Bugfix Battery charge complete event:
In previous version it could happen that the battery charge state was set to 100% even the battery was not completly charged. Rootcause was that the external charger IC signals sometimes completion because e.g. the connection between charger unit and OSTC is disconnected within a short time slot. This may happen while the user is trying to get the OSTC in a good charging position. To avoid this the state machine now checks the voltage everytime for valid charging complete range before a charging complete is signaled.
line source
/**************************************************************************//**+ −
* @file cmsis_gcc.h+ −
* @brief CMSIS Cortex-M Core Function/Instruction Header File+ −
* @version V4.30+ −
* @date 20. October 2015+ −
******************************************************************************/+ −
/* Copyright (c) 2009 - 2015 ARM LIMITED+ −
+ −
All rights reserved.+ −
Redistribution and use in source and binary forms, with or without+ −
modification, are permitted provided that the following conditions are met:+ −
- Redistributions of source code must retain the above copyright+ −
notice, this list of conditions and the following disclaimer.+ −
- Redistributions in binary form must reproduce the above copyright+ −
notice, this list of conditions and the following disclaimer in the+ −
documentation and/or other materials provided with the distribution.+ −
- Neither the name of ARM nor the names of its contributors may be used+ −
to endorse or promote products derived from this software without+ −
specific prior written permission.+ −
*+ −
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"+ −
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE+ −
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE+ −
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE+ −
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR+ −
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF+ −
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS+ −
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN+ −
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)+ −
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE+ −
POSSIBILITY OF SUCH DAMAGE.+ −
---------------------------------------------------------------------------*/+ −
+ −
+ −
#ifndef __CMSIS_GCC_H+ −
#define __CMSIS_GCC_H+ −
+ −
/* ignore some GCC warnings */+ −
#if defined ( __GNUC__ )+ −
#pragma GCC diagnostic push+ −
#pragma GCC diagnostic ignored "-Wsign-conversion"+ −
#pragma GCC diagnostic ignored "-Wconversion"+ −
#pragma GCC diagnostic ignored "-Wunused-parameter"+ −
#endif+ −
+ −
+ −
/* ########################### Core Function Access ########################### */+ −
/** \ingroup CMSIS_Core_FunctionInterface+ −
\defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions+ −
@{+ −
*/+ −
+ −
/**+ −
\brief Enable IRQ Interrupts+ −
\details Enables IRQ interrupts by clearing the I-bit in the CPSR.+ −
Can only be executed in Privileged modes.+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_irq(void)+ −
{+ −
__ASM volatile ("cpsie i" : : : "memory");+ −
}+ −
+ −
+ −
/**+ −
\brief Disable IRQ Interrupts+ −
\details Disables IRQ interrupts by setting the I-bit in the CPSR.+ −
Can only be executed in Privileged modes.+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_irq(void)+ −
{+ −
__ASM volatile ("cpsid i" : : : "memory");+ −
}+ −
+ −
+ −
/**+ −
\brief Get Control Register+ −
\details Returns the content of the Control Register.+ −
\return Control Register value+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CONTROL(void)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("MRS %0, control" : "=r" (result) );+ −
return(result);+ −
}+ −
+ −
+ −
/**+ −
\brief Set Control Register+ −
\details Writes the given value to the Control Register.+ −
\param [in] control Control Register value to set+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_CONTROL(uint32_t control)+ −
{+ −
__ASM volatile ("MSR control, %0" : : "r" (control) : "memory");+ −
}+ −
+ −
+ −
/**+ −
\brief Get IPSR Register+ −
\details Returns the content of the IPSR Register.+ −
\return IPSR Register value+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_IPSR(void)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("MRS %0, ipsr" : "=r" (result) );+ −
return(result);+ −
}+ −
+ −
+ −
/**+ −
\brief Get APSR Register+ −
\details Returns the content of the APSR Register.+ −
\return APSR Register value+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_APSR(void)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("MRS %0, apsr" : "=r" (result) );+ −
return(result);+ −
}+ −
+ −
+ −
/**+ −
\brief Get xPSR Register+ −
\details Returns the content of the xPSR Register.+ −
+ −
\return xPSR Register value+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_xPSR(void)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("MRS %0, xpsr" : "=r" (result) );+ −
return(result);+ −
}+ −
+ −
+ −
/**+ −
\brief Get Process Stack Pointer+ −
\details Returns the current value of the Process Stack Pointer (PSP).+ −
\return PSP Register value+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PSP(void)+ −
{+ −
register uint32_t result;+ −
+ −
__ASM volatile ("MRS %0, psp\n" : "=r" (result) );+ −
return(result);+ −
}+ −
+ −
+ −
/**+ −
\brief Set Process Stack Pointer+ −
\details Assigns the given value to the Process Stack Pointer (PSP).+ −
\param [in] topOfProcStack Process Stack Pointer value to set+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)+ −
{+ −
__ASM volatile ("MSR psp, %0\n" : : "r" (topOfProcStack) : "sp");+ −
}+ −
+ −
+ −
/**+ −
\brief Get Main Stack Pointer+ −
\details Returns the current value of the Main Stack Pointer (MSP).+ −
\return MSP Register value+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_MSP(void)+ −
{+ −
register uint32_t result;+ −
+ −
__ASM volatile ("MRS %0, msp\n" : "=r" (result) );+ −
return(result);+ −
}+ −
+ −
+ −
/**+ −
\brief Set Main Stack Pointer+ −
\details Assigns the given value to the Main Stack Pointer (MSP).+ −
+ −
\param [in] topOfMainStack Main Stack Pointer value to set+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)+ −
{+ −
__ASM volatile ("MSR msp, %0\n" : : "r" (topOfMainStack) : "sp");+ −
}+ −
+ −
+ −
/**+ −
\brief Get Priority Mask+ −
\details Returns the current state of the priority mask bit from the Priority Mask Register.+ −
\return Priority Mask value+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PRIMASK(void)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("MRS %0, primask" : "=r" (result) );+ −
return(result);+ −
}+ −
+ −
+ −
/**+ −
\brief Set Priority Mask+ −
\details Assigns the given value to the Priority Mask Register.+ −
\param [in] priMask Priority Mask+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask)+ −
{+ −
__ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");+ −
}+ −
+ −
+ −
#if (__CORTEX_M >= 0x03U)+ −
+ −
/**+ −
\brief Enable FIQ+ −
\details Enables FIQ interrupts by clearing the F-bit in the CPSR.+ −
Can only be executed in Privileged modes.+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_fault_irq(void)+ −
{+ −
__ASM volatile ("cpsie f" : : : "memory");+ −
}+ −
+ −
+ −
/**+ −
\brief Disable FIQ+ −
\details Disables FIQ interrupts by setting the F-bit in the CPSR.+ −
Can only be executed in Privileged modes.+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_fault_irq(void)+ −
{+ −
__ASM volatile ("cpsid f" : : : "memory");+ −
}+ −
+ −
+ −
/**+ −
\brief Get Base Priority+ −
\details Returns the current value of the Base Priority register.+ −
\return Base Priority register value+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_BASEPRI(void)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("MRS %0, basepri" : "=r" (result) );+ −
return(result);+ −
}+ −
+ −
+ −
/**+ −
\brief Set Base Priority+ −
\details Assigns the given value to the Base Priority register.+ −
\param [in] basePri Base Priority value to set+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI(uint32_t value)+ −
{+ −
__ASM volatile ("MSR basepri, %0" : : "r" (value) : "memory");+ −
}+ −
+ −
+ −
/**+ −
\brief Set Base Priority with condition+ −
\details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,+ −
or the new value increases the BASEPRI priority level.+ −
\param [in] basePri Base Priority value to set+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI_MAX(uint32_t value)+ −
{+ −
__ASM volatile ("MSR basepri_max, %0" : : "r" (value) : "memory");+ −
}+ −
+ −
+ −
/**+ −
\brief Get Fault Mask+ −
\details Returns the current value of the Fault Mask register.+ −
\return Fault Mask register value+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FAULTMASK(void)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("MRS %0, faultmask" : "=r" (result) );+ −
return(result);+ −
}+ −
+ −
+ −
/**+ −
\brief Set Fault Mask+ −
\details Assigns the given value to the Fault Mask register.+ −
\param [in] faultMask Fault Mask value to set+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)+ −
{+ −
__ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");+ −
}+ −
+ −
#endif /* (__CORTEX_M >= 0x03U) */+ −
+ −
+ −
#if (__CORTEX_M == 0x04U) || (__CORTEX_M == 0x07U)+ −
+ −
/**+ −
\brief Get FPSCR+ −
\details Returns the current value of the Floating Point Status/Control register.+ −
\return Floating Point Status/Control register value+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPSCR(void)+ −
{+ −
#if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)+ −
uint32_t result;+ −
+ −
/* Empty asm statement works as a scheduling barrier */+ −
__ASM volatile ("");+ −
__ASM volatile ("VMRS %0, fpscr" : "=r" (result) );+ −
__ASM volatile ("");+ −
return(result);+ −
#else+ −
return(0);+ −
#endif+ −
}+ −
+ −
+ −
/**+ −
\brief Set FPSCR+ −
\details Assigns the given value to the Floating Point Status/Control register.+ −
\param [in] fpscr Floating Point Status/Control value to set+ −
*/+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)+ −
{+ −
#if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)+ −
/* Empty asm statement works as a scheduling barrier */+ −
__ASM volatile ("");+ −
__ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc");+ −
__ASM volatile ("");+ −
#endif+ −
}+ −
+ −
#endif /* (__CORTEX_M == 0x04U) || (__CORTEX_M == 0x07U) */+ −
+ −
+ −
+ −
/*@} end of CMSIS_Core_RegAccFunctions */+ −
+ −
+ −
/* ########################## Core Instruction Access ######################### */+ −
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface+ −
Access to dedicated instructions+ −
@{+ −
*/+ −
+ −
/* Define macros for porting to both thumb1 and thumb2.+ −
* For thumb1, use low register (r0-r7), specified by constraint "l"+ −
* Otherwise, use general registers, specified by constraint "r" */+ −
#if defined (__thumb__) && !defined (__thumb2__)+ −
#define __CMSIS_GCC_OUT_REG(r) "=l" (r)+ −
#define __CMSIS_GCC_USE_REG(r) "l" (r)+ −
#else+ −
#define __CMSIS_GCC_OUT_REG(r) "=r" (r)+ −
#define __CMSIS_GCC_USE_REG(r) "r" (r)+ −
#endif+ −
+ −
/**+ −
\brief No Operation+ −
\details No Operation does nothing. This instruction can be used for code alignment purposes.+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE void __NOP(void)+ −
{+ −
__ASM volatile ("nop");+ −
}+ −
+ −
+ −
/**+ −
\brief Wait For Interrupt+ −
\details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE void __WFI(void)+ −
{+ −
__ASM volatile ("wfi");+ −
}+ −
+ −
+ −
/**+ −
\brief Wait For Event+ −
\details Wait For Event is a hint instruction that permits the processor to enter+ −
a low-power state until one of a number of events occurs.+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE void __WFE(void)+ −
{+ −
__ASM volatile ("wfe");+ −
}+ −
+ −
+ −
/**+ −
\brief Send Event+ −
\details Send Event is a hint instruction. It causes an event to be signaled to the CPU.+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE void __SEV(void)+ −
{+ −
__ASM volatile ("sev");+ −
}+ −
+ −
+ −
/**+ −
\brief Instruction Synchronization Barrier+ −
\details Instruction Synchronization Barrier flushes the pipeline in the processor,+ −
so that all instructions following the ISB are fetched from cache or memory,+ −
after the instruction has been completed.+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE void __ISB(void)+ −
{+ −
__ASM volatile ("isb 0xF":::"memory");+ −
}+ −
+ −
+ −
/**+ −
\brief Data Synchronization Barrier+ −
\details Acts as a special kind of Data Memory Barrier.+ −
It completes when all explicit memory accesses before this instruction complete.+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE void __DSB(void)+ −
{+ −
__ASM volatile ("dsb 0xF":::"memory");+ −
}+ −
+ −
+ −
/**+ −
\brief Data Memory Barrier+ −
\details Ensures the apparent order of the explicit memory operations before+ −
and after the instruction, without ensuring their completion.+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE void __DMB(void)+ −
{+ −
__ASM volatile ("dmb 0xF":::"memory");+ −
}+ −
+ −
+ −
/**+ −
\brief Reverse byte order (32 bit)+ −
\details Reverses the byte order in integer value.+ −
\param [in] value Value to reverse+ −
\return Reversed value+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE uint32_t __REV(uint32_t value)+ −
{+ −
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)+ −
return __builtin_bswap32(value);+ −
#else+ −
uint32_t result;+ −
+ −
__ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );+ −
return(result);+ −
#endif+ −
}+ −
+ −
+ −
/**+ −
\brief Reverse byte order (16 bit)+ −
\details Reverses the byte order in two unsigned short values.+ −
\param [in] value Value to reverse+ −
\return Reversed value+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE uint32_t __REV16(uint32_t value)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );+ −
return(result);+ −
}+ −
+ −
+ −
/**+ −
\brief Reverse byte order in signed short value+ −
\details Reverses the byte order in a signed short value with sign extension to integer.+ −
\param [in] value Value to reverse+ −
\return Reversed value+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE int32_t __REVSH(int32_t value)+ −
{+ −
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)+ −
return (short)__builtin_bswap16(value);+ −
#else+ −
int32_t result;+ −
+ −
__ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );+ −
return(result);+ −
#endif+ −
}+ −
+ −
+ −
/**+ −
\brief Rotate Right in unsigned value (32 bit)+ −
\details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.+ −
\param [in] value Value to rotate+ −
\param [in] value Number of Bits to rotate+ −
\return Rotated value+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)+ −
{+ −
return (op1 >> op2) | (op1 << (32U - op2));+ −
}+ −
+ −
+ −
/**+ −
\brief Breakpoint+ −
\details Causes the processor to enter Debug state.+ −
Debug tools can use this to investigate system state when the instruction at a particular address is reached.+ −
\param [in] value is ignored by the processor.+ −
If required, a debugger can use it to store additional information about the breakpoint.+ −
*/+ −
#define __BKPT(value) __ASM volatile ("bkpt "#value)+ −
+ −
+ −
/**+ −
\brief Reverse bit order of value+ −
\details Reverses the bit order of the given value.+ −
\param [in] value Value to reverse+ −
\return Reversed value+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)+ −
{+ −
uint32_t result;+ −
+ −
#if (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U)+ −
__ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );+ −
#else+ −
int32_t s = 4 /*sizeof(v)*/ * 8 - 1; /* extra shift needed at end */+ −
+ −
result = value; /* r will be reversed bits of v; first get LSB of v */+ −
for (value >>= 1U; value; value >>= 1U)+ −
{+ −
result <<= 1U;+ −
result |= value & 1U;+ −
s--;+ −
}+ −
result <<= s; /* shift when v's highest bits are zero */+ −
#endif+ −
return(result);+ −
}+ −
+ −
+ −
/**+ −
\brief Count leading zeros+ −
\details Counts the number of leading zeros of a data value.+ −
\param [in] value Value to count the leading zeros+ −
\return number of leading zeros in value+ −
*/+ −
#define __CLZ __builtin_clz+ −
+ −
+ −
#if (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U)+ −
+ −
/**+ −
\brief LDR Exclusive (8 bit)+ −
\details Executes a exclusive LDR instruction for 8 bit value.+ −
\param [in] ptr Pointer to data+ −
\return value of type uint8_t at (*ptr)+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr)+ −
{+ −
uint32_t result;+ −
+ −
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)+ −
__ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );+ −
#else+ −
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not+ −
accepted by assembler. So has to use following less efficient pattern.+ −
*/+ −
__ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );+ −
#endif+ −
return ((uint8_t) result); /* Add explicit type cast here */+ −
}+ −
+ −
+ −
/**+ −
\brief LDR Exclusive (16 bit)+ −
\details Executes a exclusive LDR instruction for 16 bit values.+ −
\param [in] ptr Pointer to data+ −
\return value of type uint16_t at (*ptr)+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr)+ −
{+ −
uint32_t result;+ −
+ −
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)+ −
__ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );+ −
#else+ −
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not+ −
accepted by assembler. So has to use following less efficient pattern.+ −
*/+ −
__ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );+ −
#endif+ −
return ((uint16_t) result); /* Add explicit type cast here */+ −
}+ −
+ −
+ −
/**+ −
\brief LDR Exclusive (32 bit)+ −
\details Executes a exclusive LDR instruction for 32 bit values.+ −
\param [in] ptr Pointer to data+ −
\return value of type uint32_t at (*ptr)+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );+ −
return(result);+ −
}+ −
+ −
+ −
/**+ −
\brief STR Exclusive (8 bit)+ −
\details Executes a exclusive STR instruction for 8 bit values.+ −
\param [in] value Value to store+ −
\param [in] ptr Pointer to location+ −
\return 0 Function succeeded+ −
\return 1 Function failed+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );+ −
return(result);+ −
}+ −
+ −
+ −
/**+ −
\brief STR Exclusive (16 bit)+ −
\details Executes a exclusive STR instruction for 16 bit values.+ −
\param [in] value Value to store+ −
\param [in] ptr Pointer to location+ −
\return 0 Function succeeded+ −
\return 1 Function failed+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );+ −
return(result);+ −
}+ −
+ −
+ −
/**+ −
\brief STR Exclusive (32 bit)+ −
\details Executes a exclusive STR instruction for 32 bit values.+ −
\param [in] value Value to store+ −
\param [in] ptr Pointer to location+ −
\return 0 Function succeeded+ −
\return 1 Function failed+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );+ −
return(result);+ −
}+ −
+ −
+ −
/**+ −
\brief Remove the exclusive lock+ −
\details Removes the exclusive lock which is created by LDREX.+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE void __CLREX(void)+ −
{+ −
__ASM volatile ("clrex" ::: "memory");+ −
}+ −
+ −
+ −
/**+ −
\brief Signed Saturate+ −
\details Saturates a signed value.+ −
\param [in] value Value to be saturated+ −
\param [in] sat Bit position to saturate to (1..32)+ −
\return Saturated value+ −
*/+ −
#define __SSAT(ARG1,ARG2) \+ −
({ \+ −
uint32_t __RES, __ARG1 = (ARG1); \+ −
__ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \+ −
__RES; \+ −
})+ −
+ −
+ −
/**+ −
\brief Unsigned Saturate+ −
\details Saturates an unsigned value.+ −
\param [in] value Value to be saturated+ −
\param [in] sat Bit position to saturate to (0..31)+ −
\return Saturated value+ −
*/+ −
#define __USAT(ARG1,ARG2) \+ −
({ \+ −
uint32_t __RES, __ARG1 = (ARG1); \+ −
__ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \+ −
__RES; \+ −
})+ −
+ −
+ −
/**+ −
\brief Rotate Right with Extend (32 bit)+ −
\details Moves each bit of a bitstring right by one bit.+ −
The carry input is shifted in at the left end of the bitstring.+ −
\param [in] value Value to rotate+ −
\return Rotated value+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE uint32_t __RRX(uint32_t value)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );+ −
return(result);+ −
}+ −
+ −
+ −
/**+ −
\brief LDRT Unprivileged (8 bit)+ −
\details Executes a Unprivileged LDRT instruction for 8 bit value.+ −
\param [in] ptr Pointer to data+ −
\return value of type uint8_t at (*ptr)+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE uint8_t __LDRBT(volatile uint8_t *addr)+ −
{+ −
uint32_t result;+ −
+ −
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)+ −
__ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*addr) );+ −
#else+ −
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not+ −
accepted by assembler. So has to use following less efficient pattern.+ −
*/+ −
__ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );+ −
#endif+ −
return ((uint8_t) result); /* Add explicit type cast here */+ −
}+ −
+ −
+ −
/**+ −
\brief LDRT Unprivileged (16 bit)+ −
\details Executes a Unprivileged LDRT instruction for 16 bit values.+ −
\param [in] ptr Pointer to data+ −
\return value of type uint16_t at (*ptr)+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE uint16_t __LDRHT(volatile uint16_t *addr)+ −
{+ −
uint32_t result;+ −
+ −
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)+ −
__ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*addr) );+ −
#else+ −
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not+ −
accepted by assembler. So has to use following less efficient pattern.+ −
*/+ −
__ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );+ −
#endif+ −
return ((uint16_t) result); /* Add explicit type cast here */+ −
}+ −
+ −
+ −
/**+ −
\brief LDRT Unprivileged (32 bit)+ −
\details Executes a Unprivileged LDRT instruction for 32 bit values.+ −
\param [in] ptr Pointer to data+ −
\return value of type uint32_t at (*ptr)+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE uint32_t __LDRT(volatile uint32_t *addr)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*addr) );+ −
return(result);+ −
}+ −
+ −
+ −
/**+ −
\brief STRT Unprivileged (8 bit)+ −
\details Executes a Unprivileged STRT instruction for 8 bit values.+ −
\param [in] value Value to store+ −
\param [in] ptr Pointer to location+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE void __STRBT(uint8_t value, volatile uint8_t *addr)+ −
{+ −
__ASM volatile ("strbt %1, %0" : "=Q" (*addr) : "r" ((uint32_t)value) );+ −
}+ −
+ −
+ −
/**+ −
\brief STRT Unprivileged (16 bit)+ −
\details Executes a Unprivileged STRT instruction for 16 bit values.+ −
\param [in] value Value to store+ −
\param [in] ptr Pointer to location+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE void __STRHT(uint16_t value, volatile uint16_t *addr)+ −
{+ −
__ASM volatile ("strht %1, %0" : "=Q" (*addr) : "r" ((uint32_t)value) );+ −
}+ −
+ −
+ −
/**+ −
\brief STRT Unprivileged (32 bit)+ −
\details Executes a Unprivileged STRT instruction for 32 bit values.+ −
\param [in] value Value to store+ −
\param [in] ptr Pointer to location+ −
*/+ −
__attribute__((always_inline)) __STATIC_INLINE void __STRT(uint32_t value, volatile uint32_t *addr)+ −
{+ −
__ASM volatile ("strt %1, %0" : "=Q" (*addr) : "r" (value) );+ −
}+ −
+ −
#endif /* (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U) */+ −
+ −
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */+ −
+ −
+ −
/* ################### Compiler specific Intrinsics ########################### */+ −
/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics+ −
Access to dedicated SIMD instructions+ −
@{+ −
*/+ −
+ −
#if (__CORTEX_M >= 0x04U) /* only for Cortex-M4 and above */+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SASX(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QASX(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UASX(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAX(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );+ −
return(result);+ −
}+ −
+ −
#define __SSAT16(ARG1,ARG2) \+ −
({ \+ −
int32_t __RES, __ARG1 = (ARG1); \+ −
__ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \+ −
__RES; \+ −
})+ −
+ −
#define __USAT16(ARG1,ARG2) \+ −
({ \+ −
uint32_t __RES, __ARG1 = (ARG1); \+ −
__ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \+ −
__RES; \+ −
})+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTB16(uint32_t op1)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTB16(uint32_t op1)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)+ −
{+ −
union llreg_u{+ −
uint32_t w32[2];+ −
uint64_t w64;+ −
} llr;+ −
llr.w64 = acc;+ −
+ −
#ifndef __ARMEB__ /* Little endian */+ −
__ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );+ −
#else /* Big endian */+ −
__ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );+ −
#endif+ −
+ −
return(llr.w64);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)+ −
{+ −
union llreg_u{+ −
uint32_t w32[2];+ −
uint64_t w64;+ −
} llr;+ −
llr.w64 = acc;+ −
+ −
#ifndef __ARMEB__ /* Little endian */+ −
__ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );+ −
#else /* Big endian */+ −
__ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );+ −
#endif+ −
+ −
return(llr.w64);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)+ −
{+ −
union llreg_u{+ −
uint32_t w32[2];+ −
uint64_t w64;+ −
} llr;+ −
llr.w64 = acc;+ −
+ −
#ifndef __ARMEB__ /* Little endian */+ −
__ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );+ −
#else /* Big endian */+ −
__ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );+ −
#endif+ −
+ −
return(llr.w64);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)+ −
{+ −
union llreg_u{+ −
uint32_t w32[2];+ −
uint64_t w64;+ −
} llr;+ −
llr.w64 = acc;+ −
+ −
#ifndef __ARMEB__ /* Little endian */+ −
__ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );+ −
#else /* Big endian */+ −
__ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );+ −
#endif+ −
+ −
return(llr.w64);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SEL (uint32_t op1, uint32_t op2)+ −
{+ −
uint32_t result;+ −
+ −
__ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __QADD( int32_t op1, int32_t op2)+ −
{+ −
int32_t result;+ −
+ −
__ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __QSUB( int32_t op1, int32_t op2)+ −
{+ −
int32_t result;+ −
+ −
__ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );+ −
return(result);+ −
}+ −
+ −
#define __PKHBT(ARG1,ARG2,ARG3) \+ −
({ \+ −
uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \+ −
__ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \+ −
__RES; \+ −
})+ −
+ −
#define __PKHTB(ARG1,ARG2,ARG3) \+ −
({ \+ −
uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \+ −
if (ARG3 == 0) \+ −
__ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \+ −
else \+ −
__ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \+ −
__RES; \+ −
})+ −
+ −
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)+ −
{+ −
int32_t result;+ −
+ −
__ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );+ −
return(result);+ −
}+ −
+ −
#endif /* (__CORTEX_M >= 0x04) */+ −
/*@} end of group CMSIS_SIMD_intrinsics */+ −
+ −
+ −
#if defined ( __GNUC__ )+ −
#pragma GCC diagnostic pop+ −
#endif+ −
+ −
#endif /* __CMSIS_GCC_H */+ −