Mercurial > public > ostc4
view Small_CPU/Src/spi.c @ 322:31e471d60797 O2_SensorSync
Added start of frame detection for HUD data
In the previous impmenentation the reception and evaluation of 15 byte were used without start detection. As a result sensor data could be stuck in case the frame sequence does not match the structure (e.g. cause by an framing error).
To resolve this in case of an invalid checksumme in combination with a data lost detection a byte based reception is startet to detect the start of a frame using the break between two transmissions.
In addition a babbling idiot protecting has been added because a faulty hardware could have an impact on the OSTC operation (high interrupt load)
author | ideenmodellierer |
---|---|
date | Sun, 30 Jun 2019 21:25:58 +0200 |
parents | 580822b5d3d1 |
children | 2fc08a0d1ec3 |
line wrap: on
line source
/** ****************************************************************************** * @file spi.c * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 16-Sept-2014 * @brief Source code for spi control * @verbatim ============================================================================== ##### How to use ##### ============================================================================== @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2014 heinrichs weikamp</center></h2> * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "global_constants.h" #include "spi.h" #include "dma.h" //#include "gpio.h" /* USER CODE BEGIN 0 */ #include "scheduler.h" #ifdef DEBUG_GPIO extern void GPIO_new_DEBUG_LOW(void); extern void GPIO_new_DEBUG_HIGH(void); #endif uint8_t data_error = 0; uint32_t data_error_time = 0; uint8_t SPIDataRX = 0; /* Flag to signal that SPI RX callback has been triggered */ static void SPI_Error_Handler(void); /* USER CODE END 0 */ static uint8_t SPI_check_header_and_footer_ok(void); static uint8_t DataEX_check_header_and_footer_shifted(void); SPI_HandleTypeDef hspi1; SPI_HandleTypeDef hspi3; DMA_HandleTypeDef hdma_tx; DMA_HandleTypeDef hdma_rx; // SPI3 init function void MX_SPI3_Init(void) { hspi3.Instance = SPI3; hspi3.Init.Mode = SPI_MODE_MASTER; hspi3.Init.Direction = SPI_DIRECTION_2LINES; hspi3.Init.DataSize = SPI_DATASIZE_8BIT; hspi3.Init.CLKPolarity = SPI_POLARITY_HIGH; hspi3.Init.CLKPhase = SPI_PHASE_1EDGE; hspi3.Init.NSS = SPI_NSS_SOFT; hspi3.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; hspi3.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi3.Init.TIMode = SPI_TIMODE_DISABLED; hspi3.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLED; hspi3.Init.CRCPolynomial = 7; HAL_SPI_Init(&hspi3); } void MX_SPI3_DeInit(void) { HAL_SPI_DeInit(&hspi3); } uint8_t SPI3_ButtonAdjust(uint8_t *arrayInput, uint8_t *arrayOutput) { HAL_StatusTypeDef status; uint8_t answer[10]; uint8_t rework[10]; rework[0] = 0xFF; for (int i = 0; i < 3; i++) { // limiter if (arrayInput[i] == 0xFF) arrayInput[i] = 0xFE; if (arrayInput[i] >= 15) { // copy - ausl�se-schwelle rework[i + 1] = arrayInput[i]; // wieder-scharf-schalte-schwelle rework[i + 3 + 1] = arrayInput[i] - 10; } else if (arrayInput[i] >= 10) { // copy - ausl�se-schwelle rework[i + 1] = arrayInput[i]; // wieder-scharf-schalte-schwelle rework[i + 3 + 1] = arrayInput[i] - 5; } else { // copy - ausl�se-schwelle rework[i + 1] = 7; // wieder-scharf-schalte-schwelle rework[i + 3 + 1] = 6; } } status = HAL_OK; /* = 0 */ HAL_GPIO_WritePin(GPIOC, GPIO_PIN_9, GPIO_PIN_SET); for (int i = 0; i < 7; i++) { HAL_Delay(10); HAL_GPIO_WritePin(GPIOC, GPIO_PIN_9, GPIO_PIN_RESET); HAL_Delay(10); status += HAL_SPI_TransmitReceive(&hspi3, &rework[i], &answer[i], 1, 20); HAL_Delay(10); HAL_GPIO_WritePin(GPIOC, GPIO_PIN_9, GPIO_PIN_SET); } if (status == HAL_OK) { for (int i = 0; i < 3; i++) { arrayOutput[i] = answer[i + 2]; // first not, return of 0xFF not } return 1; } else return 0; } // SPI5 init function void MX_SPI1_Init(void) { hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_SLAVE; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.DataSize = SPI_DATASIZE_8BIT; hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; hspi1.Init.NSS = SPI_NSS_HARD_INPUT; //SPI_NSS_SOFT; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128; hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi1.Init.TIMode = SPI_TIMODE_DISABLED; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLED; //_DISABLED; _ENABLED; hspi1.Init.CRCPolynomial = 7; HAL_SPI_Init(&hspi1); } void MX_SPI_DeInit(void) { HAL_SPI_DeInit(&hspi1); } void HAL_SPI_MspInit(SPI_HandleTypeDef* hspi) { GPIO_InitTypeDef GPIO_InitStruct; if (hspi->Instance == SPI1) { SPIDataRX = 0; // Peripheral clock enable __SPI1_CLK_ENABLE(); __GPIOA_CLK_ENABLE(); //SPI1 GPIO Configuration //PA4 ------> SPI1_CS //PA5 ------> SPI1_SCK //PA6 ------> SPI1_MISO //PA7 ------> SPI1_MOSI GPIO_InitStruct.Pin = GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7; // GPIO_InitStruct.Pin = GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FAST; /* Decision is based on errata which recommends FAST for GPIO at 90Mhz */ GPIO_InitStruct.Alternate = GPIO_AF5_SPI1; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); //##-3- Configure the DMA streams ########################################## // Configure the DMA handler for Transmission process hdma_tx.Instance = DMA2_Stream3; hdma_tx.Init.Channel = DMA_CHANNEL_3; hdma_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_tx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_tx.Init.MemInc = DMA_MINC_ENABLE; hdma_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_tx.Init.Mode = DMA_NORMAL; hdma_tx.Init.Priority = DMA_PRIORITY_VERY_HIGH; hdma_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE; hdma_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; hdma_tx.Init.MemBurst = DMA_MBURST_INC4; hdma_tx.Init.PeriphBurst = DMA_PBURST_INC4; HAL_DMA_Init(&hdma_tx); // Associate the initialized DMA handle to the the SPI handle __HAL_LINKDMA(hspi, hdmatx, hdma_tx); // Configure the DMA handler for Transmission process hdma_rx.Instance = DMA2_Stream0; hdma_rx.Init.Channel = DMA_CHANNEL_3; hdma_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_rx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_rx.Init.MemInc = DMA_MINC_ENABLE; hdma_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_rx.Init.Mode = DMA_NORMAL; hdma_rx.Init.Priority = DMA_PRIORITY_HIGH; hdma_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE; hdma_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; hdma_rx.Init.MemBurst = DMA_MBURST_INC4; hdma_rx.Init.PeriphBurst = DMA_PBURST_INC4; HAL_DMA_Init(&hdma_rx); // Associate the initialized DMA handle to the the SPI handle __HAL_LINKDMA(hspi, hdmarx, hdma_rx); //##-4- Configure the NVIC for DMA ######################################### //NVIC configuration for DMA transfer complete interrupt (SPI3_RX) HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 1, 0); HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn); // NVIC configuration for DMA transfer complete interrupt (SPI1_TX) HAL_NVIC_SetPriority(DMA2_Stream3_IRQn, 1, 1); HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn); } else if (hspi->Instance == SPI3) { __GPIOC_CLK_ENABLE(); __SPI3_CLK_ENABLE(); //SPI1 GPIO Configuration //PC10 ------> SPI3_SCK //PC11 ------> SPI3_MISO //PC12 ------> SPI3_MOSI //PA15 ------> SPI3_NSS (official) //PC9 ------> SPI3_NSS (hw) GPIO_InitStruct.Pin = GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FAST; GPIO_InitStruct.Alternate = GPIO_AF6_SPI3; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_9; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); HAL_GPIO_WritePin(GPIOC, GPIO_PIN_9, GPIO_PIN_SET); } } void HAL_SPI_MspDeInit(SPI_HandleTypeDef* hspi) { if (hspi->Instance == SPI1) { __SPI1_FORCE_RESET(); __SPI1_RELEASE_RESET(); //SPI1 GPIO Configuration //PA5 ------> SPI1_SCK //PA6 ------> SPI1_MISO //PA7 ------> SPI1_MOSI HAL_GPIO_DeInit(GPIOA, GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7); HAL_DMA_DeInit(&hdma_tx); HAL_DMA_DeInit(&hdma_rx); HAL_NVIC_DisableIRQ(DMA2_Stream3_IRQn); HAL_NVIC_DisableIRQ(DMA2_Stream0_IRQn); } else if (hspi->Instance == SPI3) { __SPI3_FORCE_RESET(); __SPI3_RELEASE_RESET(); //SPI1 GPIO Configuration //PC10 ------> SPI3_SCK //PC11 ------> SPI3_MISO //PC12 ------> SPI3_MOSI //PA15 ------> SPI3_NSS (official) //PC9 ------> SPI3_NSS (hw) HAL_GPIO_DeInit(GPIOC, GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12); } } void SPI_synchronize_with_Master(void) { #ifdef USE_OLD_SYNC_METHOD GPIO_InitTypeDef GPIO_InitStruct; // __GPIOA_CLK_ENABLE(); /**SPI1 GPIO Configuration PA5 ------> SPI1_SCK */ GPIO_InitStruct.Pin = GPIO_PIN_4 | GPIO_PIN_5; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FAST; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); // HAL_Delay(10); while (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_4) == 0); HAL_Delay(10); while (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_5) == 1); HAL_Delay(50); #endif } void SPI_Start_single_TxRx_with_Master(void) { uint8_t * pOutput; HAL_StatusTypeDef retval; if (global.dataSendToSlave.getDeviceDataNow) { global.dataSendToSlave.getDeviceDataNow = 0; pOutput = (uint8_t*) &(global.deviceDataSendToMaster); } else { pOutput = (uint8_t*) &(global.dataSendToMaster); } retval = HAL_SPI_TransmitReceive_DMA(&hspi1, pOutput,(uint8_t*) &(global.dataSendToSlave), EXCHANGE_BUFFERSIZE); if ( retval!= HAL_OK) { SPI_Error_Handler(); } } void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi) { /* restart SPI */ if (hspi == &hspi1) { if(SPI_check_header_and_footer_ok()) /* process timestamp provided by main */ { Scheduler_SyncToSPI(global.dataSendToSlave.header.checkCode[SPI_HEADER_INDEX_TX_TICK]); } else { Scheduler_SyncToSPI(0); /* => no async will be calculated */ } SPIDataRX = 1; /* stop data exchange? */ if (global.mode == MODE_SHUTDOWN) { global.mode = MODE_SLEEP; global.dataSendToSlavePending = 0; global.dataSendToSlaveIsValid = 1; global.dataSendToSlaveIsNotValidCount = 0; } } } uint8_t SPI_Evaluate_RX_Data() { uint8_t resettimeout = 1; uint8_t ret = SPIDataRX; if ((global.mode != MODE_SHUTDOWN) && ( global.mode != MODE_SLEEP) && (SPIDataRX)) { SPIDataRX = 0; /* data consistent? */ if (SPI_check_header_and_footer_ok()) { global.dataSendToMaster.header.checkCode[SPI_HEADER_INDEX_RX_STATE] = SPI_RX_STATE_OK; // GPIO_new_DEBUG_HIGH(); //For debug. global.dataSendToSlaveIsValid = 1; global.dataSendToSlaveIsNotValidCount = 0; /* Master signal a data shift outside of his control => reset own DMA and resync */ if(global.dataSendToSlave.header.checkCode[SPI_HEADER_INDEX_RX_STATE] == SPI_RX_STATE_SHIFTED) { HAL_SPI_Abort_IT(&hspi1); Scheduler_Request_sync_with_SPI(SPI_SYNC_METHOD_HARD); } else { } SPI_Start_single_TxRx_with_Master(); } else { // GPIO_new_DEBUG_LOW(); //For debug. global.dataSendToSlaveIsValid = 0; global.dataSendToSlaveIsNotValidCount++; if(DataEX_check_header_and_footer_shifted()) { /* Reset own DMA */ if ((global.dataSendToSlaveIsNotValidCount % 10) == 1) //% 10 { HAL_SPI_Abort_IT(&hspi1); /* reset DMA only once */ } /* Signal problem to master */ if ((global.dataSendToSlaveIsNotValidCount ) >= 2) { global.dataSendToMaster.header.checkCode[SPI_HEADER_INDEX_RX_STATE] = SPI_RX_STATE_SHIFTED; } } else /* handle received data as if no data would have been received */ { global.dataSendToMaster.header.checkCode[SPI_HEADER_INDEX_RX_STATE] = SPI_RX_STATE_OFFLINE; resettimeout = 0; } HAL_SPI_TransmitReceive_DMA(&hspi1,(uint8_t*) &(global.dataSendToMaster),(uint8_t*) &(global.dataSendToSlave), EXCHANGE_BUFFERSIZE); } global.dataSendToMaster.power_on_reset = 0; global.deviceDataSendToMaster.power_on_reset = 0; scheduleSpecial_Evaluate_DataSendToSlave(); if(resettimeout) { global.check_sync_not_running = 0; } } return ret; } static uint8_t SPI_check_header_and_footer_ok(void) { if (global.dataSendToSlave.header.checkCode[0] != 0xBB) return 0; #ifdef USE_OLD_HEADER_FORMAT if (global.dataSendToSlave.header.checkCode[1] != 0x01) return 0; if (global.dataSendToSlave.header.checkCode[2] != 0x01) return 0; #endif if (global.dataSendToSlave.header.checkCode[3] != 0xBB) return 0; if (global.dataSendToSlave.footer.checkCode[0] != 0xF4) return 0; if (global.dataSendToSlave.footer.checkCode[1] != 0xF3) return 0; if (global.dataSendToSlave.footer.checkCode[2] != 0xF2) return 0; if (global.dataSendToSlave.footer.checkCode[3] != 0xF1) return 0; return 1; } /* Check if there is an empty frame providec by RTE (all 0) or even no data provided by RTE (all 0xFF) * If that is not the case the DMA is somehow not in sync */ uint8_t DataEX_check_header_and_footer_shifted() { uint8_t ret = 1; if((global.dataSendToSlave.footer.checkCode[0] == 0x00) && (global.dataSendToSlave.footer.checkCode[1] == 0x00) && (global.dataSendToSlave.footer.checkCode[2] == 0x00) && (global.dataSendToSlave.footer.checkCode[3] == 0x00)) { ret = 0; } if((global.dataSendToSlave.footer.checkCode[0] == 0xff) && (global.dataSendToSlave.footer.checkCode[1] == 0xff) && (global.dataSendToSlave.footer.checkCode[2] == 0xff) && (global.dataSendToSlave.footer.checkCode[3] == 0xff)) { ret = 0; } return ret; } static void SPI_Error_Handler(void) { //The device is locks. Hard to recover. // while(1) // { // } } /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/