Mercurial > public > ostc4
view Small_CPU/Src/uartProtocol_O2.c @ 797:acf6614dc396
Use mirror sensortype for visualization:
The visualization of O2 sensor data is still based on the three slots. To make the usage of these slots more transparent and easy "mirror" sensortypes have been introduced. These types may be used within the refresh to switch the source. E.g. if only one or two slots are used for O2 values the the third may be used for CO2 data. By using the mirror the datastream does no longer need to be manipulated (copying Co2data in variables named O2xyz).
author | Ideenmodellierer |
---|---|
date | Mon, 31 Jul 2023 20:10:27 +0200 |
parents | d4083ac09b5d |
children | e9eba334b942 |
line wrap: on
line source
/** ****************************************************************************** * @file uartProtocol_O2.c * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 16-Jun-2023 * @brief Interface functionality to external, UART based O2 sensors * @verbatim @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2023 heinrichs weikamp</center></h2> * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include <string.h> #include "uart.h" #include "uartProtocol_O2.h" #include "externalInterface.h" const uint8_t errorStr[] = "#ERRO"; static uint32_t lastReceiveTick = 0; static uartO2RxState_t rxState = O2RX_IDLE; static uint8_t digO2Connected = 0; /* Binary indicator if a sensor is connected or not */ static SSensorDataDiveO2 tmpSensorDataDiveO2; /* intermediate storage for additional sensor data */ static uint8_t activeSensor = 0; static uint8_t respondErrorDetected = 0; void uartO2_InitData() { digO2Connected = 0; } void uartO2_SetupCmd(uint8_t O2State, uint8_t *cmdString, uint8_t *cmdLength) { switch (O2State) { case UART_O2_CHECK: *cmdLength = snprintf((char*)cmdString, 10, "#LOGO"); break; case UART_O2_REQ_INFO: *cmdLength = snprintf((char*)cmdString, 10, "#VERS"); break; case UART_O2_REQ_ID: *cmdLength = snprintf((char*)cmdString, 10, "#IDNR"); break; case UART_O2_REQ_O2: *cmdLength = snprintf((char*)cmdString, 10, "#DOXY"); break; case UART_O2_REQ_RAW: *cmdLength = snprintf((char*)cmdString, 10, "#DRAW"); break; default: *cmdLength = 0; break; } if(*cmdLength != 0) { cmdString[*cmdLength] = 0x0D; *cmdLength = *cmdLength + 1; cmdString[*cmdLength] = 0x0A; *cmdLength = *cmdLength + 1; cmdString[*cmdLength] = 0; *cmdLength = *cmdLength + 1; } } static uint8_t cmdLength = 0; static uint8_t cmdString[10]; void uartO2_Control(void) { static uint8_t lastComState = 0; static uint8_t lastActiveSensor = 0xFF; uint8_t activeSensor = externalInterface_GetActiveUartSensor(); uartO2Status_t localComState = externalInterface_GetSensorState(activeSensor + EXT_INTERFACE_MUX_OFFSET); externalInterface_GetSensorData(activeSensor + EXT_INTERFACE_MUX_OFFSET, (uint8_t*)&tmpSensorDataDiveO2); if(lastActiveSensor != activeSensor) { lastActiveSensor = activeSensor; if(localComState != UART_O2_ERROR) { lastComState = localComState; } else { lastComState = UART_O2_IDLE; } if(localComState == UART_O2_CHECK) { localComState = UART_O2_IDLE; } UART_FlushRxBuffer(); } if(localComState == UART_O2_INIT) { memset((char*) &tmpSensorDataDiveO2, 0, sizeof(tmpSensorDataDiveO2)); externalInterface_SetSensorData(0xFF,(uint8_t*)&tmpSensorDataDiveO2); localComState = UART_O2_CHECK; lastComState = UART_O2_CHECK; uartO2_SetupCmd(localComState,cmdString,&cmdLength); rxState = O2RX_CONFIRM; respondErrorDetected = 0; digO2Connected = 0; UART_StartDMA_Receiption(); } else { if(localComState == UART_O2_ERROR) { localComState = lastComState; } lastComState = localComState; if(localComState == UART_O2_IDLE) /* cyclic request of o2 value */ { if((activeSensor != MAX_MUX_CHANNEL) && (tmpSensorDataDiveO2.sensorId == 0)) { localComState = UART_O2_REQ_ID; } else { localComState = UART_O2_REQ_RAW; } } rxState = O2RX_CONFIRM; uartO2_SetupCmd(localComState,cmdString,&cmdLength); UART_SendCmdString(cmdString); } externalInterface_SetSensorState(activeSensor + EXT_INTERFACE_MUX_OFFSET,localComState); } void uartO2_ProcessData(uint8_t data) { static uint8_t cmdReadIndex = 0; static uint8_t errorReadIndex = 0; static char tmpRxBuf[30]; static uint8_t tmpRxIdx = 0; uint32_t tmpO2 = 0; uint32_t tmpData = 0; uint32_t tick = HAL_GetTick(); uartO2Status_t localComState = externalInterface_GetSensorState(activeSensor + EXT_INTERFACE_MUX_OFFSET); lastReceiveTick = tick; switch(rxState) { case O2RX_CONFIRM: if(data == '#') { cmdReadIndex = 0; errorReadIndex = 0; } if(errorReadIndex < sizeof(errorStr)-1) { if(data == errorStr[errorReadIndex]) { errorReadIndex++; } else { errorReadIndex = 0; } } else { respondErrorDetected = 1; errorReadIndex = 0; if(localComState != UART_O2_IDLE) { localComState = UART_O2_ERROR; } } if(data == cmdString[cmdReadIndex]) { cmdReadIndex++; if(cmdReadIndex == cmdLength - 3) { errorReadIndex = 0; if((activeSensor == MAX_MUX_CHANNEL)) { if(respondErrorDetected) { digO2Connected = 0; /* the multiplexer mirrors the incoming message and does not generate an error information => no mux connected */ } else { digO2Connected = 1; } } else /* handle sensors which should respond with an error message after channel switch */ { digO2Connected = 1; } tmpRxIdx = 0; memset((char*) tmpRxBuf, 0, sizeof(tmpRxBuf)); cmdReadIndex = 0; switch (localComState) { case UART_O2_CHECK: localComState = UART_O2_IDLE; rxState = O2RX_IDLE; break; case UART_O2_REQ_ID: rxState = O2RX_GETNR; break; case UART_O2_REQ_INFO: rxState = O2RX_GETTYPE; break; case UART_O2_REQ_RAW: case UART_O2_REQ_O2: rxState = O2RX_GETO2; break; default: localComState = UART_O2_IDLE; rxState = O2RX_IDLE; break; } } } else { cmdReadIndex = 0; } break; case O2RX_GETSTATUS: case O2RX_GETTEMP: case O2RX_GETTYPE: case O2RX_GETVERSION: case O2RX_GETCHANNEL: case O2RX_GETSUBSENSORS: case O2RX_GETO2: case O2RX_GETNR: case O2RX_GETDPHI: case O2RX_INTENSITY: case O2RX_AMBIENTLIGHT: case O2RX_PRESSURE: case O2RX_HUMIDITY: if(data != 0x0D) { if(data != ' ') /* the following data entities are placed within the data stream => no need to store data at the end */ { tmpRxBuf[tmpRxIdx++] = data; } else { if(tmpRxIdx != 0) { switch(rxState) { case O2RX_GETCHANNEL: StringToInt(tmpRxBuf,&tmpData); rxState = O2RX_GETVERSION; break; case O2RX_GETVERSION: StringToInt(tmpRxBuf,&tmpData); rxState = O2RX_GETSUBSENSORS; break; case O2RX_GETTYPE: StringToInt(tmpRxBuf,&tmpData); rxState = O2RX_GETCHANNEL; break; case O2RX_GETO2: StringToInt(tmpRxBuf,&tmpO2); setExternalInterfaceChannel(activeSensor + EXT_INTERFACE_MUX_OFFSET,(float)(tmpO2 / 10000.0)); rxState = O2RX_GETTEMP; break; case O2RX_GETTEMP: StringToInt(tmpRxBuf,(uint32_t*)&tmpSensorDataDiveO2.temperature); rxState = O2RX_GETSTATUS; break; case O2RX_GETSTATUS: StringToInt(tmpRxBuf,&tmpSensorDataDiveO2.status); /* raw data cycle */ rxState = O2RX_GETDPHI; break; case O2RX_GETDPHI: /* ignored to save memory and most likly irrelevant for diver */ rxState = O2RX_INTENSITY; break; case O2RX_INTENSITY: StringToInt(tmpRxBuf,(uint32_t*)&tmpSensorDataDiveO2.intensity); /* raw data cycle */ rxState = O2RX_AMBIENTLIGHT; break; case O2RX_AMBIENTLIGHT: StringToInt(tmpRxBuf,(uint32_t*)&tmpSensorDataDiveO2.ambient); /* raw data cycle */ rxState = O2RX_PRESSURE; break; case O2RX_PRESSURE: StringToInt(tmpRxBuf,(uint32_t*)&tmpSensorDataDiveO2.pressure); /* raw data cycle */ rxState = O2RX_HUMIDITY; break; default: break; } memset((char*) tmpRxBuf, 0, tmpRxIdx); tmpRxIdx = 0; } } } else { /* the following data items are the last of a sensor respond => store temporal data */ switch (rxState) { case O2RX_GETSTATUS: StringToInt(tmpRxBuf,&tmpSensorDataDiveO2.status); externalInterface_SetSensorData(activeSensor + EXT_INTERFACE_MUX_OFFSET,(uint8_t*)&tmpSensorDataDiveO2); localComState = UART_O2_IDLE; rxState = O2RX_IDLE; break; case O2RX_GETSUBSENSORS: StringToInt(tmpRxBuf,&tmpData); localComState = UART_O2_IDLE; rxState = O2RX_IDLE; break; case O2RX_HUMIDITY: StringToInt(tmpRxBuf,(uint32_t*)&tmpSensorDataDiveO2.humidity); /* raw data cycle */ externalInterface_SetSensorData(activeSensor + EXT_INTERFACE_MUX_OFFSET,(uint8_t*)&tmpSensorDataDiveO2); localComState = UART_O2_IDLE; rxState = O2RX_IDLE; break; case O2RX_GETNR: StringToUInt64((char*)tmpRxBuf,&tmpSensorDataDiveO2.sensorId); externalInterface_SetSensorData(activeSensor + EXT_INTERFACE_MUX_OFFSET,(uint8_t*)&tmpSensorDataDiveO2); localComState = UART_O2_IDLE; rxState = O2RX_IDLE; break; default: localComState = UART_O2_IDLE; rxState = O2RX_IDLE; break; } } break; default: rxState = O2RX_IDLE; break; } externalInterface_SetSensorState(activeSensor + EXT_INTERFACE_MUX_OFFSET,localComState); } uint8_t uartO2_isSensorConnected() { return digO2Connected; } void uartO2_SetChannel(uint8_t channel) { if(channel <= MAX_MUX_CHANNEL) { activeSensor = channel; } }