Mercurial > public > ostc4
view Discovery/Src/data_central.c @ 787:aeb72882f30a
Dev Bugfx Empty buffer indication and stability improvments:
The mux prototype used ASCII coding for channel selection while the current realization used real number (0...4) for addressing the mux. The UART read function uses the '0' to indicate an empty buffer element. The mux now loops back '0' used by channel selection causing the read function to process the data. As result data interrups are visible at the display. To avoid this another character has been defined indicate empty buffer locations.
Beside this the functionality has been improved with regard to access speed and better recovery in case of transition failure.
author | Ideenmodellierer |
---|---|
date | Sun, 04 Jun 2023 21:59:26 +0200 |
parents | 45b8f3c2acce |
children | 4abfb8a2a435 |
line wrap: on
line source
/** ****************************************************************************** * @copyright heinrichs weikamp * @file data_central.c * @author heinrichs weikamp gmbh * @date 10-November-2014 * @version V1.0.2 * @since 10-Nov-2014 * @brief All the data EXCEPT * - settings (settings.c) * feste Werte, die nur an der Oberfl�che ge�ndert werden * - dataIn and dataOut (data_exchange.h and data_exchange_main.c) * Austausch mit Small CPU * @bug * @warning @verbatim ============================================================================== ##### SDiveState Real and Sim ##### ============================================================================== [..] SDiveSettings copy of parts of Settings that are necessary during the dive and could be modified during the dive without post dive changes. [..] SLifeData written in DataEX_copy_to_LifeData(); block 1 "lifedata" set by SmallCPU in stateReal block 2 "actualGas" set by main CPU from user input and send to Small CPU block 3 "calculated data" set by main CPU based on "lifedata" [..] SVpm [..] SEvents [..] SDecoinfo [..] mode set by SmallCPU in stateReal, can be surface, dive, ... [..] data_old__lost_connection_to_slave set by DataEX_copy_to_LifeData(); ============================================================================== ##### SDiveState Deco ##### ============================================================================== [..] kjbkldafj�lasdfjasdf ============================================================================== ##### decoLock ##### ============================================================================== [..] The handler that synchronizes the data between IRQ copy and main deco loop @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2015 heinrichs weikamp</center></h2> * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include <string.h> #include <math.h> #include "data_central.h" #include "calc_crush.h" #include "decom.h" #include "stm32f4xx_hal.h" #include "settings.h" #include "data_exchange_main.h" #include "ostc.h" // for button adjust on hw testboard 1 #include "tCCR.h" #include "crcmodel.h" #include "configuration.h" static SDiveState stateReal = { 0 }; SDiveState stateSim = { 0 }; SDiveState stateDeco = { 0 }; static SDevice stateDevice = { /* max is 0x7FFFFFFF, min is 0x80000000 but also defined in stdint.h :-) */ /* count, use 0 */ .batteryChargeCompleteCycles.value_int32 = 0, .batteryChargeCycles.value_int32 = 0, .diveCycles.value_int32 = 0, .hoursOfOperation.value_int32 = 0, /* max values, use min. */ .temperatureMaximum.value_int32 = INT32_MIN, .depthMaximum.value_int32 = INT32_MIN, /* min values, use max. */ .temperatureMinimum.value_int32 = INT32_MAX, .voltageMinimum.value_int32 = INT32_MAX, }; static SVpmRepetitiveData stateVPM = { .repetitive_variables_not_valid = 1, .is_data_from_RTE_CPU = 0, }; const SDiveState *stateUsed = &stateReal; SDiveState *stateUsedWrite = &stateReal; #define COMPASS_FRACTION (4.0f) /* delay till value changes to new actual */ static float compass_compensated = 0; void set_stateUsedToReal(void) { stateUsed = stateUsedWrite = &stateReal; } void set_stateUsedToSim(void) { stateUsed = stateUsedWrite = &stateSim; } _Bool is_stateUsedSetToSim(void) { return stateUsed == &stateSim; } const SDiveState * stateRealGetPointer(void) { return &stateReal; } SDiveState * stateRealGetPointerWrite(void) { return &stateReal; } const SDiveState * stateSimGetPointer(void) { return &stateSim; } SDiveState * stateSimGetPointerWrite(void) { return &stateSim; } const SDevice * stateDeviceGetPointer(void) { return &stateDevice; } SDevice * stateDeviceGetPointerWrite(void) { return &stateDevice; } const SVpmRepetitiveData * stateVpmRepetitiveDataGetPointer(void) { return &stateVPM; } SVpmRepetitiveData * stateVpmRepetitiveDataGetPointerWrite(void) { return &stateVPM; } uint32_t time_elapsed_ms(uint32_t ticksstart,uint32_t ticksnow) { if(ticksstart <= ticksnow) return ticksnow - ticksstart; else return 0xFFFFFFFF - ticksstart + ticksnow; } uint8_t decoLock = DECO_CALC_undefined; static int descent_rate_meter_per_min = 20; static int max_depth = 70; static int bottom_time = 10; _Bool vpm_crush(SDiveState* pDiveState); void setSimulationValues(int _ascent_rate_meter_per_min, int _descent_rate_meter_per_min, int _max_depth, int _bottom_time ) { descent_rate_meter_per_min = _descent_rate_meter_per_min; max_depth = _max_depth; bottom_time = _bottom_time; } int current_second(void) { return HAL_GetTick() / 1000; } #define OXY_ONE_SIXTIETH_PART 0.0166667f uint8_t calc_MOD(uint8_t gasId) { int16_t oxygen, maxppO2, result; SSettings *pSettings; pSettings = settingsGetPointer(); oxygen = (int16_t)(pSettings->gas[gasId].oxygen_percentage); if(pSettings->gas[gasId].note.ub.deco > 0) maxppO2 =(int16_t)(pSettings->ppO2_max_deco); else maxppO2 =(int16_t)(pSettings->ppO2_max_std); result = 10 * maxppO2; result /= oxygen; result -= 10; if(result < 0) return 0; if(result > 255) return 255; return result; } float get_ambiant_pressure_simulation(long dive_time_seconds, float surface_pressure_bar ) { static long descent_time; float depth_meter; descent_time = 60 * max_depth / descent_rate_meter_per_min; if(dive_time_seconds <= descent_time) { depth_meter = ((float)(dive_time_seconds * descent_rate_meter_per_min)) / 60; return surface_pressure_bar + depth_meter / 10; } //else if(dive_time_seconds <= (descent_time + bottom_time * 60)) return surface_pressure_bar + max_depth / 10; } void UpdateLifeDataTest(SDiveState * pDiveState) { static int last_second = -1; int now = current_second(); if(last_second == now) return; last_second = now; pDiveState->lifeData.dive_time_seconds += 1; pDiveState->lifeData.pressure_ambient_bar = get_ambiant_pressure_simulation(pDiveState->lifeData.dive_time_seconds,pDiveState->lifeData.pressure_surface_bar); pDiveState->lifeData.depth_meter = (pDiveState->lifeData.pressure_ambient_bar - pDiveState->lifeData.pressure_surface_bar) * 10.0f; if(pDiveState->lifeData.max_depth_meter < pDiveState->lifeData.depth_meter) pDiveState->lifeData.max_depth_meter = pDiveState->lifeData.depth_meter; decom_tissues_exposure(1, &pDiveState->lifeData); pDiveState->lifeData.ppO2 = decom_calc_ppO2( pDiveState->lifeData.pressure_ambient_bar, &pDiveState->lifeData.actualGas); decom_oxygen_calculate_cns(& pDiveState->lifeData.cns, pDiveState->lifeData.ppO2); vpm_crush(pDiveState); } _Bool vpm_crush(SDiveState* pDiveState) { int i = 0; static float starting_ambient_pressure = 0; static float ending_ambient_pressure = 0; static float time_calc_begin = -1; static float initial_helium_pressure[16]; static float initial_nitrogen_pressure[16]; ending_ambient_pressure = pDiveState->lifeData.pressure_ambient_bar * 10; if((pDiveState->lifeData.dive_time_seconds <= 4) || (starting_ambient_pressure >= ending_ambient_pressure)) { time_calc_begin = pDiveState->lifeData.dive_time_seconds; starting_ambient_pressure = pDiveState->lifeData.pressure_ambient_bar * 10; for( i = 0; i < 16; i++) { initial_helium_pressure[i] = pDiveState->lifeData.tissue_helium_bar[i] * 10; initial_nitrogen_pressure[i] = pDiveState->lifeData.tissue_nitrogen_bar[i] * 10; } return false; } if(pDiveState->lifeData.dive_time_seconds - time_calc_begin >= 4) { if(ending_ambient_pressure > starting_ambient_pressure + 0.5f) { float rate = (ending_ambient_pressure - starting_ambient_pressure) * 60 / 4; calc_crushing_pressure(&pDiveState->lifeData, &pDiveState->vpm, initial_helium_pressure, initial_nitrogen_pressure, starting_ambient_pressure, rate); time_calc_begin = pDiveState->lifeData.dive_time_seconds; starting_ambient_pressure = pDiveState->lifeData.pressure_ambient_bar * 10; for( i = 0; i < 16; i++) { initial_helium_pressure[i] = pDiveState->lifeData.tissue_helium_bar[i] * 10; initial_nitrogen_pressure[i] = pDiveState->lifeData.tissue_nitrogen_bar[i] * 10; } return true; } } return false; }; void createDiveSettings(void) { int i; SSettings* pSettings = settingsGetPointer(); stateReal.diveSettings.compassHeading = pSettings->compassBearing; stateReal.diveSettings.ascentRate_meterperminute = 10; stateReal.diveSettings.diveMode = pSettings->dive_mode; stateReal.diveSettings.CCR_Mode = pSettings->CCR_Mode; if((stateReal.diveSettings.diveMode == DIVEMODE_PSCR) && (stateReal.diveSettings.CCR_Mode == CCRMODE_FixedSetpoint)) { /* TODO: update selection of sensor used on/off (currently sensor/fixpoint). As PSCR has no fixed setpoint change to simulated ppo2 if sensors are not active */ stateReal.diveSettings.CCR_Mode = CCRMODE_Simulation; } if(isLoopMode(stateReal.diveSettings.diveMode)) stateReal.diveSettings.ccrOption = 1; else stateReal.diveSettings.ccrOption = 0; memcpy(stateReal.diveSettings.gas, pSettings->gas,sizeof(pSettings->gas)); memcpy(stateReal.diveSettings.setpoint, pSettings->setpoint,sizeof(pSettings->setpoint)); setActualGasFirst(&stateReal.lifeData); stateReal.diveSettings.gf_high = pSettings->GF_high; stateReal.diveSettings.gf_low = pSettings->GF_low; stateReal.diveSettings.input_next_stop_increment_depth_bar = ((float)pSettings->stop_increment_depth_meter) / 10.0f; stateReal.diveSettings.last_stop_depth_bar = ((float)pSettings->last_stop_depth_meter) / 10.0f; stateReal.diveSettings.vpm_conservatism = pSettings->VPM_conservatism.ub.standard; stateReal.diveSettings.deco_type.uw = pSettings->deco_type.uw; stateReal.diveSettings.fallbackOption = pSettings->fallbackToFixedSetpoint; stateReal.diveSettings.ppo2sensors_deactivated = pSettings->ppo2sensors_deactivated; stateReal.diveSettings.future_TTS_minutes = pSettings->future_TTS; stateReal.diveSettings.pscr_lung_ratio = pSettings->pscr_lung_ratio; stateReal.diveSettings.pscr_o2_drop = pSettings->pscr_o2_drop; if(stateReal.diveSettings.diveMode == DIVEMODE_PSCR) { for(i=0; i<5; i++) { stateReal.diveSettings.decogaslist[i].pscr_factor = 1.0 / stateReal.diveSettings.pscr_lung_ratio * stateReal.diveSettings.pscr_o2_drop; } } decom_CreateGasChangeList(&stateReal.diveSettings, &stateReal.lifeData); // decogaslist stateReal.diveSettings.internal__pressure_first_stop_ambient_bar_as_upper_limit_for_gf_low_otherwise_zero = 0; /* for safety */ stateReal.diveSettings.input_second_to_last_stop_depth_bar = stateReal.diveSettings.last_stop_depth_bar + stateReal.diveSettings.input_next_stop_increment_depth_bar; /* and the proper calc */ for(i = 1; i <10; i++) { if(stateReal.diveSettings.input_next_stop_increment_depth_bar * i > stateReal.diveSettings.last_stop_depth_bar) { stateReal.diveSettings.input_second_to_last_stop_depth_bar = stateReal.diveSettings.input_next_stop_increment_depth_bar * i; break; } } } void copyDiveSettingsToSim(void) { memcpy(&stateSim, &stateReal, sizeof(stateReal)); } void copyVpmRepetetiveDataToSim(void) { SDiveState * pSimData = stateSimGetPointerWrite(); const SVpmRepetitiveData * pVpmData = stateVpmRepetitiveDataGetPointer(); if(pVpmData->is_data_from_RTE_CPU) { for(int i=0; i<16;i++) { pSimData->vpm.adjusted_critical_radius_he[i] = pVpmData->adjusted_critical_radius_he[i]; pSimData->vpm.adjusted_critical_radius_n2[i] = pVpmData->adjusted_critical_radius_n2[i]; pSimData->vpm.adjusted_crushing_pressure_he[i] = pVpmData->adjusted_crushing_pressure_he[i]; pSimData->vpm.adjusted_crushing_pressure_n2[i] = pVpmData->adjusted_crushing_pressure_n2[i]; pSimData->vpm.initial_allowable_gradient_he[i] = pVpmData->initial_allowable_gradient_he[i]; pSimData->vpm.initial_allowable_gradient_n2[i] = pVpmData->initial_allowable_gradient_n2[i]; pSimData->vpm.max_actual_gradient[i] = pVpmData->max_actual_gradient[i]; } pSimData->vpm.repetitive_variables_not_valid = pVpmData->repetitive_variables_not_valid; } } void updateSetpointStateUsed(void) { if(!isLoopMode(stateUsed->diveSettings.diveMode)) { stateUsedWrite->lifeData.actualGas.setPoint_cbar = 0; stateUsedWrite->lifeData.ppO2 = decom_calc_ppO2(stateUsed->lifeData.pressure_ambient_bar, &stateUsed->lifeData.actualGas); } else { if(stateUsed->diveSettings.CCR_Mode == CCRMODE_Sensors) { stateUsedWrite->lifeData.actualGas.setPoint_cbar = get_ppO2SensorWeightedResult_cbar(); } #ifdef ENABLE_PSCR_MODE if(stateUsed->diveSettings.diveMode == DIVEMODE_PSCR) /* calculate a ppO2 value based on assumptions ( transfered approach from hwos code) */ { stateUsedWrite->lifeData.ppo2Simulated_bar = decom_calc_SimppO2_O2based(stateUsed->lifeData.pressure_ambient_bar, stateReal.diveSettings.gas[stateUsed->lifeData.actualGas.GasIdInSettings].oxygen_percentage, stateUsed->lifeData.actualGas.pscr_factor); if(stateUsed->diveSettings.CCR_Mode == CCRMODE_Simulation) { stateUsedWrite->lifeData.actualGas.setPoint_cbar = stateUsedWrite->lifeData.ppo2Simulated_bar * 100; } } #endif /* limit calculated value to the physically possible if needed */ if((stateUsed->lifeData.pressure_ambient_bar * 100) < stateUsed->lifeData.actualGas.setPoint_cbar) stateUsedWrite->lifeData.ppO2 = stateUsed->lifeData.pressure_ambient_bar; else stateUsedWrite->lifeData.ppO2 = ((float)stateUsed->lifeData.actualGas.setPoint_cbar) / 100; } } void setActualGasFirst(SLifeData *lifeData) { SSettings* pSettings = settingsGetPointer(); uint8_t start = 0; uint8_t gasId = 0; uint8_t setpoint_cbar = 0; if(isLoopMode(pSettings->dive_mode)) { setpoint_cbar = pSettings->setpoint[1].setpoint_cbar; start = NUM_OFFSET_DILUENT+1; } else { setpoint_cbar = 0; start = 1; } gasId = start; for(int i=start;i<=NUM_GASES+start;i++) { if(pSettings->gas[i].note.ub.first) { gasId = i; break; } } setActualGas(lifeData, gasId, setpoint_cbar); } void setActualGasAir(SLifeData *lifeData) { uint8_t nitrogen; nitrogen = 79; lifeData->actualGas.GasIdInSettings = 0; lifeData->actualGas.nitrogen_percentage = nitrogen; lifeData->actualGas.helium_percentage =0; lifeData->actualGas.setPoint_cbar = 0; lifeData->actualGas.change_during_ascent_depth_meter_otherwise_zero = 0; lifeData->actualGas.AppliedDiveMode = stateUsed->diveSettings.diveMode; } void setActualGas(SLifeData *lifeData, uint8_t gasId, uint8_t setpoint_cbar) { SSettings* pSettings = settingsGetPointer(); uint8_t nitrogen; nitrogen = 100; nitrogen -= pSettings->gas[gasId].oxygen_percentage; nitrogen -= pSettings->gas[gasId].helium_percentage; lifeData->actualGas.GasIdInSettings = gasId; lifeData->actualGas.nitrogen_percentage = nitrogen; lifeData->actualGas.helium_percentage = pSettings->gas[gasId].helium_percentage; lifeData->actualGas.setPoint_cbar = setpoint_cbar; lifeData->actualGas.change_during_ascent_depth_meter_otherwise_zero = 0; lifeData->actualGas.AppliedDiveMode = stateUsed->diveSettings.diveMode; lifeData->actualGas.pscr_factor = 1.0 / pSettings->pscr_lung_ratio * pSettings->pscr_o2_drop; if (isLoopMode(pSettings->dive_mode) && gasId > NUM_OFFSET_DILUENT) { lifeData->lastDiluent_GasIdInSettings = gasId; lifeData->lastSetpointChangeDepthM = lifeData->depth_meter; } } void setActualGas_DM(SLifeData *lifeData, uint8_t gasId, uint8_t setpoint_cbar) { if(stateUsed->diveSettings.ccrOption && gasId < 6) { if(lifeData->actualGas.GasIdInSettings != gasId) { SSettings* pSettings = settingsGetPointer(); stateUsedWrite->events.bailout = 1; stateUsedWrite->events.info_bailoutO2 = pSettings->gas[gasId].oxygen_percentage; stateUsedWrite->events.info_bailoutHe = pSettings->gas[gasId].helium_percentage; } } else { if(lifeData->actualGas.GasIdInSettings != gasId) { stateUsedWrite->events.gasChange = 1; stateUsedWrite->events.info_GasChange = gasId; } if( lifeData->actualGas.setPoint_cbar != setpoint_cbar) { // setPoint_cbar = 255 -> change to sensor mode stateUsedWrite->events.setpointChange = 1; stateUsedWrite->events.info_SetpointChange = setpoint_cbar; } } setActualGas(lifeData, gasId, setpoint_cbar); } void setActualGas_ExtraGas(SLifeData *lifeData, uint8_t oxygen, uint8_t helium, uint8_t setpoint_cbar) { uint8_t nitrogen; nitrogen = 100; nitrogen -= oxygen; nitrogen -= helium; if((lifeData->actualGas.nitrogen_percentage != nitrogen) || (lifeData->actualGas.helium_percentage != helium) || (lifeData->actualGas.AppliedDiveMode != DIVEMODE_OC)) { stateUsedWrite->events.manualGasSet = 1; stateUsedWrite->events.info_manualGasSetHe = helium; stateUsedWrite->events.info_manualGasSetO2 = oxygen; } if( lifeData->actualGas.setPoint_cbar != setpoint_cbar) { stateUsedWrite->events.setpointChange = 1; stateUsedWrite->events.info_SetpointChange = setpoint_cbar; } lifeData->actualGas.GasIdInSettings = 0; lifeData->actualGas.nitrogen_percentage = nitrogen; lifeData->actualGas.helium_percentage = helium; lifeData->actualGas.setPoint_cbar = setpoint_cbar; lifeData->actualGas.change_during_ascent_depth_meter_otherwise_zero = 0; lifeData->actualGas.AppliedDiveMode = stateUsed->diveSettings.diveMode; } void setButtonResponsiveness(uint8_t *ButtonSensitivyList) { SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); for(int i=0; i<4; i++) { pDataOut->data.buttonResponsiveness[i] = settingsHelperButtonSens_translate_percentage_to_hwOS_values(ButtonSensitivyList[i]); } pDataOut->setButtonSensitivityNow = 1; } void setDate(RTC_DateTypeDef Sdate) { SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); pDataOut->data.newDate = Sdate; pDataOut->setDateNow = 1; } void setTime(RTC_TimeTypeDef Stime) { SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); pDataOut->data.newTime = Stime; pDataOut->setTimeNow = 1; } void setBatteryPercentage(uint8_t newChargePercentage) { SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); pDataOut->data.newBatteryGaugePercentageFloat = settingsGetPointer()->lastKnownBatteryPercentage; pDataOut->setBatteryGaugeNow = 1; } void calibrateCompass(void) { SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); pDataOut->calibrateCompassNow = 1; } void clearDeco(void) { SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); pDataOut->clearDecoNow = 1; stateRealGetPointerWrite()->cnsHigh_at_the_end_of_dive = 0; stateRealGetPointerWrite()->decoMissed_at_the_end_of_dive = 0; } static int32_t helper_days_from_civil(int32_t y, uint32_t m, uint32_t d) { y += 2000; y -= m <= 2; int32_t era = (y >= 0 ? y : y-399) / 400; uint32_t yoe = (uint32_t)(y - era * 400); // [0, 399] uint32_t doy = (153*(m + (m > 2 ? -3 : 9)) + 2)/5 + d-1; // [0, 365] uint32_t doe = yoe * 365 + yoe/4 - yoe/100 + doy; // [0, 146096] return era * 146097 + (int32_t)(doe) - 719468; } static uint8_t helper_weekday_from_days(int32_t z) { return (uint8_t)(z >= -4 ? (z+4) % 7 : (z+5) % 7 + 6); } void setWeekday(RTC_DateTypeDef *sDate) { uint8_t day; // [0, 6] -> [Sun, Sat] day = helper_weekday_from_days(helper_days_from_civil(sDate->Year, sDate->Month, sDate->Date)); // [1, 7] -> [Mon, Sun] if(day == 0) day = 7; sDate->WeekDay = day; } void translateDate(uint32_t datetmpreg, RTC_DateTypeDef *sDate) { datetmpreg = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK); /* Fill the structure fields with the read parameters */ sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> 16); sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> 8); sDate->Date = (uint8_t)(datetmpreg & (RTC_DR_DT | RTC_DR_DU)); sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> 13); /* Convert the date structure parameters to Binary format */ sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year); sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month); sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date); } void translateTime(uint32_t tmpreg, RTC_TimeTypeDef *sTime) { tmpreg = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK); /* Fill the structure fields with the read parameters */ sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> 16); sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >>8); sTime->Seconds = (uint8_t)(tmpreg & (RTC_TR_ST | RTC_TR_SU)); sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> 16); /* Convert the time structure parameters to Binary format */ sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours); sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes); sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds); sTime->SubSeconds = 0; } void resetEvents(const SDiveState *pStateUsed) { memset((void *)&pStateUsed->events, 0, sizeof(SEvents)); } uint32_t CRC_CalcBlockCRC_moreThan768000(uint32_t *buffer1, uint32_t *buffer2, uint32_t words) { cm_t crc_model; uint32_t word_to_do; uint8_t byte_to_do; int i; // Values for the STM32F generator. crc_model.cm_width = 32; // 32-bit CRC crc_model.cm_poly = 0x04C11DB7; // CRC-32 polynomial crc_model.cm_init = 0xFFFFFFFF; // CRC initialized to 1's crc_model.cm_refin = FALSE; // CRC calculated MSB first crc_model.cm_refot = FALSE; // Final result is not bit-reversed crc_model.cm_xorot = 0x00000000; // Final result XOR'ed with this cm_ini(&crc_model); while (words--) { // The STM32F10x hardware does 32-bit words at a time!!! if(words > (768000/4)) word_to_do = *buffer2++; else word_to_do = *buffer1++; // Do all bytes in the 32-bit word. for (i = 0; i < sizeof(word_to_do); i++) { // We calculate a *byte* at a time. If the CRC is MSB first we // do the next MS byte and vica-versa. if (crc_model.cm_refin == FALSE) { // MSB first. Do the next MS byte. byte_to_do = (uint8_t) ((word_to_do & 0xFF000000) >> 24); word_to_do <<= 8; } else { // LSB first. Do the next LS byte. byte_to_do = (uint8_t) (word_to_do & 0x000000FF); word_to_do >>= 8; } cm_nxt(&crc_model, byte_to_do); } } // Return the final result. return (cm_crc(&crc_model)); } uint32_t CRC_CalcBlockCRC(uint32_t *buffer, uint32_t words) { cm_t crc_model; uint32_t word_to_do; uint8_t byte_to_do; int i; // Values for the STM32F generator. crc_model.cm_width = 32; // 32-bit CRC crc_model.cm_poly = 0x04C11DB7; // CRC-32 polynomial crc_model.cm_init = 0xFFFFFFFF; // CRC initialized to 1's crc_model.cm_refin = FALSE; // CRC calculated MSB first crc_model.cm_refot = FALSE; // Final result is not bit-reversed crc_model.cm_xorot = 0x00000000; // Final result XOR'ed with this cm_ini(&crc_model); while (words--) { // The STM32F10x hardware does 32-bit words at a time!!! word_to_do = *buffer++; // Do all bytes in the 32-bit word. for (i = 0; i < sizeof(word_to_do); i++) { // We calculate a *byte* at a time. If the CRC is MSB first we // do the next MS byte and vica-versa. if (crc_model.cm_refin == FALSE) { // MSB first. Do the next MS byte. byte_to_do = (uint8_t) ((word_to_do & 0xFF000000) >> 24); word_to_do <<= 8; } else { // LSB first. Do the next LS byte. byte_to_do = (uint8_t) (word_to_do & 0x000000FF); word_to_do >>= 8; } cm_nxt(&crc_model, byte_to_do); } } // Return the final result. return (cm_crc(&crc_model)); } // This code is also in RTE. Keep it in sync when editing _Bool is_ambient_pressure_close_to_surface(SLifeData *lifeData) { if (lifeData->pressure_ambient_bar > 1.16) return false; else if(lifeData->pressure_ambient_bar < (lifeData->pressure_surface_bar + 0.1f)) return true; else return false; } void compass_Inertia(float newHeading) { float newTarget = newHeading; if(settingsGetPointer()->compassInertia == 0) { compass_compensated = newHeading; } else { if((compass_compensated > 270.0) && (newHeading < 90.0)) /* transition passing 0 clockwise */ { newTarget = newHeading + 360.0; } if((compass_compensated < 90.0) && (newHeading > 270.0)) /* transition passing 0 counter clockwise */ { newTarget = newHeading - 360.0; } compass_compensated = compass_compensated + ((newTarget - compass_compensated) / (COMPASS_FRACTION * (settingsGetPointer()->compassInertia))); if(compass_compensated < 0.0) { compass_compensated += 360.0; } if(compass_compensated >= 360.0) { compass_compensated -= 360.0; } } } float compass_getCompensated() { return compass_compensated; } uint8_t isLoopMode(uint8_t Mode) { uint8_t retVal = 0; if((Mode == DIVEMODE_CCR) || (Mode == DIVEMODE_PSCR)) { retVal = 1; } return retVal; } bool isCompassCalibrated(void) { return stateUsed->lifeData.compass_heading != -1; } void setCompassHeading(uint16_t heading) { // if heading == 0 set compassHeading to 360, because compassHeading == 0 means 'off' stateUsedWrite->diveSettings.compassHeading = ((heading - 360) % 360) + 360; }