Mercurial > public > ostc4
view Common/Drivers/STM32F4xx_HAL_Driver/Inc/stm32f4xx_ll_usart.h @ 856:af035b883382 Evo_2_23
Do not show SP tab if PSCR mode is active:
In the previous version the setpoint tab was shown even if operation mode PSCR was selected. SPs do not matter for PSCR operation and will not be shown in the new version.
author | Ideenmodellierer |
---|---|
date | Sun, 05 May 2024 17:20:56 +0200 |
parents | c78bcbd5deda |
children |
line wrap: on
line source
/** ****************************************************************************** * @file stm32f4xx_ll_usart.h * @author MCD Application Team * @brief Header file of USART LL module. ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F4xx_LL_USART_H #define __STM32F4xx_LL_USART_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "stm32f4xx.h" /** @addtogroup STM32F4xx_LL_Driver * @{ */ #if defined (USART1) || defined (USART2) || defined (USART3) || defined (USART6) || defined (UART4) || defined (UART5) || defined (UART7) || defined (UART8) || defined (UART9) || defined (UART10) /** @defgroup USART_LL USART * @{ */ /* Private types -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private constants ---------------------------------------------------------*/ /** @defgroup USART_LL_Private_Constants USART Private Constants * @{ */ /* Defines used for the bit position in the register and perform offsets*/ #define USART_POSITION_GTPR_GT USART_GTPR_GT_Pos /** * @} */ /* Private macros ------------------------------------------------------------*/ #if defined(USE_FULL_LL_DRIVER) /** @defgroup USART_LL_Private_Macros USART Private Macros * @{ */ /** * @} */ #endif /*USE_FULL_LL_DRIVER*/ /* Exported types ------------------------------------------------------------*/ #if defined(USE_FULL_LL_DRIVER) /** @defgroup USART_LL_ES_INIT USART Exported Init structures * @{ */ /** * @brief LL USART Init Structure definition */ typedef struct { uint32_t BaudRate; /*!< This field defines expected Usart communication baud rate. This feature can be modified afterwards using unitary function @ref LL_USART_SetBaudRate().*/ uint32_t DataWidth; /*!< Specifies the number of data bits transmitted or received in a frame. This parameter can be a value of @ref USART_LL_EC_DATAWIDTH. This feature can be modified afterwards using unitary function @ref LL_USART_SetDataWidth().*/ uint32_t StopBits; /*!< Specifies the number of stop bits transmitted. This parameter can be a value of @ref USART_LL_EC_STOPBITS. This feature can be modified afterwards using unitary function @ref LL_USART_SetStopBitsLength().*/ uint32_t Parity; /*!< Specifies the parity mode. This parameter can be a value of @ref USART_LL_EC_PARITY. This feature can be modified afterwards using unitary function @ref LL_USART_SetParity().*/ uint32_t TransferDirection; /*!< Specifies whether the Receive and/or Transmit mode is enabled or disabled. This parameter can be a value of @ref USART_LL_EC_DIRECTION. This feature can be modified afterwards using unitary function @ref LL_USART_SetTransferDirection().*/ uint32_t HardwareFlowControl; /*!< Specifies whether the hardware flow control mode is enabled or disabled. This parameter can be a value of @ref USART_LL_EC_HWCONTROL. This feature can be modified afterwards using unitary function @ref LL_USART_SetHWFlowCtrl().*/ uint32_t OverSampling; /*!< Specifies whether USART oversampling mode is 16 or 8. This parameter can be a value of @ref USART_LL_EC_OVERSAMPLING. This feature can be modified afterwards using unitary function @ref LL_USART_SetOverSampling().*/ } LL_USART_InitTypeDef; /** * @brief LL USART Clock Init Structure definition */ typedef struct { uint32_t ClockOutput; /*!< Specifies whether the USART clock is enabled or disabled. This parameter can be a value of @ref USART_LL_EC_CLOCK. USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_EnableSCLKOutput() or @ref LL_USART_DisableSCLKOutput(). For more details, refer to description of this function. */ uint32_t ClockPolarity; /*!< Specifies the steady state of the serial clock. This parameter can be a value of @ref USART_LL_EC_POLARITY. USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetClockPolarity(). For more details, refer to description of this function. */ uint32_t ClockPhase; /*!< Specifies the clock transition on which the bit capture is made. This parameter can be a value of @ref USART_LL_EC_PHASE. USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetClockPhase(). For more details, refer to description of this function. */ uint32_t LastBitClockPulse; /*!< Specifies whether the clock pulse corresponding to the last transmitted data bit (MSB) has to be output on the SCLK pin in synchronous mode. This parameter can be a value of @ref USART_LL_EC_LASTCLKPULSE. USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetLastClkPulseOutput(). For more details, refer to description of this function. */ } LL_USART_ClockInitTypeDef; /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /* Exported constants --------------------------------------------------------*/ /** @defgroup USART_LL_Exported_Constants USART Exported Constants * @{ */ /** @defgroup USART_LL_EC_GET_FLAG Get Flags Defines * @brief Flags defines which can be used with LL_USART_ReadReg function * @{ */ #define LL_USART_SR_PE USART_SR_PE /*!< Parity error flag */ #define LL_USART_SR_FE USART_SR_FE /*!< Framing error flag */ #define LL_USART_SR_NE USART_SR_NE /*!< Noise detected flag */ #define LL_USART_SR_ORE USART_SR_ORE /*!< Overrun error flag */ #define LL_USART_SR_IDLE USART_SR_IDLE /*!< Idle line detected flag */ #define LL_USART_SR_RXNE USART_SR_RXNE /*!< Read data register not empty flag */ #define LL_USART_SR_TC USART_SR_TC /*!< Transmission complete flag */ #define LL_USART_SR_TXE USART_SR_TXE /*!< Transmit data register empty flag */ #define LL_USART_SR_LBD USART_SR_LBD /*!< LIN break detection flag */ #define LL_USART_SR_CTS USART_SR_CTS /*!< CTS flag */ /** * @} */ /** @defgroup USART_LL_EC_IT IT Defines * @brief IT defines which can be used with LL_USART_ReadReg and LL_USART_WriteReg functions * @{ */ #define LL_USART_CR1_IDLEIE USART_CR1_IDLEIE /*!< IDLE interrupt enable */ #define LL_USART_CR1_RXNEIE USART_CR1_RXNEIE /*!< Read data register not empty interrupt enable */ #define LL_USART_CR1_TCIE USART_CR1_TCIE /*!< Transmission complete interrupt enable */ #define LL_USART_CR1_TXEIE USART_CR1_TXEIE /*!< Transmit data register empty interrupt enable */ #define LL_USART_CR1_PEIE USART_CR1_PEIE /*!< Parity error */ #define LL_USART_CR2_LBDIE USART_CR2_LBDIE /*!< LIN break detection interrupt enable */ #define LL_USART_CR3_EIE USART_CR3_EIE /*!< Error interrupt enable */ #define LL_USART_CR3_CTSIE USART_CR3_CTSIE /*!< CTS interrupt enable */ /** * @} */ /** @defgroup USART_LL_EC_DIRECTION Communication Direction * @{ */ #define LL_USART_DIRECTION_NONE 0x00000000U /*!< Transmitter and Receiver are disabled */ #define LL_USART_DIRECTION_RX USART_CR1_RE /*!< Transmitter is disabled and Receiver is enabled */ #define LL_USART_DIRECTION_TX USART_CR1_TE /*!< Transmitter is enabled and Receiver is disabled */ #define LL_USART_DIRECTION_TX_RX (USART_CR1_TE |USART_CR1_RE) /*!< Transmitter and Receiver are enabled */ /** * @} */ /** @defgroup USART_LL_EC_PARITY Parity Control * @{ */ #define LL_USART_PARITY_NONE 0x00000000U /*!< Parity control disabled */ #define LL_USART_PARITY_EVEN USART_CR1_PCE /*!< Parity control enabled and Even Parity is selected */ #define LL_USART_PARITY_ODD (USART_CR1_PCE | USART_CR1_PS) /*!< Parity control enabled and Odd Parity is selected */ /** * @} */ /** @defgroup USART_LL_EC_WAKEUP Wakeup * @{ */ #define LL_USART_WAKEUP_IDLELINE 0x00000000U /*!< USART wake up from Mute mode on Idle Line */ #define LL_USART_WAKEUP_ADDRESSMARK USART_CR1_WAKE /*!< USART wake up from Mute mode on Address Mark */ /** * @} */ /** @defgroup USART_LL_EC_DATAWIDTH Datawidth * @{ */ #define LL_USART_DATAWIDTH_8B 0x00000000U /*!< 8 bits word length : Start bit, 8 data bits, n stop bits */ #define LL_USART_DATAWIDTH_9B USART_CR1_M /*!< 9 bits word length : Start bit, 9 data bits, n stop bits */ /** * @} */ /** @defgroup USART_LL_EC_OVERSAMPLING Oversampling * @{ */ #define LL_USART_OVERSAMPLING_16 0x00000000U /*!< Oversampling by 16 */ #define LL_USART_OVERSAMPLING_8 USART_CR1_OVER8 /*!< Oversampling by 8 */ /** * @} */ #if defined(USE_FULL_LL_DRIVER) /** @defgroup USART_LL_EC_CLOCK Clock Signal * @{ */ #define LL_USART_CLOCK_DISABLE 0x00000000U /*!< Clock signal not provided */ #define LL_USART_CLOCK_ENABLE USART_CR2_CLKEN /*!< Clock signal provided */ /** * @} */ #endif /*USE_FULL_LL_DRIVER*/ /** @defgroup USART_LL_EC_LASTCLKPULSE Last Clock Pulse * @{ */ #define LL_USART_LASTCLKPULSE_NO_OUTPUT 0x00000000U /*!< The clock pulse of the last data bit is not output to the SCLK pin */ #define LL_USART_LASTCLKPULSE_OUTPUT USART_CR2_LBCL /*!< The clock pulse of the last data bit is output to the SCLK pin */ /** * @} */ /** @defgroup USART_LL_EC_PHASE Clock Phase * @{ */ #define LL_USART_PHASE_1EDGE 0x00000000U /*!< The first clock transition is the first data capture edge */ #define LL_USART_PHASE_2EDGE USART_CR2_CPHA /*!< The second clock transition is the first data capture edge */ /** * @} */ /** @defgroup USART_LL_EC_POLARITY Clock Polarity * @{ */ #define LL_USART_POLARITY_LOW 0x00000000U /*!< Steady low value on SCLK pin outside transmission window*/ #define LL_USART_POLARITY_HIGH USART_CR2_CPOL /*!< Steady high value on SCLK pin outside transmission window */ /** * @} */ /** @defgroup USART_LL_EC_STOPBITS Stop Bits * @{ */ #define LL_USART_STOPBITS_0_5 USART_CR2_STOP_0 /*!< 0.5 stop bit */ #define LL_USART_STOPBITS_1 0x00000000U /*!< 1 stop bit */ #define LL_USART_STOPBITS_1_5 (USART_CR2_STOP_0 | USART_CR2_STOP_1) /*!< 1.5 stop bits */ #define LL_USART_STOPBITS_2 USART_CR2_STOP_1 /*!< 2 stop bits */ /** * @} */ /** @defgroup USART_LL_EC_HWCONTROL Hardware Control * @{ */ #define LL_USART_HWCONTROL_NONE 0x00000000U /*!< CTS and RTS hardware flow control disabled */ #define LL_USART_HWCONTROL_RTS USART_CR3_RTSE /*!< RTS output enabled, data is only requested when there is space in the receive buffer */ #define LL_USART_HWCONTROL_CTS USART_CR3_CTSE /*!< CTS mode enabled, data is only transmitted when the nCTS input is asserted (tied to 0) */ #define LL_USART_HWCONTROL_RTS_CTS (USART_CR3_RTSE | USART_CR3_CTSE) /*!< CTS and RTS hardware flow control enabled */ /** * @} */ /** @defgroup USART_LL_EC_IRDA_POWER IrDA Power * @{ */ #define LL_USART_IRDA_POWER_NORMAL 0x00000000U /*!< IrDA normal power mode */ #define LL_USART_IRDA_POWER_LOW USART_CR3_IRLP /*!< IrDA low power mode */ /** * @} */ /** @defgroup USART_LL_EC_LINBREAK_DETECT LIN Break Detection Length * @{ */ #define LL_USART_LINBREAK_DETECT_10B 0x00000000U /*!< 10-bit break detection method selected */ #define LL_USART_LINBREAK_DETECT_11B USART_CR2_LBDL /*!< 11-bit break detection method selected */ /** * @} */ /** * @} */ /* Exported macro ------------------------------------------------------------*/ /** @defgroup USART_LL_Exported_Macros USART Exported Macros * @{ */ /** @defgroup USART_LL_EM_WRITE_READ Common Write and read registers Macros * @{ */ /** * @brief Write a value in USART register * @param __INSTANCE__ USART Instance * @param __REG__ Register to be written * @param __VALUE__ Value to be written in the register * @retval None */ #define LL_USART_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__)) /** * @brief Read a value in USART register * @param __INSTANCE__ USART Instance * @param __REG__ Register to be read * @retval Register value */ #define LL_USART_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__) /** * @} */ /** @defgroup USART_LL_EM_Exported_Macros_Helper Exported_Macros_Helper * @{ */ /** * @brief Compute USARTDIV value according to Peripheral Clock and * expected Baud Rate in 8 bits sampling mode (32 bits value of USARTDIV is returned) * @param __PERIPHCLK__ Peripheral Clock frequency used for USART instance * @param __BAUDRATE__ Baud rate value to achieve * @retval USARTDIV value to be used for BRR register filling in OverSampling_8 case */ #define __LL_USART_DIV_SAMPLING8_100(__PERIPHCLK__, __BAUDRATE__) (((__PERIPHCLK__)*25)/(2*(__BAUDRATE__))) #define __LL_USART_DIVMANT_SAMPLING8(__PERIPHCLK__, __BAUDRATE__) (__LL_USART_DIV_SAMPLING8_100((__PERIPHCLK__), (__BAUDRATE__))/100) #define __LL_USART_DIVFRAQ_SAMPLING8(__PERIPHCLK__, __BAUDRATE__) (((__LL_USART_DIV_SAMPLING8_100((__PERIPHCLK__), (__BAUDRATE__)) - (__LL_USART_DIVMANT_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) * 100)) * 8 + 50) / 100) /* UART BRR = mantissa + overflow + fraction = (UART DIVMANT << 4) + ((UART DIVFRAQ & 0xF8) << 1) + (UART DIVFRAQ & 0x07) */ #define __LL_USART_DIV_SAMPLING8(__PERIPHCLK__, __BAUDRATE__) (((__LL_USART_DIVMANT_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) << 4) + \ ((__LL_USART_DIVFRAQ_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) & 0xF8) << 1)) + \ (__LL_USART_DIVFRAQ_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) & 0x07)) /** * @brief Compute USARTDIV value according to Peripheral Clock and * expected Baud Rate in 16 bits sampling mode (32 bits value of USARTDIV is returned) * @param __PERIPHCLK__ Peripheral Clock frequency used for USART instance * @param __BAUDRATE__ Baud rate value to achieve * @retval USARTDIV value to be used for BRR register filling in OverSampling_16 case */ #define __LL_USART_DIV_SAMPLING16_100(__PERIPHCLK__, __BAUDRATE__) (((__PERIPHCLK__)*25)/(4*(__BAUDRATE__))) #define __LL_USART_DIVMANT_SAMPLING16(__PERIPHCLK__, __BAUDRATE__) (__LL_USART_DIV_SAMPLING16_100((__PERIPHCLK__), (__BAUDRATE__))/100) #define __LL_USART_DIVFRAQ_SAMPLING16(__PERIPHCLK__, __BAUDRATE__) (((__LL_USART_DIV_SAMPLING16_100((__PERIPHCLK__), (__BAUDRATE__)) - (__LL_USART_DIVMANT_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) * 100)) * 16 + 50) / 100) /* USART BRR = mantissa + overflow + fraction = (USART DIVMANT << 4) + (USART DIVFRAQ & 0xF0) + (USART DIVFRAQ & 0x0F) */ #define __LL_USART_DIV_SAMPLING16(__PERIPHCLK__, __BAUDRATE__) (((__LL_USART_DIVMANT_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) << 4) + \ (__LL_USART_DIVFRAQ_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) & 0xF0)) + \ (__LL_USART_DIVFRAQ_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) & 0x0F)) /** * @} */ /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @defgroup USART_LL_Exported_Functions USART Exported Functions * @{ */ /** @defgroup USART_LL_EF_Configuration Configuration functions * @{ */ /** * @brief USART Enable * @rmtoll CR1 UE LL_USART_Enable * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_Enable(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR1, USART_CR1_UE); } /** * @brief USART Disable (all USART prescalers and outputs are disabled) * @note When USART is disabled, USART prescalers and outputs are stopped immediately, * and current operations are discarded. The configuration of the USART is kept, but all the status * flags, in the USARTx_SR are set to their default values. * @rmtoll CR1 UE LL_USART_Disable * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_Disable(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR1, USART_CR1_UE); } /** * @brief Indicate if USART is enabled * @rmtoll CR1 UE LL_USART_IsEnabled * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabled(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR1, USART_CR1_UE) == (USART_CR1_UE)); } /** * @brief Receiver Enable (Receiver is enabled and begins searching for a start bit) * @rmtoll CR1 RE LL_USART_EnableDirectionRx * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableDirectionRx(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR1, USART_CR1_RE); } /** * @brief Receiver Disable * @rmtoll CR1 RE LL_USART_DisableDirectionRx * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableDirectionRx(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR1, USART_CR1_RE); } /** * @brief Transmitter Enable * @rmtoll CR1 TE LL_USART_EnableDirectionTx * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableDirectionTx(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR1, USART_CR1_TE); } /** * @brief Transmitter Disable * @rmtoll CR1 TE LL_USART_DisableDirectionTx * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableDirectionTx(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR1, USART_CR1_TE); } /** * @brief Configure simultaneously enabled/disabled states * of Transmitter and Receiver * @rmtoll CR1 RE LL_USART_SetTransferDirection\n * CR1 TE LL_USART_SetTransferDirection * @param USARTx USART Instance * @param TransferDirection This parameter can be one of the following values: * @arg @ref LL_USART_DIRECTION_NONE * @arg @ref LL_USART_DIRECTION_RX * @arg @ref LL_USART_DIRECTION_TX * @arg @ref LL_USART_DIRECTION_TX_RX * @retval None */ __STATIC_INLINE void LL_USART_SetTransferDirection(USART_TypeDef *USARTx, uint32_t TransferDirection) { MODIFY_REG(USARTx->CR1, USART_CR1_RE | USART_CR1_TE, TransferDirection); } /** * @brief Return enabled/disabled states of Transmitter and Receiver * @rmtoll CR1 RE LL_USART_GetTransferDirection\n * CR1 TE LL_USART_GetTransferDirection * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_DIRECTION_NONE * @arg @ref LL_USART_DIRECTION_RX * @arg @ref LL_USART_DIRECTION_TX * @arg @ref LL_USART_DIRECTION_TX_RX */ __STATIC_INLINE uint32_t LL_USART_GetTransferDirection(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_RE | USART_CR1_TE)); } /** * @brief Configure Parity (enabled/disabled and parity mode if enabled). * @note This function selects if hardware parity control (generation and detection) is enabled or disabled. * When the parity control is enabled (Odd or Even), computed parity bit is inserted at the MSB position * (9th or 8th bit depending on data width) and parity is checked on the received data. * @rmtoll CR1 PS LL_USART_SetParity\n * CR1 PCE LL_USART_SetParity * @param USARTx USART Instance * @param Parity This parameter can be one of the following values: * @arg @ref LL_USART_PARITY_NONE * @arg @ref LL_USART_PARITY_EVEN * @arg @ref LL_USART_PARITY_ODD * @retval None */ __STATIC_INLINE void LL_USART_SetParity(USART_TypeDef *USARTx, uint32_t Parity) { MODIFY_REG(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE, Parity); } /** * @brief Return Parity configuration (enabled/disabled and parity mode if enabled) * @rmtoll CR1 PS LL_USART_GetParity\n * CR1 PCE LL_USART_GetParity * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_PARITY_NONE * @arg @ref LL_USART_PARITY_EVEN * @arg @ref LL_USART_PARITY_ODD */ __STATIC_INLINE uint32_t LL_USART_GetParity(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE)); } /** * @brief Set Receiver Wake Up method from Mute mode. * @rmtoll CR1 WAKE LL_USART_SetWakeUpMethod * @param USARTx USART Instance * @param Method This parameter can be one of the following values: * @arg @ref LL_USART_WAKEUP_IDLELINE * @arg @ref LL_USART_WAKEUP_ADDRESSMARK * @retval None */ __STATIC_INLINE void LL_USART_SetWakeUpMethod(USART_TypeDef *USARTx, uint32_t Method) { MODIFY_REG(USARTx->CR1, USART_CR1_WAKE, Method); } /** * @brief Return Receiver Wake Up method from Mute mode * @rmtoll CR1 WAKE LL_USART_GetWakeUpMethod * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_WAKEUP_IDLELINE * @arg @ref LL_USART_WAKEUP_ADDRESSMARK */ __STATIC_INLINE uint32_t LL_USART_GetWakeUpMethod(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_WAKE)); } /** * @brief Set Word length (i.e. nb of data bits, excluding start and stop bits) * @rmtoll CR1 M LL_USART_SetDataWidth * @param USARTx USART Instance * @param DataWidth This parameter can be one of the following values: * @arg @ref LL_USART_DATAWIDTH_8B * @arg @ref LL_USART_DATAWIDTH_9B * @retval None */ __STATIC_INLINE void LL_USART_SetDataWidth(USART_TypeDef *USARTx, uint32_t DataWidth) { MODIFY_REG(USARTx->CR1, USART_CR1_M, DataWidth); } /** * @brief Return Word length (i.e. nb of data bits, excluding start and stop bits) * @rmtoll CR1 M LL_USART_GetDataWidth * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_DATAWIDTH_8B * @arg @ref LL_USART_DATAWIDTH_9B */ __STATIC_INLINE uint32_t LL_USART_GetDataWidth(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_M)); } /** * @brief Set Oversampling to 8-bit or 16-bit mode * @rmtoll CR1 OVER8 LL_USART_SetOverSampling * @param USARTx USART Instance * @param OverSampling This parameter can be one of the following values: * @arg @ref LL_USART_OVERSAMPLING_16 * @arg @ref LL_USART_OVERSAMPLING_8 * @retval None */ __STATIC_INLINE void LL_USART_SetOverSampling(USART_TypeDef *USARTx, uint32_t OverSampling) { MODIFY_REG(USARTx->CR1, USART_CR1_OVER8, OverSampling); } /** * @brief Return Oversampling mode * @rmtoll CR1 OVER8 LL_USART_GetOverSampling * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_OVERSAMPLING_16 * @arg @ref LL_USART_OVERSAMPLING_8 */ __STATIC_INLINE uint32_t LL_USART_GetOverSampling(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_OVER8)); } /** * @brief Configure if Clock pulse of the last data bit is output to the SCLK pin or not * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @rmtoll CR2 LBCL LL_USART_SetLastClkPulseOutput * @param USARTx USART Instance * @param LastBitClockPulse This parameter can be one of the following values: * @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT * @arg @ref LL_USART_LASTCLKPULSE_OUTPUT * @retval None */ __STATIC_INLINE void LL_USART_SetLastClkPulseOutput(USART_TypeDef *USARTx, uint32_t LastBitClockPulse) { MODIFY_REG(USARTx->CR2, USART_CR2_LBCL, LastBitClockPulse); } /** * @brief Retrieve Clock pulse of the last data bit output configuration * (Last bit Clock pulse output to the SCLK pin or not) * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @rmtoll CR2 LBCL LL_USART_GetLastClkPulseOutput * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT * @arg @ref LL_USART_LASTCLKPULSE_OUTPUT */ __STATIC_INLINE uint32_t LL_USART_GetLastClkPulseOutput(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_LBCL)); } /** * @brief Select the phase of the clock output on the SCLK pin in synchronous mode * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @rmtoll CR2 CPHA LL_USART_SetClockPhase * @param USARTx USART Instance * @param ClockPhase This parameter can be one of the following values: * @arg @ref LL_USART_PHASE_1EDGE * @arg @ref LL_USART_PHASE_2EDGE * @retval None */ __STATIC_INLINE void LL_USART_SetClockPhase(USART_TypeDef *USARTx, uint32_t ClockPhase) { MODIFY_REG(USARTx->CR2, USART_CR2_CPHA, ClockPhase); } /** * @brief Return phase of the clock output on the SCLK pin in synchronous mode * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @rmtoll CR2 CPHA LL_USART_GetClockPhase * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_PHASE_1EDGE * @arg @ref LL_USART_PHASE_2EDGE */ __STATIC_INLINE uint32_t LL_USART_GetClockPhase(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_CPHA)); } /** * @brief Select the polarity of the clock output on the SCLK pin in synchronous mode * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @rmtoll CR2 CPOL LL_USART_SetClockPolarity * @param USARTx USART Instance * @param ClockPolarity This parameter can be one of the following values: * @arg @ref LL_USART_POLARITY_LOW * @arg @ref LL_USART_POLARITY_HIGH * @retval None */ __STATIC_INLINE void LL_USART_SetClockPolarity(USART_TypeDef *USARTx, uint32_t ClockPolarity) { MODIFY_REG(USARTx->CR2, USART_CR2_CPOL, ClockPolarity); } /** * @brief Return polarity of the clock output on the SCLK pin in synchronous mode * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @rmtoll CR2 CPOL LL_USART_GetClockPolarity * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_POLARITY_LOW * @arg @ref LL_USART_POLARITY_HIGH */ __STATIC_INLINE uint32_t LL_USART_GetClockPolarity(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_CPOL)); } /** * @brief Configure Clock signal format (Phase Polarity and choice about output of last bit clock pulse) * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @note Call of this function is equivalent to following function call sequence : * - Clock Phase configuration using @ref LL_USART_SetClockPhase() function * - Clock Polarity configuration using @ref LL_USART_SetClockPolarity() function * - Output of Last bit Clock pulse configuration using @ref LL_USART_SetLastClkPulseOutput() function * @rmtoll CR2 CPHA LL_USART_ConfigClock\n * CR2 CPOL LL_USART_ConfigClock\n * CR2 LBCL LL_USART_ConfigClock * @param USARTx USART Instance * @param Phase This parameter can be one of the following values: * @arg @ref LL_USART_PHASE_1EDGE * @arg @ref LL_USART_PHASE_2EDGE * @param Polarity This parameter can be one of the following values: * @arg @ref LL_USART_POLARITY_LOW * @arg @ref LL_USART_POLARITY_HIGH * @param LBCPOutput This parameter can be one of the following values: * @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT * @arg @ref LL_USART_LASTCLKPULSE_OUTPUT * @retval None */ __STATIC_INLINE void LL_USART_ConfigClock(USART_TypeDef *USARTx, uint32_t Phase, uint32_t Polarity, uint32_t LBCPOutput) { MODIFY_REG(USARTx->CR2, USART_CR2_CPHA | USART_CR2_CPOL | USART_CR2_LBCL, Phase | Polarity | LBCPOutput); } /** * @brief Enable Clock output on SCLK pin * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @rmtoll CR2 CLKEN LL_USART_EnableSCLKOutput * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableSCLKOutput(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR2, USART_CR2_CLKEN); } /** * @brief Disable Clock output on SCLK pin * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @rmtoll CR2 CLKEN LL_USART_DisableSCLKOutput * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableSCLKOutput(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR2, USART_CR2_CLKEN); } /** * @brief Indicate if Clock output on SCLK pin is enabled * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @rmtoll CR2 CLKEN LL_USART_IsEnabledSCLKOutput * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledSCLKOutput(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR2, USART_CR2_CLKEN) == (USART_CR2_CLKEN)); } /** * @brief Set the length of the stop bits * @rmtoll CR2 STOP LL_USART_SetStopBitsLength * @param USARTx USART Instance * @param StopBits This parameter can be one of the following values: * @arg @ref LL_USART_STOPBITS_0_5 * @arg @ref LL_USART_STOPBITS_1 * @arg @ref LL_USART_STOPBITS_1_5 * @arg @ref LL_USART_STOPBITS_2 * @retval None */ __STATIC_INLINE void LL_USART_SetStopBitsLength(USART_TypeDef *USARTx, uint32_t StopBits) { MODIFY_REG(USARTx->CR2, USART_CR2_STOP, StopBits); } /** * @brief Retrieve the length of the stop bits * @rmtoll CR2 STOP LL_USART_GetStopBitsLength * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_STOPBITS_0_5 * @arg @ref LL_USART_STOPBITS_1 * @arg @ref LL_USART_STOPBITS_1_5 * @arg @ref LL_USART_STOPBITS_2 */ __STATIC_INLINE uint32_t LL_USART_GetStopBitsLength(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_STOP)); } /** * @brief Configure Character frame format (Datawidth, Parity control, Stop Bits) * @note Call of this function is equivalent to following function call sequence : * - Data Width configuration using @ref LL_USART_SetDataWidth() function * - Parity Control and mode configuration using @ref LL_USART_SetParity() function * - Stop bits configuration using @ref LL_USART_SetStopBitsLength() function * @rmtoll CR1 PS LL_USART_ConfigCharacter\n * CR1 PCE LL_USART_ConfigCharacter\n * CR1 M LL_USART_ConfigCharacter\n * CR2 STOP LL_USART_ConfigCharacter * @param USARTx USART Instance * @param DataWidth This parameter can be one of the following values: * @arg @ref LL_USART_DATAWIDTH_8B * @arg @ref LL_USART_DATAWIDTH_9B * @param Parity This parameter can be one of the following values: * @arg @ref LL_USART_PARITY_NONE * @arg @ref LL_USART_PARITY_EVEN * @arg @ref LL_USART_PARITY_ODD * @param StopBits This parameter can be one of the following values: * @arg @ref LL_USART_STOPBITS_0_5 * @arg @ref LL_USART_STOPBITS_1 * @arg @ref LL_USART_STOPBITS_1_5 * @arg @ref LL_USART_STOPBITS_2 * @retval None */ __STATIC_INLINE void LL_USART_ConfigCharacter(USART_TypeDef *USARTx, uint32_t DataWidth, uint32_t Parity, uint32_t StopBits) { MODIFY_REG(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE | USART_CR1_M, Parity | DataWidth); MODIFY_REG(USARTx->CR2, USART_CR2_STOP, StopBits); } /** * @brief Set Address of the USART node. * @note This is used in multiprocessor communication during Mute mode or Stop mode, * for wake up with address mark detection. * @rmtoll CR2 ADD LL_USART_SetNodeAddress * @param USARTx USART Instance * @param NodeAddress 4 bit Address of the USART node. * @retval None */ __STATIC_INLINE void LL_USART_SetNodeAddress(USART_TypeDef *USARTx, uint32_t NodeAddress) { MODIFY_REG(USARTx->CR2, USART_CR2_ADD, (NodeAddress & USART_CR2_ADD)); } /** * @brief Return 4 bit Address of the USART node as set in ADD field of CR2. * @note only 4bits (b3-b0) of returned value are relevant (b31-b4 are not relevant) * @rmtoll CR2 ADD LL_USART_GetNodeAddress * @param USARTx USART Instance * @retval Address of the USART node (Value between Min_Data=0 and Max_Data=255) */ __STATIC_INLINE uint32_t LL_USART_GetNodeAddress(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_ADD)); } /** * @brief Enable RTS HW Flow Control * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll CR3 RTSE LL_USART_EnableRTSHWFlowCtrl * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableRTSHWFlowCtrl(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_RTSE); } /** * @brief Disable RTS HW Flow Control * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll CR3 RTSE LL_USART_DisableRTSHWFlowCtrl * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableRTSHWFlowCtrl(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_RTSE); } /** * @brief Enable CTS HW Flow Control * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll CR3 CTSE LL_USART_EnableCTSHWFlowCtrl * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableCTSHWFlowCtrl(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_CTSE); } /** * @brief Disable CTS HW Flow Control * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll CR3 CTSE LL_USART_DisableCTSHWFlowCtrl * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableCTSHWFlowCtrl(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_CTSE); } /** * @brief Configure HW Flow Control mode (both CTS and RTS) * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll CR3 RTSE LL_USART_SetHWFlowCtrl\n * CR3 CTSE LL_USART_SetHWFlowCtrl * @param USARTx USART Instance * @param HardwareFlowControl This parameter can be one of the following values: * @arg @ref LL_USART_HWCONTROL_NONE * @arg @ref LL_USART_HWCONTROL_RTS * @arg @ref LL_USART_HWCONTROL_CTS * @arg @ref LL_USART_HWCONTROL_RTS_CTS * @retval None */ __STATIC_INLINE void LL_USART_SetHWFlowCtrl(USART_TypeDef *USARTx, uint32_t HardwareFlowControl) { MODIFY_REG(USARTx->CR3, USART_CR3_RTSE | USART_CR3_CTSE, HardwareFlowControl); } /** * @brief Return HW Flow Control configuration (both CTS and RTS) * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll CR3 RTSE LL_USART_GetHWFlowCtrl\n * CR3 CTSE LL_USART_GetHWFlowCtrl * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_HWCONTROL_NONE * @arg @ref LL_USART_HWCONTROL_RTS * @arg @ref LL_USART_HWCONTROL_CTS * @arg @ref LL_USART_HWCONTROL_RTS_CTS */ __STATIC_INLINE uint32_t LL_USART_GetHWFlowCtrl(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_RTSE | USART_CR3_CTSE)); } /** * @brief Enable One bit sampling method * @rmtoll CR3 ONEBIT LL_USART_EnableOneBitSamp * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableOneBitSamp(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_ONEBIT); } /** * @brief Disable One bit sampling method * @rmtoll CR3 ONEBIT LL_USART_DisableOneBitSamp * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableOneBitSamp(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_ONEBIT); } /** * @brief Indicate if One bit sampling method is enabled * @rmtoll CR3 ONEBIT LL_USART_IsEnabledOneBitSamp * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledOneBitSamp(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR3, USART_CR3_ONEBIT) == (USART_CR3_ONEBIT)); } /** * @brief Configure USART BRR register for achieving expected Baud Rate value. * @note Compute and set USARTDIV value in BRR Register (full BRR content) * according to used Peripheral Clock, Oversampling mode, and expected Baud Rate values * @note Peripheral clock and Baud rate values provided as function parameters should be valid * (Baud rate value != 0) * @rmtoll BRR BRR LL_USART_SetBaudRate * @param USARTx USART Instance * @param PeriphClk Peripheral Clock * @param OverSampling This parameter can be one of the following values: * @arg @ref LL_USART_OVERSAMPLING_16 * @arg @ref LL_USART_OVERSAMPLING_8 * @param BaudRate Baud Rate * @retval None */ __STATIC_INLINE void LL_USART_SetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t OverSampling, uint32_t BaudRate) { if (OverSampling == LL_USART_OVERSAMPLING_8) { USARTx->BRR = (uint16_t)(__LL_USART_DIV_SAMPLING8(PeriphClk, BaudRate)); } else { USARTx->BRR = (uint16_t)(__LL_USART_DIV_SAMPLING16(PeriphClk, BaudRate)); } } /** * @brief Return current Baud Rate value, according to USARTDIV present in BRR register * (full BRR content), and to used Peripheral Clock and Oversampling mode values * @note In case of non-initialized or invalid value stored in BRR register, value 0 will be returned. * @rmtoll BRR BRR LL_USART_GetBaudRate * @param USARTx USART Instance * @param PeriphClk Peripheral Clock * @param OverSampling This parameter can be one of the following values: * @arg @ref LL_USART_OVERSAMPLING_16 * @arg @ref LL_USART_OVERSAMPLING_8 * @retval Baud Rate */ __STATIC_INLINE uint32_t LL_USART_GetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t OverSampling) { register uint32_t usartdiv = 0x0U; register uint32_t brrresult = 0x0U; usartdiv = USARTx->BRR; if (OverSampling == LL_USART_OVERSAMPLING_8) { if ((usartdiv & 0xFFF7U) != 0U) { usartdiv = (uint16_t)((usartdiv & 0xFFF0U) | ((usartdiv & 0x0007U) << 1U)) ; brrresult = (PeriphClk * 2U) / usartdiv; } } else { if ((usartdiv & 0xFFFFU) != 0U) { brrresult = PeriphClk / usartdiv; } } return (brrresult); } /** * @} */ /** @defgroup USART_LL_EF_Configuration_IRDA Configuration functions related to Irda feature * @{ */ /** * @brief Enable IrDA mode * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not * IrDA feature is supported by the USARTx instance. * @rmtoll CR3 IREN LL_USART_EnableIrda * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableIrda(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_IREN); } /** * @brief Disable IrDA mode * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not * IrDA feature is supported by the USARTx instance. * @rmtoll CR3 IREN LL_USART_DisableIrda * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableIrda(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_IREN); } /** * @brief Indicate if IrDA mode is enabled * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not * IrDA feature is supported by the USARTx instance. * @rmtoll CR3 IREN LL_USART_IsEnabledIrda * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledIrda(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR3, USART_CR3_IREN) == (USART_CR3_IREN)); } /** * @brief Configure IrDA Power Mode (Normal or Low Power) * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not * IrDA feature is supported by the USARTx instance. * @rmtoll CR3 IRLP LL_USART_SetIrdaPowerMode * @param USARTx USART Instance * @param PowerMode This parameter can be one of the following values: * @arg @ref LL_USART_IRDA_POWER_NORMAL * @arg @ref LL_USART_IRDA_POWER_LOW * @retval None */ __STATIC_INLINE void LL_USART_SetIrdaPowerMode(USART_TypeDef *USARTx, uint32_t PowerMode) { MODIFY_REG(USARTx->CR3, USART_CR3_IRLP, PowerMode); } /** * @brief Retrieve IrDA Power Mode configuration (Normal or Low Power) * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not * IrDA feature is supported by the USARTx instance. * @rmtoll CR3 IRLP LL_USART_GetIrdaPowerMode * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_IRDA_POWER_NORMAL * @arg @ref LL_USART_PHASE_2EDGE */ __STATIC_INLINE uint32_t LL_USART_GetIrdaPowerMode(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_IRLP)); } /** * @brief Set Irda prescaler value, used for dividing the USART clock source * to achieve the Irda Low Power frequency (8 bits value) * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not * IrDA feature is supported by the USARTx instance. * @rmtoll GTPR PSC LL_USART_SetIrdaPrescaler * @param USARTx USART Instance * @param PrescalerValue Value between Min_Data=0x00 and Max_Data=0xFF * @retval None */ __STATIC_INLINE void LL_USART_SetIrdaPrescaler(USART_TypeDef *USARTx, uint32_t PrescalerValue) { MODIFY_REG(USARTx->GTPR, USART_GTPR_PSC, PrescalerValue); } /** * @brief Return Irda prescaler value, used for dividing the USART clock source * to achieve the Irda Low Power frequency (8 bits value) * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not * IrDA feature is supported by the USARTx instance. * @rmtoll GTPR PSC LL_USART_GetIrdaPrescaler * @param USARTx USART Instance * @retval Irda prescaler value (Value between Min_Data=0x00 and Max_Data=0xFF) */ __STATIC_INLINE uint32_t LL_USART_GetIrdaPrescaler(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_PSC)); } /** * @} */ /** @defgroup USART_LL_EF_Configuration_Smartcard Configuration functions related to Smartcard feature * @{ */ /** * @brief Enable Smartcard NACK transmission * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @rmtoll CR3 NACK LL_USART_EnableSmartcardNACK * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableSmartcardNACK(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_NACK); } /** * @brief Disable Smartcard NACK transmission * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @rmtoll CR3 NACK LL_USART_DisableSmartcardNACK * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableSmartcardNACK(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_NACK); } /** * @brief Indicate if Smartcard NACK transmission is enabled * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @rmtoll CR3 NACK LL_USART_IsEnabledSmartcardNACK * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledSmartcardNACK(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR3, USART_CR3_NACK) == (USART_CR3_NACK)); } /** * @brief Enable Smartcard mode * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @rmtoll CR3 SCEN LL_USART_EnableSmartcard * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableSmartcard(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_SCEN); } /** * @brief Disable Smartcard mode * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @rmtoll CR3 SCEN LL_USART_DisableSmartcard * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableSmartcard(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_SCEN); } /** * @brief Indicate if Smartcard mode is enabled * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @rmtoll CR3 SCEN LL_USART_IsEnabledSmartcard * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledSmartcard(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR3, USART_CR3_SCEN) == (USART_CR3_SCEN)); } /** * @brief Set Smartcard prescaler value, used for dividing the USART clock * source to provide the SMARTCARD Clock (5 bits value) * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @rmtoll GTPR PSC LL_USART_SetSmartcardPrescaler * @param USARTx USART Instance * @param PrescalerValue Value between Min_Data=0 and Max_Data=31 * @retval None */ __STATIC_INLINE void LL_USART_SetSmartcardPrescaler(USART_TypeDef *USARTx, uint32_t PrescalerValue) { MODIFY_REG(USARTx->GTPR, USART_GTPR_PSC, PrescalerValue); } /** * @brief Return Smartcard prescaler value, used for dividing the USART clock * source to provide the SMARTCARD Clock (5 bits value) * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @rmtoll GTPR PSC LL_USART_GetSmartcardPrescaler * @param USARTx USART Instance * @retval Smartcard prescaler value (Value between Min_Data=0 and Max_Data=31) */ __STATIC_INLINE uint32_t LL_USART_GetSmartcardPrescaler(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_PSC)); } /** * @brief Set Smartcard Guard time value, expressed in nb of baud clocks periods * (GT[7:0] bits : Guard time value) * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @rmtoll GTPR GT LL_USART_SetSmartcardGuardTime * @param USARTx USART Instance * @param GuardTime Value between Min_Data=0x00 and Max_Data=0xFF * @retval None */ __STATIC_INLINE void LL_USART_SetSmartcardGuardTime(USART_TypeDef *USARTx, uint32_t GuardTime) { MODIFY_REG(USARTx->GTPR, USART_GTPR_GT, GuardTime << USART_POSITION_GTPR_GT); } /** * @brief Return Smartcard Guard time value, expressed in nb of baud clocks periods * (GT[7:0] bits : Guard time value) * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @rmtoll GTPR GT LL_USART_GetSmartcardGuardTime * @param USARTx USART Instance * @retval Smartcard Guard time value (Value between Min_Data=0x00 and Max_Data=0xFF) */ __STATIC_INLINE uint32_t LL_USART_GetSmartcardGuardTime(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_GT) >> USART_POSITION_GTPR_GT); } /** * @} */ /** @defgroup USART_LL_EF_Configuration_HalfDuplex Configuration functions related to Half Duplex feature * @{ */ /** * @brief Enable Single Wire Half-Duplex mode * @note Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not * Half-Duplex mode is supported by the USARTx instance. * @rmtoll CR3 HDSEL LL_USART_EnableHalfDuplex * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableHalfDuplex(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_HDSEL); } /** * @brief Disable Single Wire Half-Duplex mode * @note Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not * Half-Duplex mode is supported by the USARTx instance. * @rmtoll CR3 HDSEL LL_USART_DisableHalfDuplex * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableHalfDuplex(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_HDSEL); } /** * @brief Indicate if Single Wire Half-Duplex mode is enabled * @note Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not * Half-Duplex mode is supported by the USARTx instance. * @rmtoll CR3 HDSEL LL_USART_IsEnabledHalfDuplex * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledHalfDuplex(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR3, USART_CR3_HDSEL) == (USART_CR3_HDSEL)); } /** * @} */ /** @defgroup USART_LL_EF_Configuration_LIN Configuration functions related to LIN feature * @{ */ /** * @brief Set LIN Break Detection Length * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @rmtoll CR2 LBDL LL_USART_SetLINBrkDetectionLen * @param USARTx USART Instance * @param LINBDLength This parameter can be one of the following values: * @arg @ref LL_USART_LINBREAK_DETECT_10B * @arg @ref LL_USART_LINBREAK_DETECT_11B * @retval None */ __STATIC_INLINE void LL_USART_SetLINBrkDetectionLen(USART_TypeDef *USARTx, uint32_t LINBDLength) { MODIFY_REG(USARTx->CR2, USART_CR2_LBDL, LINBDLength); } /** * @brief Return LIN Break Detection Length * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @rmtoll CR2 LBDL LL_USART_GetLINBrkDetectionLen * @param USARTx USART Instance * @retval Returned value can be one of the following values: * @arg @ref LL_USART_LINBREAK_DETECT_10B * @arg @ref LL_USART_LINBREAK_DETECT_11B */ __STATIC_INLINE uint32_t LL_USART_GetLINBrkDetectionLen(USART_TypeDef *USARTx) { return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_LBDL)); } /** * @brief Enable LIN mode * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @rmtoll CR2 LINEN LL_USART_EnableLIN * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableLIN(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR2, USART_CR2_LINEN); } /** * @brief Disable LIN mode * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @rmtoll CR2 LINEN LL_USART_DisableLIN * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableLIN(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR2, USART_CR2_LINEN); } /** * @brief Indicate if LIN mode is enabled * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @rmtoll CR2 LINEN LL_USART_IsEnabledLIN * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledLIN(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR2, USART_CR2_LINEN) == (USART_CR2_LINEN)); } /** * @} */ /** @defgroup USART_LL_EF_AdvancedConfiguration Advanced Configurations services * @{ */ /** * @brief Perform basic configuration of USART for enabling use in Asynchronous Mode (UART) * @note In UART mode, the following bits must be kept cleared: * - LINEN bit in the USART_CR2 register, * - CLKEN bit in the USART_CR2 register, * - SCEN bit in the USART_CR3 register, * - IREN bit in the USART_CR3 register, * - HDSEL bit in the USART_CR3 register. * @note Call of this function is equivalent to following function call sequence : * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function * @note Other remaining configurations items related to Asynchronous Mode * (as Baud Rate, Word length, Parity, ...) should be set using * dedicated functions * @rmtoll CR2 LINEN LL_USART_ConfigAsyncMode\n * CR2 CLKEN LL_USART_ConfigAsyncMode\n * CR3 SCEN LL_USART_ConfigAsyncMode\n * CR3 IREN LL_USART_ConfigAsyncMode\n * CR3 HDSEL LL_USART_ConfigAsyncMode * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ConfigAsyncMode(USART_TypeDef *USARTx) { /* In Asynchronous mode, the following bits must be kept cleared: - LINEN, CLKEN bits in the USART_CR2 register, - SCEN, IREN and HDSEL bits in the USART_CR3 register.*/ CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN | USART_CR3_HDSEL)); } /** * @brief Perform basic configuration of USART for enabling use in Synchronous Mode * @note In Synchronous mode, the following bits must be kept cleared: * - LINEN bit in the USART_CR2 register, * - SCEN bit in the USART_CR3 register, * - IREN bit in the USART_CR3 register, * - HDSEL bit in the USART_CR3 register. * This function also sets the USART in Synchronous mode. * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not * Synchronous mode is supported by the USARTx instance. * @note Call of this function is equivalent to following function call sequence : * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function * - Set CLKEN in CR2 using @ref LL_USART_EnableSCLKOutput() function * @note Other remaining configurations items related to Synchronous Mode * (as Baud Rate, Word length, Parity, Clock Polarity, ...) should be set using * dedicated functions * @rmtoll CR2 LINEN LL_USART_ConfigSyncMode\n * CR2 CLKEN LL_USART_ConfigSyncMode\n * CR3 SCEN LL_USART_ConfigSyncMode\n * CR3 IREN LL_USART_ConfigSyncMode\n * CR3 HDSEL LL_USART_ConfigSyncMode * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ConfigSyncMode(USART_TypeDef *USARTx) { /* In Synchronous mode, the following bits must be kept cleared: - LINEN bit in the USART_CR2 register, - SCEN, IREN and HDSEL bits in the USART_CR3 register.*/ CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN)); CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN | USART_CR3_HDSEL)); /* set the UART/USART in Synchronous mode */ SET_BIT(USARTx->CR2, USART_CR2_CLKEN); } /** * @brief Perform basic configuration of USART for enabling use in LIN Mode * @note In LIN mode, the following bits must be kept cleared: * - STOP and CLKEN bits in the USART_CR2 register, * - SCEN bit in the USART_CR3 register, * - IREN bit in the USART_CR3 register, * - HDSEL bit in the USART_CR3 register. * This function also set the UART/USART in LIN mode. * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @note Call of this function is equivalent to following function call sequence : * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function * - Clear STOP in CR2 using @ref LL_USART_SetStopBitsLength() function * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function * - Set LINEN in CR2 using @ref LL_USART_EnableLIN() function * @note Other remaining configurations items related to LIN Mode * (as Baud Rate, Word length, LIN Break Detection Length, ...) should be set using * dedicated functions * @rmtoll CR2 CLKEN LL_USART_ConfigLINMode\n * CR2 STOP LL_USART_ConfigLINMode\n * CR2 LINEN LL_USART_ConfigLINMode\n * CR3 IREN LL_USART_ConfigLINMode\n * CR3 SCEN LL_USART_ConfigLINMode\n * CR3 HDSEL LL_USART_ConfigLINMode * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ConfigLINMode(USART_TypeDef *USARTx) { /* In LIN mode, the following bits must be kept cleared: - STOP and CLKEN bits in the USART_CR2 register, - IREN, SCEN and HDSEL bits in the USART_CR3 register.*/ CLEAR_BIT(USARTx->CR2, (USART_CR2_CLKEN | USART_CR2_STOP)); CLEAR_BIT(USARTx->CR3, (USART_CR3_IREN | USART_CR3_SCEN | USART_CR3_HDSEL)); /* Set the UART/USART in LIN mode */ SET_BIT(USARTx->CR2, USART_CR2_LINEN); } /** * @brief Perform basic configuration of USART for enabling use in Half Duplex Mode * @note In Half Duplex mode, the following bits must be kept cleared: * - LINEN bit in the USART_CR2 register, * - CLKEN bit in the USART_CR2 register, * - SCEN bit in the USART_CR3 register, * - IREN bit in the USART_CR3 register, * This function also sets the UART/USART in Half Duplex mode. * @note Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not * Half-Duplex mode is supported by the USARTx instance. * @note Call of this function is equivalent to following function call sequence : * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function * - Set HDSEL in CR3 using @ref LL_USART_EnableHalfDuplex() function * @note Other remaining configurations items related to Half Duplex Mode * (as Baud Rate, Word length, Parity, ...) should be set using * dedicated functions * @rmtoll CR2 LINEN LL_USART_ConfigHalfDuplexMode\n * CR2 CLKEN LL_USART_ConfigHalfDuplexMode\n * CR3 HDSEL LL_USART_ConfigHalfDuplexMode\n * CR3 SCEN LL_USART_ConfigHalfDuplexMode\n * CR3 IREN LL_USART_ConfigHalfDuplexMode * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ConfigHalfDuplexMode(USART_TypeDef *USARTx) { /* In Half Duplex mode, the following bits must be kept cleared: - LINEN and CLKEN bits in the USART_CR2 register, - SCEN and IREN bits in the USART_CR3 register.*/ CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN)); /* set the UART/USART in Half Duplex mode */ SET_BIT(USARTx->CR3, USART_CR3_HDSEL); } /** * @brief Perform basic configuration of USART for enabling use in Smartcard Mode * @note In Smartcard mode, the following bits must be kept cleared: * - LINEN bit in the USART_CR2 register, * - IREN bit in the USART_CR3 register, * - HDSEL bit in the USART_CR3 register. * This function also configures Stop bits to 1.5 bits and * sets the USART in Smartcard mode (SCEN bit). * Clock Output is also enabled (CLKEN). * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not * Smartcard feature is supported by the USARTx instance. * @note Call of this function is equivalent to following function call sequence : * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function * - Configure STOP in CR2 using @ref LL_USART_SetStopBitsLength() function * - Set CLKEN in CR2 using @ref LL_USART_EnableSCLKOutput() function * - Set SCEN in CR3 using @ref LL_USART_EnableSmartcard() function * @note Other remaining configurations items related to Smartcard Mode * (as Baud Rate, Word length, Parity, ...) should be set using * dedicated functions * @rmtoll CR2 LINEN LL_USART_ConfigSmartcardMode\n * CR2 STOP LL_USART_ConfigSmartcardMode\n * CR2 CLKEN LL_USART_ConfigSmartcardMode\n * CR3 HDSEL LL_USART_ConfigSmartcardMode\n * CR3 SCEN LL_USART_ConfigSmartcardMode * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ConfigSmartcardMode(USART_TypeDef *USARTx) { /* In Smartcard mode, the following bits must be kept cleared: - LINEN bit in the USART_CR2 register, - IREN and HDSEL bits in the USART_CR3 register.*/ CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN)); CLEAR_BIT(USARTx->CR3, (USART_CR3_IREN | USART_CR3_HDSEL)); /* Configure Stop bits to 1.5 bits */ /* Synchronous mode is activated by default */ SET_BIT(USARTx->CR2, (USART_CR2_STOP_0 | USART_CR2_STOP_1 | USART_CR2_CLKEN)); /* set the UART/USART in Smartcard mode */ SET_BIT(USARTx->CR3, USART_CR3_SCEN); } /** * @brief Perform basic configuration of USART for enabling use in Irda Mode * @note In IRDA mode, the following bits must be kept cleared: * - LINEN bit in the USART_CR2 register, * - STOP and CLKEN bits in the USART_CR2 register, * - SCEN bit in the USART_CR3 register, * - HDSEL bit in the USART_CR3 register. * This function also sets the UART/USART in IRDA mode (IREN bit). * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not * IrDA feature is supported by the USARTx instance. * @note Call of this function is equivalent to following function call sequence : * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function * - Configure STOP in CR2 using @ref LL_USART_SetStopBitsLength() function * - Set IREN in CR3 using @ref LL_USART_EnableIrda() function * @note Other remaining configurations items related to Irda Mode * (as Baud Rate, Word length, Power mode, ...) should be set using * dedicated functions * @rmtoll CR2 LINEN LL_USART_ConfigIrdaMode\n * CR2 CLKEN LL_USART_ConfigIrdaMode\n * CR2 STOP LL_USART_ConfigIrdaMode\n * CR3 SCEN LL_USART_ConfigIrdaMode\n * CR3 HDSEL LL_USART_ConfigIrdaMode\n * CR3 IREN LL_USART_ConfigIrdaMode * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ConfigIrdaMode(USART_TypeDef *USARTx) { /* In IRDA mode, the following bits must be kept cleared: - LINEN, STOP and CLKEN bits in the USART_CR2 register, - SCEN and HDSEL bits in the USART_CR3 register.*/ CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN | USART_CR2_STOP)); CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL)); /* set the UART/USART in IRDA mode */ SET_BIT(USARTx->CR3, USART_CR3_IREN); } /** * @brief Perform basic configuration of USART for enabling use in Multi processor Mode * (several USARTs connected in a network, one of the USARTs can be the master, * its TX output connected to the RX inputs of the other slaves USARTs). * @note In MultiProcessor mode, the following bits must be kept cleared: * - LINEN bit in the USART_CR2 register, * - CLKEN bit in the USART_CR2 register, * - SCEN bit in the USART_CR3 register, * - IREN bit in the USART_CR3 register, * - HDSEL bit in the USART_CR3 register. * @note Call of this function is equivalent to following function call sequence : * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function * @note Other remaining configurations items related to Multi processor Mode * (as Baud Rate, Wake Up Method, Node address, ...) should be set using * dedicated functions * @rmtoll CR2 LINEN LL_USART_ConfigMultiProcessMode\n * CR2 CLKEN LL_USART_ConfigMultiProcessMode\n * CR3 SCEN LL_USART_ConfigMultiProcessMode\n * CR3 HDSEL LL_USART_ConfigMultiProcessMode\n * CR3 IREN LL_USART_ConfigMultiProcessMode * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ConfigMultiProcessMode(USART_TypeDef *USARTx) { /* In Multi Processor mode, the following bits must be kept cleared: - LINEN and CLKEN bits in the USART_CR2 register, - IREN, SCEN and HDSEL bits in the USART_CR3 register.*/ CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN)); } /** * @} */ /** @defgroup USART_LL_EF_FLAG_Management FLAG_Management * @{ */ /** * @brief Check if the USART Parity Error Flag is set or not * @rmtoll SR PE LL_USART_IsActiveFlag_PE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_PE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->SR, USART_SR_PE) == (USART_SR_PE)); } /** * @brief Check if the USART Framing Error Flag is set or not * @rmtoll SR FE LL_USART_IsActiveFlag_FE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_FE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->SR, USART_SR_FE) == (USART_SR_FE)); } /** * @brief Check if the USART Noise error detected Flag is set or not * @rmtoll SR NF LL_USART_IsActiveFlag_NE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_NE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->SR, USART_SR_NE) == (USART_SR_NE)); } /** * @brief Check if the USART OverRun Error Flag is set or not * @rmtoll SR ORE LL_USART_IsActiveFlag_ORE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_ORE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->SR, USART_SR_ORE) == (USART_SR_ORE)); } /** * @brief Check if the USART IDLE line detected Flag is set or not * @rmtoll SR IDLE LL_USART_IsActiveFlag_IDLE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_IDLE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->SR, USART_SR_IDLE) == (USART_SR_IDLE)); } /** * @brief Check if the USART Read Data Register Not Empty Flag is set or not * @rmtoll SR RXNE LL_USART_IsActiveFlag_RXNE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RXNE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->SR, USART_SR_RXNE) == (USART_SR_RXNE)); } /** * @brief Check if the USART Transmission Complete Flag is set or not * @rmtoll SR TC LL_USART_IsActiveFlag_TC * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TC(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->SR, USART_SR_TC) == (USART_SR_TC)); } /** * @brief Check if the USART Transmit Data Register Empty Flag is set or not * @rmtoll SR TXE LL_USART_IsActiveFlag_TXE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TXE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->SR, USART_SR_TXE) == (USART_SR_TXE)); } /** * @brief Check if the USART LIN Break Detection Flag is set or not * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @rmtoll SR LBD LL_USART_IsActiveFlag_LBD * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_LBD(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->SR, USART_SR_LBD) == (USART_SR_LBD)); } /** * @brief Check if the USART CTS Flag is set or not * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll SR CTS LL_USART_IsActiveFlag_nCTS * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_nCTS(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->SR, USART_SR_CTS) == (USART_SR_CTS)); } /** * @brief Check if the USART Send Break Flag is set or not * @rmtoll CR1 SBK LL_USART_IsActiveFlag_SBK * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_SBK(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR1, USART_CR1_SBK) == (USART_CR1_SBK)); } /** * @brief Check if the USART Receive Wake Up from mute mode Flag is set or not * @rmtoll CR1 RWU LL_USART_IsActiveFlag_RWU * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RWU(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR1, USART_CR1_RWU) == (USART_CR1_RWU)); } /** * @brief Clear Parity Error Flag * @note Clearing this flag is done by a read access to the USARTx_SR * register followed by a read access to the USARTx_DR register. * @note Please also consider that when clearing this flag, other flags as * NE, FE, ORE, IDLE would also be cleared. * @rmtoll SR PE LL_USART_ClearFlag_PE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ClearFlag_PE(USART_TypeDef *USARTx) { __IO uint32_t tmpreg; tmpreg = USARTx->SR; (void) tmpreg; tmpreg = USARTx->DR; (void) tmpreg; } /** * @brief Clear Framing Error Flag * @note Clearing this flag is done by a read access to the USARTx_SR * register followed by a read access to the USARTx_DR register. * @note Please also consider that when clearing this flag, other flags as * PE, NE, ORE, IDLE would also be cleared. * @rmtoll SR FE LL_USART_ClearFlag_FE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ClearFlag_FE(USART_TypeDef *USARTx) { __IO uint32_t tmpreg; tmpreg = USARTx->SR; (void) tmpreg; tmpreg = USARTx->DR; (void) tmpreg; } /** * @brief Clear Noise detected Flag * @note Clearing this flag is done by a read access to the USARTx_SR * register followed by a read access to the USARTx_DR register. * @note Please also consider that when clearing this flag, other flags as * PE, FE, ORE, IDLE would also be cleared. * @rmtoll SR NF LL_USART_ClearFlag_NE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ClearFlag_NE(USART_TypeDef *USARTx) { __IO uint32_t tmpreg; tmpreg = USARTx->SR; (void) tmpreg; tmpreg = USARTx->DR; (void) tmpreg; } /** * @brief Clear OverRun Error Flag * @note Clearing this flag is done by a read access to the USARTx_SR * register followed by a read access to the USARTx_DR register. * @note Please also consider that when clearing this flag, other flags as * PE, NE, FE, IDLE would also be cleared. * @rmtoll SR ORE LL_USART_ClearFlag_ORE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ClearFlag_ORE(USART_TypeDef *USARTx) { __IO uint32_t tmpreg; tmpreg = USARTx->SR; (void) tmpreg; tmpreg = USARTx->DR; (void) tmpreg; } /** * @brief Clear IDLE line detected Flag * @note Clearing this flag is done by a read access to the USARTx_SR * register followed by a read access to the USARTx_DR register. * @note Please also consider that when clearing this flag, other flags as * PE, NE, FE, ORE would also be cleared. * @rmtoll SR IDLE LL_USART_ClearFlag_IDLE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ClearFlag_IDLE(USART_TypeDef *USARTx) { __IO uint32_t tmpreg; tmpreg = USARTx->SR; (void) tmpreg; tmpreg = USARTx->DR; (void) tmpreg; } /** * @brief Clear Transmission Complete Flag * @rmtoll SR TC LL_USART_ClearFlag_TC * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ClearFlag_TC(USART_TypeDef *USARTx) { WRITE_REG(USARTx->SR , ~(USART_SR_TC)); } /** * @brief Clear RX Not Empty Flag * @rmtoll SR RXNE LL_USART_ClearFlag_RXNE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ClearFlag_RXNE(USART_TypeDef *USARTx) { WRITE_REG(USARTx->SR , ~(USART_SR_RXNE)); } /** * @brief Clear LIN Break Detection Flag * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @rmtoll SR LBD LL_USART_ClearFlag_LBD * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ClearFlag_LBD(USART_TypeDef *USARTx) { WRITE_REG(USARTx->SR , ~(USART_SR_LBD)); } /** * @brief Clear CTS Interrupt Flag * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll SR CTS LL_USART_ClearFlag_nCTS * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_ClearFlag_nCTS(USART_TypeDef *USARTx) { WRITE_REG(USARTx->SR , ~(USART_SR_CTS)); } /** * @} */ /** @defgroup USART_LL_EF_IT_Management IT_Management * @{ */ /** * @brief Enable IDLE Interrupt * @rmtoll CR1 IDLEIE LL_USART_EnableIT_IDLE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableIT_IDLE(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR1, USART_CR1_IDLEIE); } /** * @brief Enable RX Not Empty Interrupt * @rmtoll CR1 RXNEIE LL_USART_EnableIT_RXNE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableIT_RXNE(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR1, USART_CR1_RXNEIE); } /** * @brief Enable Transmission Complete Interrupt * @rmtoll CR1 TCIE LL_USART_EnableIT_TC * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableIT_TC(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR1, USART_CR1_TCIE); } /** * @brief Enable TX Empty Interrupt * @rmtoll CR1 TXEIE LL_USART_EnableIT_TXE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableIT_TXE(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR1, USART_CR1_TXEIE); } /** * @brief Enable Parity Error Interrupt * @rmtoll CR1 PEIE LL_USART_EnableIT_PE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableIT_PE(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR1, USART_CR1_PEIE); } /** * @brief Enable LIN Break Detection Interrupt * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @rmtoll CR2 LBDIE LL_USART_EnableIT_LBD * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableIT_LBD(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR2, USART_CR2_LBDIE); } /** * @brief Enable Error Interrupt * @note When set, Error Interrupt Enable Bit is enabling interrupt generation in case of a framing * error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USARTx_SR register). * 0: Interrupt is inhibited * 1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USARTx_SR register. * @rmtoll CR3 EIE LL_USART_EnableIT_ERROR * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableIT_ERROR(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_EIE); } /** * @brief Enable CTS Interrupt * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll CR3 CTSIE LL_USART_EnableIT_CTS * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableIT_CTS(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_CTSIE); } /** * @brief Disable IDLE Interrupt * @rmtoll CR1 IDLEIE LL_USART_DisableIT_IDLE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableIT_IDLE(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR1, USART_CR1_IDLEIE); } /** * @brief Disable RX Not Empty Interrupt * @rmtoll CR1 RXNEIE LL_USART_DisableIT_RXNE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableIT_RXNE(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR1, USART_CR1_RXNEIE); } /** * @brief Disable Transmission Complete Interrupt * @rmtoll CR1 TCIE LL_USART_DisableIT_TC * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableIT_TC(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR1, USART_CR1_TCIE); } /** * @brief Disable TX Empty Interrupt * @rmtoll CR1 TXEIE LL_USART_DisableIT_TXE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableIT_TXE(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR1, USART_CR1_TXEIE); } /** * @brief Disable Parity Error Interrupt * @rmtoll CR1 PEIE LL_USART_DisableIT_PE * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableIT_PE(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR1, USART_CR1_PEIE); } /** * @brief Disable LIN Break Detection Interrupt * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @rmtoll CR2 LBDIE LL_USART_DisableIT_LBD * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableIT_LBD(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR2, USART_CR2_LBDIE); } /** * @brief Disable Error Interrupt * @note When set, Error Interrupt Enable Bit is enabling interrupt generation in case of a framing * error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USARTx_SR register). * 0: Interrupt is inhibited * 1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USARTx_SR register. * @rmtoll CR3 EIE LL_USART_DisableIT_ERROR * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableIT_ERROR(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_EIE); } /** * @brief Disable CTS Interrupt * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll CR3 CTSIE LL_USART_DisableIT_CTS * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableIT_CTS(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_CTSIE); } /** * @brief Check if the USART IDLE Interrupt source is enabled or disabled. * @rmtoll CR1 IDLEIE LL_USART_IsEnabledIT_IDLE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_IDLE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR1, USART_CR1_IDLEIE) == (USART_CR1_IDLEIE)); } /** * @brief Check if the USART RX Not Empty Interrupt is enabled or disabled. * @rmtoll CR1 RXNEIE LL_USART_IsEnabledIT_RXNE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_RXNE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR1, USART_CR1_RXNEIE) == (USART_CR1_RXNEIE)); } /** * @brief Check if the USART Transmission Complete Interrupt is enabled or disabled. * @rmtoll CR1 TCIE LL_USART_IsEnabledIT_TC * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TC(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR1, USART_CR1_TCIE) == (USART_CR1_TCIE)); } /** * @brief Check if the USART TX Empty Interrupt is enabled or disabled. * @rmtoll CR1 TXEIE LL_USART_IsEnabledIT_TXE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TXE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR1, USART_CR1_TXEIE) == (USART_CR1_TXEIE)); } /** * @brief Check if the USART Parity Error Interrupt is enabled or disabled. * @rmtoll CR1 PEIE LL_USART_IsEnabledIT_PE * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_PE(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR1, USART_CR1_PEIE) == (USART_CR1_PEIE)); } /** * @brief Check if the USART LIN Break Detection Interrupt is enabled or disabled. * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not * LIN feature is supported by the USARTx instance. * @rmtoll CR2 LBDIE LL_USART_IsEnabledIT_LBD * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_LBD(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR2, USART_CR2_LBDIE) == (USART_CR2_LBDIE)); } /** * @brief Check if the USART Error Interrupt is enabled or disabled. * @rmtoll CR3 EIE LL_USART_IsEnabledIT_ERROR * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_ERROR(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR3, USART_CR3_EIE) == (USART_CR3_EIE)); } /** * @brief Check if the USART CTS Interrupt is enabled or disabled. * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not * Hardware Flow control feature is supported by the USARTx instance. * @rmtoll CR3 CTSIE LL_USART_IsEnabledIT_CTS * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_CTS(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR3, USART_CR3_CTSIE) == (USART_CR3_CTSIE)); } /** * @} */ /** @defgroup USART_LL_EF_DMA_Management DMA_Management * @{ */ /** * @brief Enable DMA Mode for reception * @rmtoll CR3 DMAR LL_USART_EnableDMAReq_RX * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableDMAReq_RX(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_DMAR); } /** * @brief Disable DMA Mode for reception * @rmtoll CR3 DMAR LL_USART_DisableDMAReq_RX * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableDMAReq_RX(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_DMAR); } /** * @brief Check if DMA Mode is enabled for reception * @rmtoll CR3 DMAR LL_USART_IsEnabledDMAReq_RX * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledDMAReq_RX(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR3, USART_CR3_DMAR) == (USART_CR3_DMAR)); } /** * @brief Enable DMA Mode for transmission * @rmtoll CR3 DMAT LL_USART_EnableDMAReq_TX * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_EnableDMAReq_TX(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR3, USART_CR3_DMAT); } /** * @brief Disable DMA Mode for transmission * @rmtoll CR3 DMAT LL_USART_DisableDMAReq_TX * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_DisableDMAReq_TX(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR3, USART_CR3_DMAT); } /** * @brief Check if DMA Mode is enabled for transmission * @rmtoll CR3 DMAT LL_USART_IsEnabledDMAReq_TX * @param USARTx USART Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_USART_IsEnabledDMAReq_TX(USART_TypeDef *USARTx) { return (READ_BIT(USARTx->CR3, USART_CR3_DMAT) == (USART_CR3_DMAT)); } /** * @brief Get the data register address used for DMA transfer * @rmtoll DR DR LL_USART_DMA_GetRegAddr * @note Address of Data Register is valid for both Transmit and Receive transfers. * @param USARTx USART Instance * @retval Address of data register */ __STATIC_INLINE uint32_t LL_USART_DMA_GetRegAddr(USART_TypeDef *USARTx) { /* return address of DR register */ return ((uint32_t) &(USARTx->DR)); } /** * @} */ /** @defgroup USART_LL_EF_Data_Management Data_Management * @{ */ /** * @brief Read Receiver Data register (Receive Data value, 8 bits) * @rmtoll DR DR LL_USART_ReceiveData8 * @param USARTx USART Instance * @retval Value between Min_Data=0x00 and Max_Data=0xFF */ __STATIC_INLINE uint8_t LL_USART_ReceiveData8(USART_TypeDef *USARTx) { return (uint8_t)(READ_BIT(USARTx->DR, USART_DR_DR)); } /** * @brief Read Receiver Data register (Receive Data value, 9 bits) * @rmtoll DR DR LL_USART_ReceiveData9 * @param USARTx USART Instance * @retval Value between Min_Data=0x00 and Max_Data=0x1FF */ __STATIC_INLINE uint16_t LL_USART_ReceiveData9(USART_TypeDef *USARTx) { return (uint16_t)(READ_BIT(USARTx->DR, USART_DR_DR)); } /** * @brief Write in Transmitter Data Register (Transmit Data value, 8 bits) * @rmtoll DR DR LL_USART_TransmitData8 * @param USARTx USART Instance * @param Value between Min_Data=0x00 and Max_Data=0xFF * @retval None */ __STATIC_INLINE void LL_USART_TransmitData8(USART_TypeDef *USARTx, uint8_t Value) { USARTx->DR = Value; } /** * @brief Write in Transmitter Data Register (Transmit Data value, 9 bits) * @rmtoll DR DR LL_USART_TransmitData9 * @param USARTx USART Instance * @param Value between Min_Data=0x00 and Max_Data=0x1FF * @retval None */ __STATIC_INLINE void LL_USART_TransmitData9(USART_TypeDef *USARTx, uint16_t Value) { USARTx->DR = Value & 0x1FFU; } /** * @} */ /** @defgroup USART_LL_EF_Execution Execution * @{ */ /** * @brief Request Break sending * @rmtoll CR1 SBK LL_USART_RequestBreakSending * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_RequestBreakSending(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR1, USART_CR1_SBK); } /** * @brief Put USART in Mute mode * @rmtoll CR1 RWU LL_USART_RequestEnterMuteMode * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_RequestEnterMuteMode(USART_TypeDef *USARTx) { SET_BIT(USARTx->CR1, USART_CR1_RWU); } /** * @brief Put USART in Active mode * @rmtoll CR1 RWU LL_USART_RequestExitMuteMode * @param USARTx USART Instance * @retval None */ __STATIC_INLINE void LL_USART_RequestExitMuteMode(USART_TypeDef *USARTx) { CLEAR_BIT(USARTx->CR1, USART_CR1_RWU); } /** * @} */ #if defined(USE_FULL_LL_DRIVER) /** @defgroup USART_LL_EF_Init Initialization and de-initialization functions * @{ */ ErrorStatus LL_USART_DeInit(USART_TypeDef *USARTx); ErrorStatus LL_USART_Init(USART_TypeDef *USARTx, LL_USART_InitTypeDef *USART_InitStruct); void LL_USART_StructInit(LL_USART_InitTypeDef *USART_InitStruct); ErrorStatus LL_USART_ClockInit(USART_TypeDef *USARTx, LL_USART_ClockInitTypeDef *USART_ClockInitStruct); void LL_USART_ClockStructInit(LL_USART_ClockInitTypeDef *USART_ClockInitStruct); /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /** * @} */ /** * @} */ #endif /* USART1 || USART2 || USART3 || USART6 || UART4 || UART5 || UART7 || UART8 || UART9 || UART10 */ /** * @} */ #ifdef __cplusplus } #endif #endif /* __STM32F4xx_LL_USART_H */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/