for positive and negative value */+ −
rOffset += bufferInc;+ −
+ −
if(rOffset >= L)+ −
{+ −
rOffset -= L;+ −
}+ −
+ −
/* Decrement the loop counter */+ −
i--;+ −
}+ −
+ −
/* Update the index pointer */+ −
*readOffset = rOffset;+ −
}+ −
+ −
+ −
/**+ −
* @brief Sum of the squares of the elements of a Q31 vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] pResult is output value.+ −
*/+ −
void arm_power_q31(+ −
q31_t * pSrc,+ −
uint32_t blockSize,+ −
q63_t * pResult);+ −
+ −
+ −
/**+ −
* @brief Sum of the squares of the elements of a floating-point vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] pResult is output value.+ −
*/+ −
void arm_power_f32(+ −
float32_t * pSrc,+ −
uint32_t blockSize,+ −
float32_t * pResult);+ −
+ −
+ −
/**+ −
* @brief Sum of the squares of the elements of a Q15 vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] pResult is output value.+ −
*/+ −
void arm_power_q15(+ −
q15_t * pSrc,+ −
uint32_t blockSize,+ −
q63_t * pResult);+ −
+ −
+ −
/**+ −
* @brief Sum of the squares of the elements of a Q7 vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] pResult is output value.+ −
*/+ −
void arm_power_q7(+ −
q7_t * pSrc,+ −
uint32_t blockSize,+ −
q31_t * pResult);+ −
+ −
+ −
/**+ −
* @brief Mean value of a Q7 vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] pResult is output value.+ −
*/+ −
void arm_mean_q7(+ −
q7_t * pSrc,+ −
uint32_t blockSize,+ −
q7_t * pResult);+ −
+ −
+ −
/**+ −
* @brief Mean value of a Q15 vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] pResult is output value.+ −
*/+ −
void arm_mean_q15(+ −
q15_t * pSrc,+ −
uint32_t blockSize,+ −
q15_t * pResult);+ −
+ −
+ −
/**+ −
* @brief Mean value of a Q31 vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] pResult is output value.+ −
*/+ −
void arm_mean_q31(+ −
q31_t * pSrc,+ −
uint32_t blockSize,+ −
q31_t * pResult);+ −
+ −
+ −
/**+ −
* @brief Mean value of a floating-point vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] pResult is output value.+ −
*/+ −
void arm_mean_f32(+ −
float32_t * pSrc,+ −
uint32_t blockSize,+ −
float32_t * pResult);+ −
+ −
+ −
/**+ −
* @brief Variance of the elements of a floating-point vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] pResult is output value.+ −
*/+ −
void arm_var_f32(+ −
float32_t * pSrc,+ −
uint32_t blockSize,+ −
float32_t * pResult);+ −
+ −
+ −
/**+ −
* @brief Variance of the elements of a Q31 vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] pResult is output value.+ −
*/+ −
void arm_var_q31(+ −
q31_t * pSrc,+ −
uint32_t blockSize,+ −
q31_t * pResult);+ −
+ −
+ −
/**+ −
* @brief Variance of the elements of a Q15 vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] pResult is output value.+ −
*/+ −
void arm_var_q15(+ −
q15_t * pSrc,+ −
uint32_t blockSize,+ −
q15_t * pResult);+ −
+ −
+ −
/**+ −
* @brief Root Mean Square of the elements of a floating-point vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] pResult is output value.+ −
*/+ −
void arm_rms_f32(+ −
float32_t * pSrc,+ −
uint32_t blockSize,+ −
float32_t * pResult);+ −
+ −
+ −
/**+ −
* @brief Root Mean Square of the elements of a Q31 vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] pResult is output value.+ −
*/+ −
void arm_rms_q31(+ −
q31_t * pSrc,+ −
uint32_t blockSize,+ −
q31_t * pResult);+ −
+ −
+ −
/**+ −
* @brief Root Mean Square of the elements of a Q15 vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] pResult is output value.+ −
*/+ −
void arm_rms_q15(+ −
q15_t * pSrc,+ −
uint32_t blockSize,+ −
q15_t * pResult);+ −
+ −
+ −
/**+ −
* @brief Standard deviation of the elements of a floating-point vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] pResult is output value.+ −
*/+ −
void arm_std_f32(+ −
float32_t * pSrc,+ −
uint32_t blockSize,+ −
float32_t * pResult);+ −
+ −
+ −
/**+ −
* @brief Standard deviation of the elements of a Q31 vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] pResult is output value.+ −
*/+ −
void arm_std_q31(+ −
q31_t * pSrc,+ −
uint32_t blockSize,+ −
q31_t * pResult);+ −
+ −
+ −
/**+ −
* @brief Standard deviation of the elements of a Q15 vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] pResult is output value.+ −
*/+ −
void arm_std_q15(+ −
q15_t * pSrc,+ −
uint32_t blockSize,+ −
q15_t * pResult);+ −
+ −
+ −
/**+ −
* @brief Floating-point complex magnitude+ −
* @param[in] pSrc points to the complex input vector+ −
* @param[out] pDst points to the real output vector+ −
* @param[in] numSamples number of complex samples in the input vector+ −
*/+ −
void arm_cmplx_mag_f32(+ −
float32_t * pSrc,+ −
float32_t * pDst,+ −
uint32_t numSamples);+ −
+ −
+ −
/**+ −
* @brief Q31 complex magnitude+ −
* @param[in] pSrc points to the complex input vector+ −
* @param[out] pDst points to the real output vector+ −
* @param[in] numSamples number of complex samples in the input vector+ −
*/+ −
void arm_cmplx_mag_q31(+ −
q31_t * pSrc,+ −
q31_t * pDst,+ −
uint32_t numSamples);+ −
+ −
+ −
/**+ −
* @brief Q15 complex magnitude+ −
* @param[in] pSrc points to the complex input vector+ −
* @param[out] pDst points to the real output vector+ −
* @param[in] numSamples number of complex samples in the input vector+ −
*/+ −
void arm_cmplx_mag_q15(+ −
q15_t * pSrc,+ −
q15_t * pDst,+ −
uint32_t numSamples);+ −
+ −
+ −
/**+ −
* @brief Q15 complex dot product+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[in] numSamples number of complex samples in each vector+ −
* @param[out] realResult real part of the result returned here+ −
* @param[out] imagResult imaginary part of the result returned here+ −
*/+ −
void arm_cmplx_dot_prod_q15(+ −
q15_t * pSrcA,+ −
q15_t * pSrcB,+ −
uint32_t numSamples,+ −
q31_t * realResult,+ −
q31_t * imagResult);+ −
+ −
+ −
/**+ −
* @brief Q31 complex dot product+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[in] numSamples number of complex samples in each vector+ −
* @param[out] realResult real part of the result returned here+ −
* @param[out] imagResult imaginary part of the result returned here+ −
*/+ −
void arm_cmplx_dot_prod_q31(+ −
q31_t * pSrcA,+ −
q31_t * pSrcB,+ −
uint32_t numSamples,+ −
q63_t * realResult,+ −
q63_t * imagResult);+ −
+ −
+ −
/**+ −
* @brief Floating-point complex dot product+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[in] numSamples number of complex samples in each vector+ −
* @param[out] realResult real part of the result returned here+ −
* @param[out] imagResult imaginary part of the result returned here+ −
*/+ −
void arm_cmplx_dot_prod_f32(+ −
float32_t * pSrcA,+ −
float32_t * pSrcB,+ −
uint32_t numSamples,+ −
float32_t * realResult,+ −
float32_t * imagResult);+ −
+ −
+ −
/**+ −
* @brief Q15 complex-by-real multiplication+ −
* @param[in] pSrcCmplx points to the complex input vector+ −
* @param[in] pSrcReal points to the real input vector+ −
* @param[out] pCmplxDst points to the complex output vector+ −
* @param[in] numSamples number of samples in each vector+ −
*/+ −
void arm_cmplx_mult_real_q15(+ −
q15_t * pSrcCmplx,+ −
q15_t * pSrcReal,+ −
q15_t * pCmplxDst,+ −
uint32_t numSamples);+ −
+ −
+ −
/**+ −
* @brief Q31 complex-by-real multiplication+ −
* @param[in] pSrcCmplx points to the complex input vector+ −
* @param[in] pSrcReal points to the real input vector+ −
* @param[out] pCmplxDst points to the complex output vector+ −
* @param[in] numSamples number of samples in each vector+ −
*/+ −
void arm_cmplx_mult_real_q31(+ −
q31_t * pSrcCmplx,+ −
q31_t * pSrcReal,+ −
q31_t * pCmplxDst,+ −
uint32_t numSamples);+ −
+ −
+ −
/**+ −
* @brief Floating-point complex-by-real multiplication+ −
* @param[in] pSrcCmplx points to the complex input vector+ −
* @param[in] pSrcReal points to the real input vector+ −
* @param[out] pCmplxDst points to the complex output vector+ −
* @param[in] numSamples number of samples in each vector+ −
*/+ −
void arm_cmplx_mult_real_f32(+ −
float32_t * pSrcCmplx,+ −
float32_t * pSrcReal,+ −
float32_t * pCmplxDst,+ −
uint32_t numSamples);+ −
+ −
+ −
/**+ −
* @brief Minimum value of a Q7 vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] result is output pointer+ −
* @param[in] index is the array index of the minimum value in the input buffer.+ −
*/+ −
void arm_min_q7(+ −
q7_t * pSrc,+ −
uint32_t blockSize,+ −
q7_t * result,+ −
uint32_t * index);+ −
+ −
+ −
/**+ −
* @brief Minimum value of a Q15 vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] pResult is output pointer+ −
* @param[in] pIndex is the array index of the minimum value in the input buffer.+ −
*/+ −
void arm_min_q15(+ −
q15_t * pSrc,+ −
uint32_t blockSize,+ −
q15_t * pResult,+ −
uint32_t * pIndex);+ −
+ −
+ −
/**+ −
* @brief Minimum value of a Q31 vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] pResult is output pointer+ −
* @param[out] pIndex is the array index of the minimum value in the input buffer.+ −
*/+ −
void arm_min_q31(+ −
q31_t * pSrc,+ −
uint32_t blockSize,+ −
q31_t * pResult,+ −
uint32_t * pIndex);+ −
+ −
+ −
/**+ −
* @brief Minimum value of a floating-point vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[in] blockSize is the number of samples to process+ −
* @param[out] pResult is output pointer+ −
* @param[out] pIndex is the array index of the minimum value in the input buffer.+ −
*/+ −
void arm_min_f32(+ −
float32_t * pSrc,+ −
uint32_t blockSize,+ −
float32_t * pResult,+ −
uint32_t * pIndex);+ −
+ −
+ −
/**+ −
* @brief Maximum value of a Q7 vector.+ −
* @param[in] pSrc points to the input buffer+ −
* @param[in] blockSize length of the input vector+ −
* @param[out] pResult maximum value returned here+ −
* @param[out] pIndex index of maximum value returned here+ −
*/+ −
void arm_max_q7(+ −
q7_t * pSrc,+ −
uint32_t blockSize,+ −
q7_t * pResult,+ −
uint32_t * pIndex);+ −
+ −
+ −
/**+ −
* @brief Maximum value of a Q15 vector.+ −
* @param[in] pSrc points to the input buffer+ −
* @param[in] blockSize length of the input vector+ −
* @param[out] pResult maximum value returned here+ −
* @param[out] pIndex index of maximum value returned here+ −
*/+ −
void arm_max_q15(+ −
q15_t * pSrc,+ −
uint32_t blockSize,+ −
q15_t * pResult,+ −
uint32_t * pIndex);+ −
+ −
+ −
/**+ −
* @brief Maximum value of a Q31 vector.+ −
* @param[in] pSrc points to the input buffer+ −
* @param[in] blockSize length of the input vector+ −
* @param[out] pResult maximum value returned here+ −
* @param[out] pIndex index of maximum value returned here+ −
*/+ −
void arm_max_q31(+ −
q31_t * pSrc,+ −
uint32_t blockSize,+ −
q31_t * pResult,+ −
uint32_t * pIndex);+ −
+ −
+ −
/**+ −
* @brief Maximum value of a floating-point vector.+ −
* @param[in] pSrc points to the input buffer+ −
* @param[in] blockSize length of the input vector+ −
* @param[out] pResult maximum value returned here+ −
* @param[out] pIndex index of maximum value returned here+ −
*/+ −
void arm_max_f32(+ −
float32_t * pSrc,+ −
uint32_t blockSize,+ −
float32_t * pResult,+ −
uint32_t * pIndex);+ −
+ −
+ −
/**+ −
* @brief Q15 complex-by-complex multiplication+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] numSamples number of complex samples in each vector+ −
*/+ −
void arm_cmplx_mult_cmplx_q15(+ −
q15_t * pSrcA,+ −
q15_t * pSrcB,+ −
q15_t * pDst,+ −
uint32_t numSamples);+ −
+ −
+ −
/**+ −
* @brief Q31 complex-by-complex multiplication+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] numSamples number of complex samples in each vector+ −
*/+ −
void arm_cmplx_mult_cmplx_q31(+ −
q31_t * pSrcA,+ −
q31_t * pSrcB,+ −
q31_t * pDst,+ −
uint32_t numSamples);+ −
+ −
+ −
/**+ −
* @brief Floating-point complex-by-complex multiplication+ −
* @param[in] pSrcA points to the first input vector+ −
* @param[in] pSrcB points to the second input vector+ −
* @param[out] pDst points to the output vector+ −
* @param[in] numSamples number of complex samples in each vector+ −
*/+ −
void arm_cmplx_mult_cmplx_f32(+ −
float32_t * pSrcA,+ −
float32_t * pSrcB,+ −
float32_t * pDst,+ −
uint32_t numSamples);+ −
+ −
+ −
/**+ −
* @brief Converts the elements of the floating-point vector to Q31 vector.+ −
* @param[in] pSrc points to the floating-point input vector+ −
* @param[out] pDst points to the Q31 output vector+ −
* @param[in] blockSize length of the input vector+ −
*/+ −
void arm_float_to_q31(+ −
float32_t * pSrc,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Converts the elements of the floating-point vector to Q15 vector.+ −
* @param[in] pSrc points to the floating-point input vector+ −
* @param[out] pDst points to the Q15 output vector+ −
* @param[in] blockSize length of the input vector+ −
*/+ −
void arm_float_to_q15(+ −
float32_t * pSrc,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Converts the elements of the floating-point vector to Q7 vector.+ −
* @param[in] pSrc points to the floating-point input vector+ −
* @param[out] pDst points to the Q7 output vector+ −
* @param[in] blockSize length of the input vector+ −
*/+ −
void arm_float_to_q7(+ −
float32_t * pSrc,+ −
q7_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Converts the elements of the Q31 vector to Q15 vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[out] pDst is output pointer+ −
* @param[in] blockSize is the number of samples to process+ −
*/+ −
void arm_q31_to_q15(+ −
q31_t * pSrc,+ −
q15_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Converts the elements of the Q31 vector to Q7 vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[out] pDst is output pointer+ −
* @param[in] blockSize is the number of samples to process+ −
*/+ −
void arm_q31_to_q7(+ −
q31_t * pSrc,+ −
q7_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Converts the elements of the Q15 vector to floating-point vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[out] pDst is output pointer+ −
* @param[in] blockSize is the number of samples to process+ −
*/+ −
void arm_q15_to_float(+ −
q15_t * pSrc,+ −
float32_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Converts the elements of the Q15 vector to Q31 vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[out] pDst is output pointer+ −
* @param[in] blockSize is the number of samples to process+ −
*/+ −
void arm_q15_to_q31(+ −
q15_t * pSrc,+ −
q31_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @brief Converts the elements of the Q15 vector to Q7 vector.+ −
* @param[in] pSrc is input pointer+ −
* @param[out] pDst is output pointer+ −
* @param[in] blockSize is the number of samples to process+ −
*/+ −
void arm_q15_to_q7(+ −
q15_t * pSrc,+ −
q7_t * pDst,+ −
uint32_t blockSize);+ −
+ −
+ −
/**+ −
* @ingroup groupInterpolation+ −
*/+ −
+ −
/**+ −
* @defgroup BilinearInterpolate Bilinear Interpolation+ −
*+ −
* Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.+ −
* The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process+ −
* determines values between the grid points.+ −
* Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.+ −
* Bilinear interpolation is often used in image processing to rescale images.+ −
* The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.+ −
*+ −
* <b>Algorithm</b>+ −
* \par+ −
* The instance structure used by the bilinear interpolation functions describes a two dimensional data table.+ −
* For floating-point, the instance structure is defined as:+ −
* <pre>+ −
* typedef struct+ −
* {+ −
* uint16_t numRows;+ −
* uint16_t numCols;+ −
* float32_t *pData;+ −
* } arm_bilinear_interp_instance_f32;+ −
* </pre>+ −
*+ −
* \par+ −
* where <code>numRows</code> specifies the number of rows in the table;+ −
* <code>numCols</code> specifies the number of columns in the table;+ −
* and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.+ −
* The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.+ −
* That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.+ −
*+ −
* \par+ −
* Let <code>(x, y)</code> specify the desired interpolation point. Then define:+ −
* <pre>+ −
* XF = floor(x)+ −
* YF = floor(y)+ −
* </pre>+ −
* \par+ −
* The interpolated output point is computed as:+ −
* <pre>+ −
* f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))+ −
* + f(XF+1, YF) * (x-XF)*(1-(y-YF))+ −
* + f(XF, YF+1) * (1-(x-XF))*(y-YF)+ −
* + f(XF+1, YF+1) * (x-XF)*(y-YF)+ −
* </pre>+ −
* Note that the coordinates (x, y) contain integer and fractional components.+ −
* The integer components specify which portion of the table to use while the+ −
* fractional components control the interpolation processor.+ −
*+ −
* \par+ −
* if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.+ −
*/+ −
+ −
/**+ −
* @addtogroup BilinearInterpolate+ −
* @{+ −
*/+ −
+ −
+ −
/**+ −
*+ −
* @brief Floating-point bilinear interpolation.+ −
* @param[in,out] S points to an instance of the interpolation structure.+ −
* @param[in] X interpolation coordinate.+ −
* @param[in] Y interpolation coordinate.+ −
* @return out interpolated value.+ −
*/+ −
static __INLINE float32_t arm_bilinear_interp_f32(+ −
const arm_bilinear_interp_instance_f32 * S,+ −
float32_t X,+ −
float32_t Y)+ −
{+ −
float32_t out;+ −
float32_t f00, f01, f10, f11;+ −
float32_t *pData = S->pData;+ −
int32_t xIndex, yIndex, index;+ −
float32_t xdiff, ydiff;+ −
float32_t b1, b2, b3, b4;+ −
+ −
xIndex = (int32_t) X;+ −
yIndex = (int32_t) Y;+ −
+ −
/* Care taken for table outside boundary */+ −
/* Returns zero output when values are outside table boundary */+ −
if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1))+ −
{+ −
return (0);+ −
}+ −
+ −
/* Calculation of index for two nearest points in X-direction */+ −
index = (xIndex - 1) + (yIndex - 1) * S->numCols;+ −
+ −
+ −
/* Read two nearest points in X-direction */+ −
f00 = pData[index];+ −
f01 = pData[index + 1];+ −
+ −
/* Calculation of index for two nearest points in Y-direction */+ −
index = (xIndex - 1) + (yIndex) * S->numCols;+ −
+ −
+ −
/* Read two nearest points in Y-direction */+ −
f10 = pData[index];+ −
f11 = pData[index + 1];+ −
+ −
/* Calculation of intermediate values */+ −
b1 = f00;+ −
b2 = f01 - f00;+ −
b3 = f10 - f00;+ −
b4 = f00 - f01 - f10 + f11;+ −
+ −
/* Calculation of fractional part in X */+ −
xdiff = X - xIndex;+ −
+ −
/* Calculation of fractional part in Y */+ −
ydiff = Y - yIndex;+ −
+ −
/* Calculation of bi-linear interpolated output */+ −
out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;+ −
+ −
/* return to application */+ −
return (out);+ −
}+ −
+ −
+ −
/**+ −
*+ −
* @brief Q31 bilinear interpolation.+ −
* @param[in,out] S points to an instance of the interpolation structure.+ −
* @param[in] X interpolation coordinate in 12.20 format.+ −
* @param[in] Y interpolation coordinate in 12.20 format.+ −
* @return out interpolated value.+ −
*/+ −
static __INLINE q31_t arm_bilinear_interp_q31(+ −
arm_bilinear_interp_instance_q31 * S,+ −
q31_t X,+ −
q31_t Y)+ −
{+ −
q31_t out; /* Temporary output */+ −
q31_t acc = 0; /* output */+ −
q31_t xfract, yfract; /* X, Y fractional parts */+ −
q31_t x1, x2, y1, y2; /* Nearest output values */+ −
int32_t rI, cI; /* Row and column indices */+ −
q31_t *pYData = S->pData; /* pointer to output table values */+ −
uint32_t nCols = S->numCols; /* num of rows */+ −
+ −
/* Input is in 12.20 format */+ −
/* 12 bits for the table index */+ −
/* Index value calculation */+ −
rI = ((X & (q31_t)0xFFF00000) >> 20);+ −
+ −
/* Input is in 12.20 format */+ −
/* 12 bits for the table index */+ −
/* Index value calculation */+ −
cI = ((Y & (q31_t)0xFFF00000) >> 20);+ −
+ −
/* Care taken for table outside boundary */+ −
/* Returns zero output when values are outside table boundary */+ −
if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))+ −
{+ −
return (0);+ −
}+ −
+ −
/* 20 bits for the fractional part */+ −
/* shift left xfract by 11 to keep 1.31 format */+ −
xfract = (X & 0x000FFFFF) << 11u;+ −
+ −
/* Read two nearest output values from the index */+ −
x1 = pYData[(rI) + (int32_t)nCols * (cI) ];+ −
x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1];+ −
+ −
/* 20 bits for the fractional part */+ −
/* shift left yfract by 11 to keep 1.31 format */+ −
yfract = (Y & 0x000FFFFF) << 11u;+ −
+ −
/* Read two nearest output values from the index */+ −
y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ];+ −
y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1];+ −
+ −
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */+ −
out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));+ −
acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));+ −
+ −
/* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */+ −
out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));+ −
acc += ((q31_t) ((q63_t) out * (xfract) >> 32));+ −
+ −
/* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */+ −
out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));+ −
acc += ((q31_t) ((q63_t) out * (yfract) >> 32));+ −
+ −
/* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */+ −
out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));+ −
acc += ((q31_t) ((q63_t) out * (yfract) >> 32));+ −
+ −
/* Convert acc to 1.31(q31) format */+ −
return ((q31_t)(acc << 2));+ −
}+ −
+ −
+ −
/**+ −
* @brief Q15 bilinear interpolation.+ −
* @param[in,out] S points to an instance of the interpolation structure.+ −
* @param[in] X interpolation coordinate in 12.20 format.+ −
* @param[in] Y interpolation coordinate in 12.20 format.+ −
* @return out interpolated value.+ −
*/+ −
static __INLINE q15_t arm_bilinear_interp_q15(+ −
arm_bilinear_interp_instance_q15 * S,+ −
q31_t X,+ −
q31_t Y)+ −
{+ −
q63_t acc = 0; /* output */+ −
q31_t out; /* Temporary output */+ −
q15_t x1, x2, y1, y2; /* Nearest output values */+ −
q31_t xfract, yfract; /* X, Y fractional parts */+ −
int32_t rI, cI; /* Row and column indices */+ −
q15_t *pYData = S->pData; /* pointer to output table values */+ −
uint32_t nCols = S->numCols; /* num of rows */+ −
+ −
/* Input is in 12.20 format */+ −
/* 12 bits for the table index */+ −
/* Index value calculation */+ −
rI = ((X & (q31_t)0xFFF00000) >> 20);+ −
+ −
/* Input is in 12.20 format */+ −
/* 12 bits for the table index */+ −
/* Index value calculation */+ −
cI = ((Y & (q31_t)0xFFF00000) >> 20);+ −
+ −
/* Care taken for table outside boundary */+ −
/* Returns zero output when values are outside table boundary */+ −
if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))+ −
{+ −
return (0);+ −
}+ −
+ −
/* 20 bits for the fractional part */+ −
/* xfract should be in 12.20 format */+ −
xfract = (X & 0x000FFFFF);+ −
+ −
/* Read two nearest output values from the index */+ −
x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];+ −
x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];+ −
+ −
/* 20 bits for the fractional part */+ −
/* yfract should be in 12.20 format */+ −
yfract = (Y & 0x000FFFFF);+ −
+ −
/* Read two nearest output values from the index */+ −
y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];+ −
y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];+ −
+ −
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */+ −
+ −
/* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */+ −
/* convert 13.35 to 13.31 by right shifting and out is in 1.31 */+ −
out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);+ −
acc = ((q63_t) out * (0xFFFFF - yfract));+ −
+ −
/* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */+ −
out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);+ −
acc += ((q63_t) out * (xfract));+ −
+ −
/* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */+ −
out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);+ −
acc += ((q63_t) out * (yfract));+ −
+ −
/* y2 * (xfract) * (yfract) in 1.51 and adding to acc */+ −
out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);+ −
acc += ((q63_t) out * (yfract));+ −
+ −
/* acc is in 13.51 format and down shift acc by 36 times */+ −
/* Convert out to 1.15 format */+ −
return ((q15_t)(acc >> 36));+ −
}+ −
+ −
+ −
/**+ −
* @brief Q7 bilinear interpolation.+ −
* @param[in,out] S points to an instance of the interpolation structure.+ −
* @param[in] X interpolation coordinate in 12.20 format.+ −
* @param[in] Y interpolation coordinate in 12.20 format.+ −
* @return out interpolated value.+ −
*/+ −
static __INLINE q7_t arm_bilinear_interp_q7(+ −
arm_bilinear_interp_instance_q7 * S,+ −
q31_t X,+ −
q31_t Y)+ −
{+ −
q63_t acc = 0; /* output */+ −
q31_t out; /* Temporary output */+ −
q31_t xfract, yfract; /* X, Y fractional parts */+ −
q7_t x1, x2, y1, y2; /* Nearest output values */+ −
int32_t rI, cI; /* Row and column indices */+ −
q7_t *pYData = S->pData; /* pointer to output table values */+ −
uint32_t nCols = S->numCols; /* num of rows */+ −
+ −
/* Input is in 12.20 format */+ −
/* 12 bits for the table index */+ −
/* Index value calculation */+ −
rI = ((X & (q31_t)0xFFF00000) >> 20);+ −
+ −
/* Input is in 12.20 format */+ −
/* 12 bits for the table index */+ −
/* Index value calculation */+ −
cI = ((Y & (q31_t)0xFFF00000) >> 20);+ −
+ −
/* Care taken for table outside boundary */+ −
/* Returns zero output when values are outside table boundary */+ −
if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))+ −
{+ −
return (0);+ −
}+ −
+ −
/* 20 bits for the fractional part */+ −
/* xfract should be in 12.20 format */+ −
xfract = (X & (q31_t)0x000FFFFF);+ −
+ −
/* Read two nearest output values from the index */+ −
x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];+ −
x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];+ −
+ −
/* 20 bits for the fractional part */+ −
/* yfract should be in 12.20 format */+ −
yfract = (Y & (q31_t)0x000FFFFF);+ −
+ −
/* Read two nearest output values from the index */+ −
y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];+ −
y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];+ −
+ −
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */+ −
out = ((x1 * (0xFFFFF - xfract)));+ −
acc = (((q63_t) out * (0xFFFFF - yfract)));+ −
+ −
/* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */+ −
out = ((x2 * (0xFFFFF - yfract)));+ −
acc += (((q63_t) out * (xfract)));+ −
+ −
/* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */+ −
out = ((y1 * (0xFFFFF - xfract)));+ −
acc += (((q63_t) out * (yfract)));+ −
+ −
/* y2 * (xfract) * (yfract) in 2.22 and adding to acc */+ −
out = ((y2 * (yfract)));+ −
acc += (((q63_t) out * (xfract)));+ −
+ −
/* acc in 16.47 format and down shift by 40 to convert to 1.7 format */+ −
return ((q7_t)(acc >> 40));+ −
}+ −
+ −
/**+ −
* @} end of BilinearInterpolate group+ −
*/+ −
+ −
+ −
/* SMMLAR */+ −
#define multAcc_32x32_keep32_R(a, x, y) \+ −
a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)+ −
+ −
/* SMMLSR */+ −
#define multSub_32x32_keep32_R(a, x, y) \+ −
a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)+ −
+ −
/* SMMULR */+ −
#define mult_32x32_keep32_R(a, x, y) \+ −
a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)+ −
+ −
/* SMMLA */+ −
#define multAcc_32x32_keep32(a, x, y) \+ −
a += (q31_t) (((q63_t) x * y) >> 32)+ −
+ −
/* SMMLS */+ −
#define multSub_32x32_keep32(a, x, y) \+ −
a -= (q31_t) (((q63_t) x * y) >> 32)+ −
+ −
/* SMMUL */+ −
#define mult_32x32_keep32(a, x, y) \+ −
a = (q31_t) (((q63_t) x * y ) >> 32)+ −
+ −
+ −
#if defined ( __CC_ARM )+ −
/* Enter low optimization region - place directly above function definition */+ −
#if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)+ −
#define LOW_OPTIMIZATION_ENTER \+ −
_Pragma ("push") \+ −
_Pragma ("O1")+ −
#else+ −
#define LOW_OPTIMIZATION_ENTER+ −
#endif+ −
+ −
/* Exit low optimization region - place directly after end of function definition */+ −
#if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)+ −
#define LOW_OPTIMIZATION_EXIT \+ −
_Pragma ("pop")+ −
#else+ −
#define LOW_OPTIMIZATION_EXIT+ −
#endif+ −
+ −
/* Enter low optimization region - place directly above function definition */+ −
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER+ −
+ −
/* Exit low optimization region - place directly after end of function definition */+ −
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT+ −
+ −
#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)+ −
#define LOW_OPTIMIZATION_ENTER+ −
#define LOW_OPTIMIZATION_EXIT+ −
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER+ −
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT+ −
+ −
#elif defined(__GNUC__)+ −
#define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") ))+ −
#define LOW_OPTIMIZATION_EXIT+ −
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER+ −
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT+ −
+ −
#elif defined(__ICCARM__)+ −
/* Enter low optimization region - place directly above function definition */+ −
#if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)+ −
#define LOW_OPTIMIZATION_ENTER \+ −
_Pragma ("optimize=low")+ −
#else+ −
#define LOW_OPTIMIZATION_ENTER+ −
#endif+ −
+ −
/* Exit low optimization region - place directly after end of function definition */+ −
#define LOW_OPTIMIZATION_EXIT+ −
+ −
/* Enter low optimization region - place directly above function definition */+ −
#if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)+ −
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER \+ −
_Pragma ("optimize=low")+ −
#else+ −
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER+ −
#endif+ −
+ −
/* Exit low optimization region - place directly after end of function definition */+ −
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT+ −
+ −
#elif defined(__CSMC__)+ −
#define LOW_OPTIMIZATION_ENTER+ −
#define LOW_OPTIMIZATION_EXIT+ −
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER+ −
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT+ −
+ −
#elif defined(__TASKING__)+ −
#define LOW_OPTIMIZATION_ENTER+ −
#define LOW_OPTIMIZATION_EXIT+ −
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER+ −
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT+ −
+ −
#endif+ −
+ −
+ −
#ifdef __cplusplus+ −
}+ −
#endif+ −
+ −
+ −
#if defined ( __GNUC__ )+ −
#pragma GCC diagnostic pop+ −
#endif+ −
+ −
#endif /* _ARM_MATH_H */+ −
+ −
/**+ −
*+ −
* End of file.+ −
*/+ −