Mercurial > public > ostc4
view Common/Drivers/STM32F4xx_HAL_DRIVER_v120/Src/stm32f4xx_hal_cryp.c @ 123:a984d87a1ec0 FlipDisplay
Added option to build FontPack as static libary which is linked to the Firmware project (to allow separate build settings)
author | Ideenmodellierer |
---|---|
date | Sun, 27 Jan 2019 22:01:07 +0100 |
parents | 5f11787b4f42 |
children |
line wrap: on
line source
/** ****************************************************************************** * @file stm32f4xx_hal_cryp.c * @author MCD Application Team * @version V1.2.0 * @date 26-December-2014 * @brief CRYP HAL module driver. * This file provides firmware functions to manage the following * functionalities of the Cryptography (CRYP) peripheral: * + Initialization and de-initialization functions * + AES processing functions * + DES processing functions * + TDES processing functions * + DMA callback functions * + CRYP IRQ handler management * + Peripheral State functions * @verbatim ============================================================================== ##### How to use this driver ##### ============================================================================== [..] The CRYP HAL driver can be used as follows: (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit(): (##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE() (##) In case of using interrupts (e.g. HAL_CRYP_AESECB_Encrypt_IT()) (+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority() (+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ() (+++) In CRYP IRQ handler, call HAL_CRYP_IRQHandler() (##) In case of using DMA to control data transfer (e.g. HAL_CRYP_AESECB_Encrypt_DMA()) (+++) Enable the DMAx interface clock using __DMAx_CLK_ENABLE() (+++) Configure and enable two DMA streams one for managing data transfer from memory to peripheral (input stream) and another stream for managing data transfer from peripheral to memory (output stream) (+++) Associate the initialized DMA handle to the CRYP DMA handle using __HAL_LINKDMA() (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the two DMA Streams. The output stream should have higher priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ() (#)Initialize the CRYP HAL using HAL_CRYP_Init(). This function configures mainly: (##) The data type: 1-bit, 8-bit, 16-bit and 32-bit (##) The key size: 128, 192 and 256. This parameter is relevant only for AES (##) The encryption/decryption key. It's size depends on the algorithm used for encryption/decryption (##) The initialization vector (counter). It is not used ECB mode. (#)Three processing (encryption/decryption) functions are available: (##) Polling mode: encryption and decryption APIs are blocking functions i.e. they process the data and wait till the processing is finished, e.g. HAL_CRYP_AESCBC_Encrypt() (##) Interrupt mode: encryption and decryption APIs are not blocking functions i.e. they process the data under interrupt, e.g. HAL_CRYP_AESCBC_Encrypt_IT() (##) DMA mode: encryption and decryption APIs are not blocking functions i.e. the data transfer is ensured by DMA, e.g. HAL_CRYP_AESCBC_Encrypt_DMA() (#)When the processing function is called at first time after HAL_CRYP_Init() the CRYP peripheral is initialized and processes the buffer in input. At second call, the processing function performs an append of the already processed buffer. When a new data block is to be processed, call HAL_CRYP_Init() then the processing function. (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral. @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2014 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f4xx_hal.h" /** @addtogroup STM32F4xx_HAL_Driver * @{ */ /** @defgroup CRYP CRYP * @brief CRYP HAL module driver. * @{ */ #ifdef HAL_CRYP_MODULE_ENABLED #if defined(STM32F415xx) || defined(STM32F417xx) || defined(STM32F437xx) || defined(STM32F439xx) /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /** @addtogroup CRYP_Private_define * @{ */ #define CRYP_TIMEOUT_VALUE 1 /** * @} */ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /** @addtogroup CRYP_Private_Functions_prototypes * @{ */ static void CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector, uint32_t IVSize); static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize); static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout); static HAL_StatusTypeDef CRYP_ProcessData2Words(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout); static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma); static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma); static void CRYP_DMAError(DMA_HandleTypeDef *hdma); static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr); static void CRYP_SetTDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction); static void CRYP_SetTDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction); static void CRYP_SetDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction); static void CRYP_SetDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction); /** * @} */ /* Private functions ---------------------------------------------------------*/ /** @addtogroup CRYP_Private_Functions * @{ */ /** * @brief DMA CRYP Input Data process complete callback. * @param hdma: DMA handle * @retval None */ static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma) { CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; /* Disable the DMA transfer for input FIFO request by resetting the DIEN bit in the DMACR register */ CRYP->DMACR &= (uint32_t)(~CRYP_DMACR_DIEN); /* Call input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } /** * @brief DMA CRYP Output Data process complete callback. * @param hdma: DMA handle * @retval None */ static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma) { CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; /* Disable the DMA transfer for output FIFO request by resetting the DOEN bit in the DMACR register */ CRYP->DMACR &= (uint32_t)(~CRYP_DMACR_DOEN); /* Disable CRYP */ __HAL_CRYP_DISABLE(); /* Change the CRYP state to ready */ hcryp->State = HAL_CRYP_STATE_READY; /* Call output data transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } /** * @brief DMA CRYP communication error callback. * @param hdma: DMA handle * @retval None */ static void CRYP_DMAError(DMA_HandleTypeDef *hdma) { CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; hcryp->State= HAL_CRYP_STATE_READY; HAL_CRYP_ErrorCallback(hcryp); } /** * @brief Writes the Key in Key registers. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Key: Pointer to Key buffer * @param KeySize: Size of Key * @retval None */ static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize) { uint32_t keyaddr = (uint32_t)Key; switch(KeySize) { case CRYP_KEYSIZE_256B: /* Key Initialisation */ CRYP->K0LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4; CRYP->K0RR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4; CRYP->K1LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4; CRYP->K1RR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4; CRYP->K2LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4; CRYP->K2RR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4; CRYP->K3LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4; CRYP->K3RR = __REV(*(uint32_t*)(keyaddr)); break; case CRYP_KEYSIZE_192B: CRYP->K1LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4; CRYP->K1RR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4; CRYP->K2LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4; CRYP->K2RR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4; CRYP->K3LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4; CRYP->K3RR = __REV(*(uint32_t*)(keyaddr)); break; case CRYP_KEYSIZE_128B: CRYP->K2LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4; CRYP->K2RR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4; CRYP->K3LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4; CRYP->K3RR = __REV(*(uint32_t*)(keyaddr)); break; default: break; } } /** * @brief Writes the InitVector/InitCounter in IV registers. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param InitVector: Pointer to InitVector/InitCounter buffer * @param IVSize: Size of the InitVector/InitCounter * @retval None */ static void CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector, uint32_t IVSize) { uint32_t ivaddr = (uint32_t)InitVector; switch(IVSize) { case CRYP_KEYSIZE_128B: CRYP->IV0LR = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4; CRYP->IV0RR = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4; CRYP->IV1LR = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4; CRYP->IV1RR = __REV(*(uint32_t*)(ivaddr)); break; /* Whatever key size 192 or 256, Init vector is written in IV0LR and IV0RR */ case CRYP_KEYSIZE_192B: CRYP->IV0LR = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4; CRYP->IV0RR = __REV(*(uint32_t*)(ivaddr)); break; case CRYP_KEYSIZE_256B: CRYP->IV0LR = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4; CRYP->IV0RR = __REV(*(uint32_t*)(ivaddr)); break; default: break; } } /** * @brief Process Data: Writes Input data in polling mode and read the output data * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Input: Pointer to the Input buffer * @param Ilength: Length of the Input buffer, must be a multiple of 16. * @param Output: Pointer to the returned buffer * @param Timeout: Timeout value * * @retval None */ static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout) { uint32_t tickstart = 0; uint32_t i = 0; uint32_t inputaddr = (uint32_t)Input; uint32_t outputaddr = (uint32_t)Output; for(i=0; (i < Ilength); i+=16) { /* Write the Input block in the IN FIFO */ CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_OFNE)) { /* Check for the Timeout */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } } /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; } /* Return function status */ return HAL_OK; } /** * @brief Process Data: Write Input data in polling mode. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Input: Pointer to the Input buffer * @param Ilength: Length of the Input buffer, must be a multiple of 8 * @param Output: Pointer to the returned buffer * @param Timeout: Specify Timeout value * @retval None */ static HAL_StatusTypeDef CRYP_ProcessData2Words(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout) { uint32_t tickstart = 0; uint32_t i = 0; uint32_t inputaddr = (uint32_t)Input; uint32_t outputaddr = (uint32_t)Output; for(i=0; (i < Ilength); i+=8) { /* Write the Input block in the IN FIFO */ CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_OFNE)) { /* Check for the Timeout */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } } /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; } /* Return function status */ return HAL_OK; } /** * @brief Set the DMA configuration and start the DMA transfer * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param inputaddr: address of the Input buffer * @param Size: Size of the Input buffer, must be a multiple of 16. * @param outputaddr: address of the Output buffer * @retval None */ static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr) { /* Set the CRYP DMA transfer complete callback */ hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt; /* Set the DMA error callback */ hcryp->hdmain->XferErrorCallback = CRYP_DMAError; /* Set the CRYP DMA transfer complete callback */ hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt; /* Set the DMA error callback */ hcryp->hdmaout->XferErrorCallback = CRYP_DMAError; /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Enable the DMA In DMA Stream */ HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&CRYP->DR, Size/4); /* Enable In DMA request */ CRYP->DMACR = (CRYP_DMACR_DIEN); /* Enable the DMA Out DMA Stream */ HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&CRYP->DOUT, outputaddr, Size/4); /* Enable Out DMA request */ CRYP->DMACR |= CRYP_DMACR_DOEN; } /** * @brief Sets the CRYP peripheral in DES ECB mode. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Direction: Encryption or decryption * @retval None */ static void CRYP_SetDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction) { /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_DES_ECB | Direction); /* Set the key */ CRYP->K1LR = __REV(*(uint32_t*)(hcryp->Init.pKey)); CRYP->K1RR = __REV(*(uint32_t*)(hcryp->Init.pKey+4)); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } } /** * @brief Sets the CRYP peripheral in DES CBC mode. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Direction: Encryption or decryption * @retval None */ static void CRYP_SetDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction) { /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_DES_CBC | Direction); /* Set the key */ CRYP->K1LR = __REV(*(uint32_t*)(hcryp->Init.pKey)); CRYP->K1RR = __REV(*(uint32_t*)(hcryp->Init.pKey+4)); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_256B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } } /** * @brief Sets the CRYP peripheral in TDES ECB mode. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Direction: Encryption or decryption * @retval None */ static void CRYP_SetTDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction) { /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_TDES_ECB | Direction); /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, CRYP_KEYSIZE_192B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } } /** * @brief Sets the CRYP peripheral in TDES CBC mode * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Direction: Encryption or decryption * @retval None */ static void CRYP_SetTDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction) { /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the CRYP peripheral in AES CBC mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_TDES_CBC | Direction); /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, CRYP_KEYSIZE_192B); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_256B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } } /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @addtogroup CRYP_Exported_Functions * @{ */ /** @defgroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions * @brief Initialization and Configuration functions. * @verbatim ============================================================================== ##### Initialization and de-initialization functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize the CRYP according to the specified parameters in the CRYP_InitTypeDef and creates the associated handle (+) DeInitialize the CRYP peripheral (+) Initialize the CRYP MSP (+) DeInitialize CRYP MSP @endverbatim * @{ */ /** * @brief Initializes the CRYP according to the specified * parameters in the CRYP_InitTypeDef and creates the associated handle. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp) { /* Check the CRYP handle allocation */ if(hcryp == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_CRYP_KEYSIZE(hcryp->Init.KeySize)); assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType)); if(hcryp->State == HAL_CRYP_STATE_RESET) { /* Init the low level hardware */ HAL_CRYP_MspInit(hcryp); } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set the key size and data type*/ CRYP->CR = (uint32_t) (hcryp->Init.KeySize | hcryp->Init.DataType); /* Reset CrypInCount and CrypOutCount */ hcryp->CrypInCount = 0; hcryp->CrypOutCount = 0; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Set the default CRYP phase */ hcryp->Phase = HAL_CRYP_PHASE_READY; /* Return function status */ return HAL_OK; } /** * @brief DeInitializes the CRYP peripheral. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp) { /* Check the CRYP handle allocation */ if(hcryp == NULL) { return HAL_ERROR; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set the default CRYP phase */ hcryp->Phase = HAL_CRYP_PHASE_READY; /* Reset CrypInCount and CrypOutCount */ hcryp->CrypInCount = 0; hcryp->CrypOutCount = 0; /* Disable the CRYP Peripheral Clock */ __HAL_CRYP_DISABLE(); /* DeInit the low level hardware: CLOCK, NVIC.*/ HAL_CRYP_MspDeInit(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_RESET; /* Release Lock */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP MSP. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp) { /* NOTE : This function Should not be modified, when the callback is needed, the HAL_CRYP_MspInit could be implemented in the user file */ } /** * @brief DeInitializes CRYP MSP. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp) { /* NOTE : This function Should not be modified, when the callback is needed, the HAL_CRYP_MspDeInit could be implemented in the user file */ } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group2 AES processing functions * @brief processing functions. * @verbatim ============================================================================== ##### AES processing functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Encrypt plaintext using AES-128/192/256 using chaining modes (+) Decrypt cyphertext using AES-128/192/256 using chaining modes [..] Three processing functions are available: (+) Polling mode (+) Interrupt mode (+) DMA mode @endverbatim * @{ */ /** * @brief Initializes the CRYP peripheral in AES ECB encryption mode * then encrypt pPlainData. The cypher data are available in pCypherData * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData: Pointer to the cyphertext buffer * @param Timeout: Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_ECB); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp,pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CBC encryption mode * then encrypt pPlainData. The cypher data are available in pCypherData * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData: Pointer to the cyphertext buffer * @param Timeout: Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CBC); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp,pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CTR encryption mode * then encrypt pPlainData. The cypher data are available in pCypherData * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData: Pointer to the cyphertext buffer * @param Timeout: Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CTR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES ECB decryption mode * then decrypted pCypherData. The cypher data are available in pPlainData * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 16. * @param pPlainData: Pointer to the plaintext buffer * @param Timeout: Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { uint32_t tickstart = 0; /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES Key mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_SET(CRYP->SR, CRYP_FLAG_BUSY)) { /* Check for the Timeout */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } } /* Disable CRYP */ __HAL_CRYP_DISABLE(); /* Reset the ALGOMODE bits*/ CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); /* Set the CRYP peripheral in AES ECB decryption mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_ECB | CRYP_CR_ALGODIR); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES ECB decryption mode * then decrypted pCypherData. The cypher data are available in pPlainData * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 16. * @param pPlainData: Pointer to the plaintext buffer * @param Timeout: Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { uint32_t tickstart = 0; /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES Key mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_SET(CRYP->SR, CRYP_FLAG_BUSY)) { /* Check for the Timeout */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } } /* Reset the ALGOMODE bits*/ CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); /* Set the CRYP peripheral in AES CBC decryption mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CBC | CRYP_CR_ALGODIR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CTR decryption mode * then decrypted pCypherData. The cypher data are available in pPlainData * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 16. * @param pPlainData: Pointer to the plaintext buffer * @param Timeout: Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES CTR mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CTR | CRYP_CR_ALGODIR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES ECB encryption mode using Interrupt. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes * @param pCypherData: Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_ECB); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16; hcryp->CrypInCount -= 16; if(hcryp->CrypInCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; hcryp->pCrypOutBuffPtr += 16; hcryp->CrypOutCount -= 16; if(hcryp->CrypOutCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI); /* Process Locked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CBC encryption mode using Interrupt. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes * @param pCypherData: Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES CBC mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CBC); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16; hcryp->CrypInCount -= 16; if(hcryp->CrypInCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; hcryp->pCrypOutBuffPtr += 16; hcryp->CrypOutCount -= 16; if(hcryp->CrypOutCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI); /* Process Locked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CTR encryption mode using Interrupt. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes * @param pCypherData: Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES CTR mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CTR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16; hcryp->CrypInCount -= 16; if(hcryp->CrypInCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; hcryp->pCrypOutBuffPtr += 16; hcryp->CrypOutCount -= 16; if(hcryp->CrypOutCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES ECB decryption mode using Interrupt. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 16. * @param pPlainData: Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t tickstart = 0; uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES Key mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_SET(CRYP->SR, CRYP_FLAG_BUSY)) { /* Check for the Timeout */ if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } /* Reset the ALGOMODE bits*/ CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); /* Set the CRYP peripheral in AES ECB decryption mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_ECB | CRYP_CR_ALGODIR); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16; hcryp->CrypInCount -= 16; if(hcryp->CrypInCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; hcryp->pCrypOutBuffPtr += 16; hcryp->CrypOutCount -= 16; if(hcryp->CrypOutCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CBC decryption mode using IT. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 16 * @param pPlainData: Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t tickstart = 0; uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); /* Get the buffer addresses and sizes */ hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES Key mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_SET(CRYP->SR, CRYP_FLAG_BUSY)) { /* Check for the Timeout */ if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } /* Reset the ALGOMODE bits*/ CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); /* Set the CRYP peripheral in AES CBC decryption mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CBC | CRYP_CR_ALGODIR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16; hcryp->CrypInCount -= 16; if(hcryp->CrypInCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; hcryp->pCrypOutBuffPtr += 16; hcryp->CrypOutCount -= 16; if(hcryp->CrypOutCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CTR decryption mode using Interrupt. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 16 * @param pPlainData: Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); /* Get the buffer addresses and sizes */ hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES CTR mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CTR | CRYP_CR_ALGODIR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16; hcryp->CrypInCount -= 16; if(hcryp->CrypInCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; hcryp->pCrypOutBuffPtr += 16; hcryp->CrypOutCount -= 16; if(hcryp->CrypOutCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES ECB encryption mode using DMA. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes * @param pCypherData: Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_ECB); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CBC encryption mode using DMA. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData: Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CBC); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CTR encryption mode using DMA. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData: Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CTR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES ECB decryption mode using DMA. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes * @param pPlainData: Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t tickstart = 0; uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES Key mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_SET(CRYP->SR, CRYP_FLAG_BUSY)) { /* Check for the Timeout */ if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } /* Reset the ALGOMODE bits*/ CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); /* Set the CRYP peripheral in AES ECB decryption mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_ECB | CRYP_CR_ALGODIR); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CBC encryption mode using DMA. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes * @param pPlainData: Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t tickstart = 0; uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES Key mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_SET(CRYP->SR, CRYP_FLAG_BUSY)) { /* Check for the Timeout */ if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } /* Reset the ALGOMODE bits*/ CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); /* Set the CRYP peripheral in AES CBC decryption mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CBC | CRYP_CR_ALGODIR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CTR decryption mode using DMA. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 16 * @param pPlainData: Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES CTR mode */ __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CTR | CRYP_CR_ALGODIR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group3 DES processing functions * @brief processing functions. * @verbatim ============================================================================== ##### DES processing functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Encrypt plaintext using DES using ECB or CBC chaining modes (+) Decrypt cyphertext using ECB or CBC chaining modes [..] Three processing functions are available: (+) Polling mode (+) Interrupt mode (+) DMA mode @endverbatim * @{ */ /** * @brief Initializes the CRYP peripheral in DES ECB encryption mode. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @param Timeout: Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES ECB encryption mode */ CRYP_SetDESECBMode(hcryp, 0); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES ECB decryption mode. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @param Timeout: Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES ECB decryption mode */ CRYP_SetDESECBMode(hcryp, CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES CBC encryption mode. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @param Timeout: Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES CBC encryption mode */ CRYP_SetDESCBCMode(hcryp, 0); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES ECB decryption mode. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @param Timeout: Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES CBC decryption mode */ CRYP_SetDESCBCMode(hcryp, CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES ECB encryption mode using IT. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES ECB encryption mode */ CRYP_SetDESECBMode(hcryp, 0); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8; hcryp->CrypInCount -= 8; if(hcryp->CrypInCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; hcryp->pCrypOutBuffPtr += 8; hcryp->CrypOutCount -= 8; if(hcryp->CrypOutCount == 0) { /* Disable IT */ __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES CBC encryption mode using interrupt. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES CBC encryption mode */ CRYP_SetDESCBCMode(hcryp, 0); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8; hcryp->CrypInCount -= 8; if(hcryp->CrypInCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; hcryp->pCrypOutBuffPtr += 8; hcryp->CrypOutCount -= 8; if(hcryp->CrypOutCount == 0) { /* Disable IT */ __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES ECB decryption mode using IT. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES ECB decryption mode */ CRYP_SetDESECBMode(hcryp, CRYP_CR_ALGODIR); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8; hcryp->CrypInCount -= 8; if(hcryp->CrypInCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; hcryp->pCrypOutBuffPtr += 8; hcryp->CrypOutCount -= 8; if(hcryp->CrypOutCount == 0) { /* Disable IT */ __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES ECB decryption mode using interrupt. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES CBC decryption mode */ CRYP_SetDESCBCMode(hcryp, CRYP_CR_ALGODIR); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8; hcryp->CrypInCount -= 8; if(hcryp->CrypInCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; hcryp->pCrypOutBuffPtr += 8; hcryp->CrypOutCount -= 8; if(hcryp->CrypOutCount == 0) { /* Disable IT */ __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES ECB encryption mode using DMA. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES ECB encryption mode */ CRYP_SetDESECBMode(hcryp, 0); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in DES CBC encryption mode using DMA. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES CBC encryption mode */ CRYP_SetDESCBCMode(hcryp, 0); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in DES ECB decryption mode using DMA. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES ECB decryption mode */ CRYP_SetDESECBMode(hcryp, CRYP_CR_ALGODIR); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in DES ECB decryption mode using DMA. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES CBC decryption mode */ CRYP_SetDESCBCMode(hcryp, CRYP_CR_ALGODIR); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group4 TDES processing functions * @brief processing functions. * @verbatim ============================================================================== ##### TDES processing functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Encrypt plaintext using TDES based on ECB or CBC chaining modes (+) Decrypt cyphertext using TDES based on ECB or CBC chaining modes [..] Three processing functions are available: (+) Polling mode (+) Interrupt mode (+) DMA mode @endverbatim * @{ */ /** * @brief Initializes the CRYP peripheral in TDES ECB encryption mode * then encrypt pPlainData. The cypher data are available in pCypherData * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @param Timeout: Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES ECB encryption mode */ CRYP_SetTDESECBMode(hcryp, 0); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES ECB decryption mode * then decrypted pCypherData. The cypher data are available in pPlainData * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @param Timeout: Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES ECB decryption mode */ CRYP_SetTDESECBMode(hcryp, CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Write Cypher Data and Get Plain Data */ if(CRYP_ProcessData2Words(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES CBC encryption mode * then encrypt pPlainData. The cypher data are available in pCypherData * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @param Timeout: Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES CBC encryption mode */ CRYP_SetTDESCBCMode(hcryp, 0); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES CBC decryption mode * then decrypted pCypherData. The cypher data are available in pPlainData * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pPlainData: Pointer to the plaintext buffer * @param Timeout: Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES CBC decryption mode */ CRYP_SetTDESCBCMode(hcryp, CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Write Cypher Data and Get Plain Data */ if(CRYP_ProcessData2Words(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES ECB encryption mode using interrupt. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES ECB encryption mode */ CRYP_SetTDESECBMode(hcryp, 0); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8; hcryp->CrypInCount -= 8; if(hcryp->CrypInCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; hcryp->pCrypOutBuffPtr += 8; hcryp->CrypOutCount -= 8; if(hcryp->CrypOutCount == 0) { /* Disable IT */ __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call the Output data transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES CBC encryption mode. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES CBC encryption mode */ CRYP_SetTDESCBCMode(hcryp, 0); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8; hcryp->CrypInCount -= 8; if(hcryp->CrypInCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; hcryp->pCrypOutBuffPtr += 8; hcryp->CrypOutCount -= 8; if(hcryp->CrypOutCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES ECB decryption mode. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES ECB decryption mode */ CRYP_SetTDESECBMode(hcryp, CRYP_CR_ALGODIR); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8; hcryp->CrypInCount -= 8; if(hcryp->CrypInCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; hcryp->pCrypOutBuffPtr += 8; hcryp->CrypOutCount -= 8; if(hcryp->CrypOutCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES CBC decryption mode. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pPlainData: Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES CBC decryption mode */ CRYP_SetTDESCBCMode(hcryp, CRYP_CR_ALGODIR); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ CRYP->DR = *(uint32_t*)(inputaddr); inputaddr+=4; CRYP->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8; hcryp->CrypInCount -= 8; if(hcryp->CrypInCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = CRYP->DOUT; outputaddr+=4; *(uint32_t*)(outputaddr) = CRYP->DOUT; hcryp->pCrypOutBuffPtr += 8; hcryp->CrypOutCount -= 8; if(hcryp->CrypOutCount == 0) { __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES ECB encryption mode using DMA. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES ECB encryption mode */ CRYP_SetTDESECBMode(hcryp, 0); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in TDES CBC encryption mode using DMA. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES CBC encryption mode */ CRYP_SetTDESCBCMode(hcryp, 0); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in TDES ECB decryption mode using DMA. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData: Pointer to the plaintext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData: Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES ECB decryption mode */ CRYP_SetTDESECBMode(hcryp, CRYP_CR_ALGODIR); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in TDES CBC decryption mode using DMA. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData: Pointer to the cyphertext buffer * @param Size: Length of the plaintext buffer, must be a multiple of 8 * @param pPlainData: Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES CBC decryption mode */ CRYP_SetTDESCBCMode(hcryp, CRYP_CR_ALGODIR); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group5 DMA callback functions * @brief DMA callback functions. * @verbatim ============================================================================== ##### DMA callback functions ##### ============================================================================== [..] This section provides DMA callback functions: (+) DMA Input data transfer complete (+) DMA Output data transfer complete (+) DMA error @endverbatim * @{ */ /** * @brief Input FIFO transfer completed callbacks. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp) { /* NOTE : This function Should not be modified, when the callback is needed, the HAL_CRYP_InCpltCallback could be implemented in the user file */ } /** * @brief Output FIFO transfer completed callbacks. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp) { /* NOTE : This function Should not be modified, when the callback is needed, the HAL_CRYP_OutCpltCallback could be implemented in the user file */ } /** * @brief CRYP error callbacks. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp) { /* NOTE : This function Should not be modified, when the callback is needed, the HAL_CRYP_ErrorCallback could be implemented in the user file */ } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group6 CRYP IRQ handler management * @brief CRYP IRQ handler. * @verbatim ============================================================================== ##### CRYP IRQ handler management ##### ============================================================================== [..] This section provides CRYP IRQ handler function. @endverbatim * @{ */ /** * @brief This function handles CRYP interrupt request. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp) { switch(CRYP->CR & CRYP_CR_ALGOMODE_DIRECTION) { case CRYP_CR_ALGOMODE_TDES_ECB_ENCRYPT: HAL_CRYP_TDESECB_Encrypt_IT(hcryp, NULL, 0, NULL); break; case CRYP_CR_ALGOMODE_TDES_ECB_DECRYPT: HAL_CRYP_TDESECB_Decrypt_IT(hcryp, NULL, 0, NULL); break; case CRYP_CR_ALGOMODE_TDES_CBC_ENCRYPT: HAL_CRYP_TDESCBC_Encrypt_IT(hcryp, NULL, 0, NULL); break; case CRYP_CR_ALGOMODE_TDES_CBC_DECRYPT: HAL_CRYP_TDESCBC_Decrypt_IT(hcryp, NULL, 0, NULL); break; case CRYP_CR_ALGOMODE_DES_ECB_ENCRYPT: HAL_CRYP_DESECB_Encrypt_IT(hcryp, NULL, 0, NULL); break; case CRYP_CR_ALGOMODE_DES_ECB_DECRYPT: HAL_CRYP_DESECB_Decrypt_IT(hcryp, NULL, 0, NULL); break; case CRYP_CR_ALGOMODE_DES_CBC_ENCRYPT: HAL_CRYP_DESCBC_Encrypt_IT(hcryp, NULL, 0, NULL); break; case CRYP_CR_ALGOMODE_DES_CBC_DECRYPT: HAL_CRYP_DESCBC_Decrypt_IT(hcryp, NULL, 0, NULL); break; case CRYP_CR_ALGOMODE_AES_ECB_ENCRYPT: HAL_CRYP_AESECB_Encrypt_IT(hcryp, NULL, 0, NULL); break; case CRYP_CR_ALGOMODE_AES_ECB_DECRYPT: HAL_CRYP_AESECB_Decrypt_IT(hcryp, NULL, 0, NULL); break; case CRYP_CR_ALGOMODE_AES_CBC_ENCRYPT: HAL_CRYP_AESCBC_Encrypt_IT(hcryp, NULL, 0, NULL); break; case CRYP_CR_ALGOMODE_AES_CBC_DECRYPT: HAL_CRYP_AESCBC_Decrypt_IT(hcryp, NULL, 0, NULL); break; case CRYP_CR_ALGOMODE_AES_CTR_ENCRYPT: HAL_CRYP_AESCTR_Encrypt_IT(hcryp, NULL, 0, NULL); break; case CRYP_CR_ALGOMODE_AES_CTR_DECRYPT: HAL_CRYP_AESCTR_Decrypt_IT(hcryp, NULL, 0, NULL); break; default: break; } } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group7 Peripheral State functions * @brief Peripheral State functions. * @verbatim ============================================================================== ##### Peripheral State functions ##### ============================================================================== [..] This subsection permits to get in run-time the status of the peripheral. @endverbatim * @{ */ /** * @brief Returns the CRYP state. * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval HAL state */ HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp) { return hcryp->State; } /** * @} */ /** * @} */ #endif /* STM32F415xx || STM32F417xx || STM32F437xx || STM32F439xx */ #endif /* HAL_CRYP_MODULE_ENABLED */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/