Mercurial > public > ostc4
view Common/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_cryp.c @ 947:96cf6c53c934 Evo_2_23
GNSS sleep mode:
Backup voltage is now enabled during initialization. Power saving interval has been changed to 20 second active in a 60 minutes cycle.
author | Ideenmodellierer |
---|---|
date | Sun, 22 Dec 2024 21:14:41 +0100 |
parents | c78bcbd5deda |
children |
line wrap: on
line source
/** ****************************************************************************** * @file stm32f4xx_hal_cryp.c * @author MCD Application Team * @brief CRYP HAL module driver. * This file provides firmware functions to manage the following * functionalities of the Cryptography (CRYP) peripheral: * + Initialization and de-initialization functions * + AES processing functions * + DES processing functions * + TDES processing functions * + DMA callback functions * + CRYP IRQ handler management * + Peripheral State functions * @verbatim ============================================================================== ##### How to use this driver ##### ============================================================================== [..] The CRYP HAL driver can be used as follows: (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit(): (##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE() (##) In case of using interrupts (e.g. HAL_CRYP_AESECB_Encrypt_IT()) (+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority() (+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ() (+++) In CRYP IRQ handler, call HAL_CRYP_IRQHandler() (##) In case of using DMA to control data transfer (e.g. HAL_CRYP_AESECB_Encrypt_DMA()) (+++) Enable the DMAx interface clock using __DMAx_CLK_ENABLE() (+++) Configure and enable two DMA streams one for managing data transfer from memory to peripheral (input stream) and another stream for managing data transfer from peripheral to memory (output stream) (+++) Associate the initialized DMA handle to the CRYP DMA handle using __HAL_LINKDMA() (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the two DMA Streams. The output stream should have higher priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ() (#)Initialize the CRYP HAL using HAL_CRYP_Init(). This function configures mainly: (##) The data type: 1-bit, 8-bit, 16-bit and 32-bit (##) The key size: 128, 192 and 256. This parameter is relevant only for AES (##) The encryption/decryption key. It's size depends on the algorithm used for encryption/decryption (##) The initialization vector (counter). It is not used ECB mode. (#)Three processing (encryption/decryption) functions are available: (##) Polling mode: encryption and decryption APIs are blocking functions i.e. they process the data and wait till the processing is finished, e.g. HAL_CRYP_AESCBC_Encrypt() (##) Interrupt mode: encryption and decryption APIs are not blocking functions i.e. they process the data under interrupt, e.g. HAL_CRYP_AESCBC_Encrypt_IT() (##) DMA mode: encryption and decryption APIs are not blocking functions i.e. the data transfer is ensured by DMA, e.g. HAL_CRYP_AESCBC_Encrypt_DMA() (#)When the processing function is called at first time after HAL_CRYP_Init() the CRYP peripheral is initialized and processes the buffer in input. At second call, the processing function performs an append of the already processed buffer. When a new data block is to be processed, call HAL_CRYP_Init() then the processing function. (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral. @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f4xx_hal.h" /** @addtogroup STM32F4xx_HAL_Driver * @{ */ #ifdef HAL_CRYP_MODULE_ENABLED #if defined(CRYP) /** @defgroup CRYP CRYP * @brief CRYP HAL module driver. * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /** @addtogroup CRYP_Private_define * @{ */ #define CRYP_TIMEOUT_VALUE 1U /** * @} */ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /** @addtogroup CRYP_Private_Functions_prototypes * @{ */ static void CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector, uint32_t IVSize); static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize); static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout); static HAL_StatusTypeDef CRYP_ProcessData2Words(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout); static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma); static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma); static void CRYP_DMAError(DMA_HandleTypeDef *hdma); static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr); static void CRYP_SetTDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction); static void CRYP_SetTDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction); static void CRYP_SetDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction); static void CRYP_SetDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction); /** * @} */ /* Private functions ---------------------------------------------------------*/ /** @addtogroup CRYP_Private_Functions * @{ */ /** * @brief DMA CRYP Input Data process complete callback. * @param hdma DMA handle * @retval None */ static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma) { CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; /* Disable the DMA transfer for input FIFO request by resetting the DIEN bit in the DMACR register */ hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DIEN); /* Call input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } /** * @brief DMA CRYP Output Data process complete callback. * @param hdma DMA handle * @retval None */ static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma) { CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; /* Disable the DMA transfer for output FIFO request by resetting the DOEN bit in the DMACR register */ hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DOEN); /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Change the CRYP state to ready */ hcryp->State = HAL_CRYP_STATE_READY; /* Call output data transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } /** * @brief DMA CRYP communication error callback. * @param hdma DMA handle * @retval None */ static void CRYP_DMAError(DMA_HandleTypeDef *hdma) { CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; hcryp->State= HAL_CRYP_STATE_READY; HAL_CRYP_ErrorCallback(hcryp); } /** * @brief Writes the Key in Key registers. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Key Pointer to Key buffer * @param KeySize Size of Key * @retval None */ static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize) { uint32_t keyaddr = (uint32_t)Key; switch(KeySize) { case CRYP_KEYSIZE_256B: /* Key Initialisation */ hcryp->Instance->K0LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K0RR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K1LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K1RR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr)); break; case CRYP_KEYSIZE_192B: hcryp->Instance->K1LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K1RR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr)); break; case CRYP_KEYSIZE_128B: hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr)); break; default: break; } } /** * @brief Writes the InitVector/InitCounter in IV registers. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param InitVector Pointer to InitVector/InitCounter buffer * @param IVSize Size of the InitVector/InitCounter * @retval None */ static void CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector, uint32_t IVSize) { uint32_t ivaddr = (uint32_t)InitVector; switch(IVSize) { case CRYP_KEYSIZE_128B: hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4U; hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4U; hcryp->Instance->IV1LR = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4U; hcryp->Instance->IV1RR = __REV(*(uint32_t*)(ivaddr)); break; /* Whatever key size 192 or 256, Init vector is written in IV0LR and IV0RR */ case CRYP_KEYSIZE_192B: hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4U; hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr)); break; case CRYP_KEYSIZE_256B: hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4U; hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr)); break; default: break; } } /** * @brief Process Data: Writes Input data in polling mode and read the output data * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Input Pointer to the Input buffer * @param Ilength Length of the Input buffer, must be a multiple of 16. * @param Output Pointer to the returned buffer * @param Timeout Timeout value * @retval None */ static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout) { uint32_t tickstart = 0U; uint32_t i = 0U; uint32_t inputaddr = (uint32_t)Input; uint32_t outputaddr = (uint32_t)Output; for(i=0U; (i < Ilength); i+=16U) { /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE)) { /* Check for the Timeout */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout)) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } } /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; } /* Return function status */ return HAL_OK; } /** * @brief Process Data: Write Input data in polling mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Input Pointer to the Input buffer * @param Ilength Length of the Input buffer, must be a multiple of 8 * @param Output Pointer to the returned buffer * @param Timeout Specify Timeout value * @retval None */ static HAL_StatusTypeDef CRYP_ProcessData2Words(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout) { uint32_t tickstart = 0U; uint32_t i = 0U; uint32_t inputaddr = (uint32_t)Input; uint32_t outputaddr = (uint32_t)Output; for(i=0U; (i < Ilength); i+=8U) { /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE)) { /* Check for the Timeout */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout)) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } } /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; } /* Return function status */ return HAL_OK; } /** * @brief Set the DMA configuration and start the DMA transfer * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param inputaddr address of the Input buffer * @param Size Size of the Input buffer, must be a multiple of 16. * @param outputaddr address of the Output buffer * @retval None */ static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr) { /* Set the CRYP DMA transfer complete callback */ hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt; /* Set the DMA error callback */ hcryp->hdmain->XferErrorCallback = CRYP_DMAError; /* Set the CRYP DMA transfer complete callback */ hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt; /* Set the DMA error callback */ hcryp->hdmaout->XferErrorCallback = CRYP_DMAError; /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Enable the DMA In DMA Stream */ HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DR, Size/4U); /* Enable In DMA request */ hcryp->Instance->DMACR = (CRYP_DMACR_DIEN); /* Enable the DMA Out DMA Stream */ HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUT, outputaddr, Size/4U); /* Enable Out DMA request */ hcryp->Instance->DMACR |= CRYP_DMACR_DOEN; } /** * @brief Sets the CRYP peripheral in DES ECB mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Direction Encryption or decryption * @retval None */ static void CRYP_SetDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction) { /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_DES_ECB | Direction); /* Set the key */ hcryp->Instance->K1LR = __REV(*(uint32_t*)(hcryp->Init.pKey)); hcryp->Instance->K1RR = __REV(*(uint32_t*)(hcryp->Init.pKey+4U)); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } } /** * @brief Sets the CRYP peripheral in DES CBC mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Direction Encryption or decryption * @retval None */ static void CRYP_SetDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction) { /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_DES_CBC | Direction); /* Set the key */ hcryp->Instance->K1LR = __REV(*(uint32_t*)(hcryp->Init.pKey)); hcryp->Instance->K1RR = __REV(*(uint32_t*)(hcryp->Init.pKey+4U)); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_256B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } } /** * @brief Sets the CRYP peripheral in TDES ECB mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Direction Encryption or decryption * @retval None */ static void CRYP_SetTDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction) { /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_TDES_ECB | Direction); /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, CRYP_KEYSIZE_192B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } } /** * @brief Sets the CRYP peripheral in TDES CBC mode * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param Direction Encryption or decryption * @retval None */ static void CRYP_SetTDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction) { /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the CRYP peripheral in AES CBC mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_TDES_CBC | Direction); /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, CRYP_KEYSIZE_192B); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_256B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } } /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @addtogroup CRYP_Exported_Functions * @{ */ /** @defgroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions * @brief Initialization and Configuration functions. * @verbatim ============================================================================== ##### Initialization and de-initialization functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize the CRYP according to the specified parameters in the CRYP_InitTypeDef and creates the associated handle (+) DeInitialize the CRYP peripheral (+) Initialize the CRYP MSP (+) DeInitialize CRYP MSP @endverbatim * @{ */ /** * @brief Initializes the CRYP according to the specified * parameters in the CRYP_InitTypeDef and creates the associated handle. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp) { /* Check the CRYP handle allocation */ if(hcryp == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_CRYP_KEYSIZE(hcryp->Init.KeySize)); assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType)); if(hcryp->State == HAL_CRYP_STATE_RESET) { /* Allocate lock resource and initialize it */ hcryp->Lock = HAL_UNLOCKED; /* Init the low level hardware */ HAL_CRYP_MspInit(hcryp); } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set the key size and data type*/ CRYP->CR = (uint32_t) (hcryp->Init.KeySize | hcryp->Init.DataType); /* Reset CrypInCount and CrypOutCount */ hcryp->CrypInCount = 0U; hcryp->CrypOutCount = 0U; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Set the default CRYP phase */ hcryp->Phase = HAL_CRYP_PHASE_READY; /* Return function status */ return HAL_OK; } /** * @brief DeInitializes the CRYP peripheral. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp) { /* Check the CRYP handle allocation */ if(hcryp == NULL) { return HAL_ERROR; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set the default CRYP phase */ hcryp->Phase = HAL_CRYP_PHASE_READY; /* Reset CrypInCount and CrypOutCount */ hcryp->CrypInCount = 0U; hcryp->CrypOutCount = 0U; /* Disable the CRYP Peripheral Clock */ __HAL_CRYP_DISABLE(hcryp); /* DeInit the low level hardware: CLOCK, NVIC.*/ HAL_CRYP_MspDeInit(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_RESET; /* Release Lock */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP MSP. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_CRYP_MspInit could be implemented in the user file */ } /** * @brief DeInitializes CRYP MSP. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_CRYP_MspDeInit could be implemented in the user file */ } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group2 AES processing functions * @brief processing functions. * @verbatim ============================================================================== ##### AES processing functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Encrypt plaintext using AES-128/192/256 using chaining modes (+) Decrypt cyphertext using AES-128/192/256 using chaining modes [..] Three processing functions are available: (+) Polling mode (+) Interrupt mode (+) DMA mode @endverbatim * @{ */ /** * @brief Initializes the CRYP peripheral in AES ECB encryption mode * then encrypt pPlainData. The cypher data are available in pCypherData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CBC encryption mode * then encrypt pPlainData. The cypher data are available in pCypherData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp,pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CTR encryption mode * then encrypt pPlainData. The cypher data are available in pCypherData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES ECB decryption mode * then decrypted pCypherData. The cypher data are available in pPlainData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { uint32_t tickstart = 0U; /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES Key mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) { /* Check for the Timeout */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout)) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } } /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Reset the ALGOMODE bits*/ CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); /* Set the CRYP peripheral in AES ECB decryption mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB | CRYP_CR_ALGODIR); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES ECB decryption mode * then decrypted pCypherData. The cypher data are available in pPlainData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { uint32_t tickstart = 0U; /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES Key mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) { /* Check for the Timeout */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout)) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } } /* Reset the ALGOMODE bits*/ CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); /* Set the CRYP peripheral in AES CBC decryption mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC | CRYP_CR_ALGODIR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CTR decryption mode * then decrypted pCypherData. The cypher data are available in pPlainData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES CTR mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR | CRYP_CR_ALGODIR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES ECB encryption mode using Interrupt. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16 bytes * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 16U; hcryp->CrypOutCount -= 16U; if(hcryp->CrypOutCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Process Locked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CBC encryption mode using Interrupt. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16 bytes * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES CBC mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 16U; hcryp->CrypOutCount -= 16U; if(hcryp->CrypOutCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Process Locked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CTR encryption mode using Interrupt. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16 bytes * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES CTR mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 16U; hcryp->CrypOutCount -= 16U; if(hcryp->CrypOutCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES ECB decryption mode using Interrupt. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t tickstart = 0U; uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES Key mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) { /* Check for the Timeout */ if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } /* Reset the ALGOMODE bits*/ CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); /* Set the CRYP peripheral in AES ECB decryption mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB | CRYP_CR_ALGODIR); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 16U; hcryp->CrypOutCount -= 16U; if(hcryp->CrypOutCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CBC decryption mode using IT. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16 * @param pPlainData Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t tickstart = 0U; uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); /* Get the buffer addresses and sizes */ hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES Key mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) { /* Check for the Timeout */ if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } /* Reset the ALGOMODE bits*/ CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); /* Set the CRYP peripheral in AES CBC decryption mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC | CRYP_CR_ALGODIR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 16U; hcryp->CrypOutCount -= 16U; if(hcryp->CrypOutCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES CTR decryption mode using Interrupt. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16 * @param pPlainData Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); /* Get the buffer addresses and sizes */ hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES CTR mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR | CRYP_CR_ALGODIR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 16U; hcryp->CrypOutCount -= 16U; if(hcryp->CrypOutCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in AES ECB encryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16 bytes * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CBC encryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CTR encryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES ECB mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES ECB decryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16 bytes * @param pPlainData Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t tickstart = 0U; uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES Key mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) { /* Check for the Timeout */ if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } /* Reset the ALGOMODE bits*/ CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); /* Set the CRYP peripheral in AES ECB decryption mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB | CRYP_CR_ALGODIR); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CBC encryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16 bytes * @param pPlainData Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t tickstart = 0U; uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES Key mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Get tick */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) { /* Check for the Timeout */ if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE) { /* Change state */ hcryp->State = HAL_CRYP_STATE_TIMEOUT; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_TIMEOUT; } } /* Reset the ALGOMODE bits*/ CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); /* Set the CRYP peripheral in AES CBC decryption mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC | CRYP_CR_ALGODIR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in AES CTR decryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16 * @param pPlainData Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Check if initialization phase has already been performed */ if(hcryp->Phase == HAL_CRYP_PHASE_READY) { /* Set the key */ CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); /* Set the CRYP peripheral in AES CTR mode */ __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR | CRYP_CR_ALGODIR); /* Set the Initialization Vector */ CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); /* Flush FIFO */ __HAL_CRYP_FIFO_FLUSH(hcryp); /* Set the phase */ hcryp->Phase = HAL_CRYP_PHASE_PROCESS; } /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group3 DES processing functions * @brief processing functions. * @verbatim ============================================================================== ##### DES processing functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Encrypt plaintext using DES using ECB or CBC chaining modes (+) Decrypt cyphertext using ECB or CBC chaining modes [..] Three processing functions are available: (+) Polling mode (+) Interrupt mode (+) DMA mode @endverbatim * @{ */ /** * @brief Initializes the CRYP peripheral in DES ECB encryption mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES ECB encryption mode */ CRYP_SetDESECBMode(hcryp, 0U); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES ECB decryption mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pPlainData Pointer to the plaintext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES ECB decryption mode */ CRYP_SetDESECBMode(hcryp, CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData2Words(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES CBC encryption mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES CBC encryption mode */ CRYP_SetDESCBCMode(hcryp, 0U); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES ECB decryption mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pPlainData Pointer to the plaintext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES CBC decryption mode */ CRYP_SetDESCBCMode(hcryp, CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData2Words(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES ECB encryption mode using IT. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES ECB encryption mode */ CRYP_SetDESECBMode(hcryp, 0U); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8U; hcryp->CrypInCount -= 8U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 8U; hcryp->CrypOutCount -= 8U; if(hcryp->CrypOutCount == 0U) { /* Disable IT */ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES CBC encryption mode using interrupt. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES CBC encryption mode */ CRYP_SetDESCBCMode(hcryp, 0U); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8U; hcryp->CrypInCount -= 8U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 8U; hcryp->CrypOutCount -= 8U; if(hcryp->CrypOutCount == 0U) { /* Disable IT */ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES ECB decryption mode using IT. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES ECB decryption mode */ CRYP_SetDESECBMode(hcryp, CRYP_CR_ALGODIR); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8U; hcryp->CrypInCount -= 8U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 8U; hcryp->CrypOutCount -= 8U; if(hcryp->CrypOutCount == 0U) { /* Disable IT */ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES ECB decryption mode using interrupt. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES CBC decryption mode */ CRYP_SetDESCBCMode(hcryp, CRYP_CR_ALGODIR); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8U; hcryp->CrypInCount -= 8U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 8U; hcryp->CrypOutCount -= 8U; if(hcryp->CrypOutCount == 0U) { /* Disable IT */ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in DES ECB encryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES ECB encryption mode */ CRYP_SetDESECBMode(hcryp, 0U); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in DES CBC encryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES CBC encryption mode */ CRYP_SetDESCBCMode(hcryp, 0U); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in DES ECB decryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES ECB decryption mode */ CRYP_SetDESECBMode(hcryp, CRYP_CR_ALGODIR); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in DES ECB decryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in DES CBC decryption mode */ CRYP_SetDESCBCMode(hcryp, CRYP_CR_ALGODIR); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group4 TDES processing functions * @brief processing functions. * @verbatim ============================================================================== ##### TDES processing functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Encrypt plaintext using TDES based on ECB or CBC chaining modes (+) Decrypt cyphertext using TDES based on ECB or CBC chaining modes [..] Three processing functions are available: (+) Polling mode (+) Interrupt mode (+) DMA mode @endverbatim * @{ */ /** * @brief Initializes the CRYP peripheral in TDES ECB encryption mode * then encrypt pPlainData. The cypher data are available in pCypherData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES ECB encryption mode */ CRYP_SetTDESECBMode(hcryp, 0U); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES ECB decryption mode * then decrypted pCypherData. The cypher data are available in pPlainData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES ECB decryption mode */ CRYP_SetTDESECBMode(hcryp, CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Write Cypher Data and Get Plain Data */ if(CRYP_ProcessData2Words(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES CBC encryption mode * then encrypt pPlainData. The cypher data are available in pCypherData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES CBC encryption mode */ CRYP_SetTDESCBCMode(hcryp, 0U); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Write Plain Data and Get Cypher Data */ if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES CBC decryption mode * then decrypted pCypherData. The cypher data are available in pPlainData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pPlainData Pointer to the plaintext buffer * @param Timeout Specify Timeout value * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Process Locked */ __HAL_LOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES CBC decryption mode */ CRYP_SetTDESCBCMode(hcryp, CRYP_CR_ALGODIR); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Write Cypher Data and Get Plain Data */ if(CRYP_ProcessData2Words(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES ECB encryption mode using interrupt. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES ECB encryption mode */ CRYP_SetTDESECBMode(hcryp, 0U); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8U; hcryp->CrypInCount -= 8U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 8U; hcryp->CrypOutCount -= 8U; if(hcryp->CrypOutCount == 0U) { /* Disable IT */ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call the Output data transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES CBC encryption mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pPlainData; hcryp->pCrypOutBuffPtr = pCypherData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES CBC encryption mode */ CRYP_SetTDESCBCMode(hcryp, 0U); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8U; hcryp->CrypInCount -= 8U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 8U; hcryp->CrypOutCount -= 8U; if(hcryp->CrypOutCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES ECB decryption mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES ECB decryption mode */ CRYP_SetTDESECBMode(hcryp, CRYP_CR_ALGODIR); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8U; hcryp->CrypInCount -= 8U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 8U; hcryp->CrypOutCount -= 8U; if(hcryp->CrypOutCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES CBC decryption mode. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pPlainData Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if(hcryp->State == HAL_CRYP_STATE_READY) { /* Process Locked */ __HAL_LOCK(hcryp); hcryp->CrypInCount = Size; hcryp->pCrypInBuffPtr = pCypherData; hcryp->pCrypOutBuffPtr = pPlainData; hcryp->CrypOutCount = Size; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES CBC decryption mode */ CRYP_SetTDESCBCMode(hcryp, CRYP_CR_ALGODIR); /* Enable Interrupts */ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); /* Enable CRYP */ __HAL_CRYP_ENABLE(hcryp); /* Return function status */ return HAL_OK; } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) { inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Write the Input block in the IN FIFO */ hcryp->Instance->DR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DR = *(uint32_t*)(inputaddr); hcryp->pCrypInBuffPtr += 8U; hcryp->CrypInCount -= 8U; if(hcryp->CrypInCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); /* Call the Input data transfer complete callback */ HAL_CRYP_InCpltCallback(hcryp); } } else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) { outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the Output block from the Output FIFO */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; hcryp->pCrypOutBuffPtr += 8U; hcryp->CrypOutCount -= 8U; if(hcryp->CrypOutCount == 0U) { __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); /* Disable CRYP */ __HAL_CRYP_DISABLE(hcryp); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Call Input transfer complete callback */ HAL_CRYP_OutCpltCallback(hcryp); } } /* Return function status */ return HAL_OK; } /** * @brief Initializes the CRYP peripheral in TDES ECB encryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES ECB encryption mode */ CRYP_SetTDESECBMode(hcryp, 0U); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in TDES CBC encryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pPlainData; outputaddr = (uint32_t)pCypherData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES CBC encryption mode */ CRYP_SetTDESCBCMode(hcryp, 0U); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in TDES ECB decryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pCypherData Pointer to the cyphertext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES ECB decryption mode */ CRYP_SetTDESECBMode(hcryp, CRYP_CR_ALGODIR); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @brief Initializes the CRYP peripheral in TDES CBC decryption mode using DMA. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer, must be a multiple of 8 * @param pPlainData Pointer to the plaintext buffer * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_TDESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { uint32_t inputaddr; uint32_t outputaddr; if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) { /* Process Locked */ __HAL_LOCK(hcryp); inputaddr = (uint32_t)pCypherData; outputaddr = (uint32_t)pPlainData; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set CRYP peripheral in TDES CBC decryption mode */ CRYP_SetTDESCBCMode(hcryp, CRYP_CR_ALGODIR); /* Set the input and output addresses and start DMA transfer */ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } else { return HAL_ERROR; } } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group5 DMA callback functions * @brief DMA callback functions. * @verbatim ============================================================================== ##### DMA callback functions ##### ============================================================================== [..] This section provides DMA callback functions: (+) DMA Input data transfer complete (+) DMA Output data transfer complete (+) DMA error @endverbatim * @{ */ /** * @brief Input FIFO transfer completed callbacks. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_CRYP_InCpltCallback could be implemented in the user file */ } /** * @brief Output FIFO transfer completed callbacks. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_CRYP_OutCpltCallback could be implemented in the user file */ } /** * @brief CRYP error callbacks. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_CRYP_ErrorCallback could be implemented in the user file */ } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group6 CRYP IRQ handler management * @brief CRYP IRQ handler. * @verbatim ============================================================================== ##### CRYP IRQ handler management ##### ============================================================================== [..] This section provides CRYP IRQ handler function. @endverbatim * @{ */ /** * @brief This function handles CRYP interrupt request. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp) { switch(CRYP->CR & CRYP_CR_ALGOMODE_DIRECTION) { case CRYP_CR_ALGOMODE_TDES_ECB_ENCRYPT: HAL_CRYP_TDESECB_Encrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_TDES_ECB_DECRYPT: HAL_CRYP_TDESECB_Decrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_TDES_CBC_ENCRYPT: HAL_CRYP_TDESCBC_Encrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_TDES_CBC_DECRYPT: HAL_CRYP_TDESCBC_Decrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_DES_ECB_ENCRYPT: HAL_CRYP_DESECB_Encrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_DES_ECB_DECRYPT: HAL_CRYP_DESECB_Decrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_DES_CBC_ENCRYPT: HAL_CRYP_DESCBC_Encrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_DES_CBC_DECRYPT: HAL_CRYP_DESCBC_Decrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_AES_ECB_ENCRYPT: HAL_CRYP_AESECB_Encrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_AES_ECB_DECRYPT: HAL_CRYP_AESECB_Decrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_AES_CBC_ENCRYPT: HAL_CRYP_AESCBC_Encrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_AES_CBC_DECRYPT: HAL_CRYP_AESCBC_Decrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_AES_CTR_ENCRYPT: HAL_CRYP_AESCTR_Encrypt_IT(hcryp, NULL, 0U, NULL); break; case CRYP_CR_ALGOMODE_AES_CTR_DECRYPT: HAL_CRYP_AESCTR_Decrypt_IT(hcryp, NULL, 0U, NULL); break; default: break; } } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group7 Peripheral State functions * @brief Peripheral State functions. * @verbatim ============================================================================== ##### Peripheral State functions ##### ============================================================================== [..] This subsection permits to get in run-time the status of the peripheral. @endverbatim * @{ */ /** * @brief Returns the CRYP state. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval HAL state */ HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp) { return hcryp->State; } /** * @} */ /** * @} */ #endif /* CRYP */ #if defined (AES) /** @defgroup AES AES * @brief AES HAL module driver. * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private functions --------------------------------------------------------*/ /** @defgroup CRYP_Private_Functions CRYP Private Functions * @{ */ static HAL_StatusTypeDef CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp); static HAL_StatusTypeDef CRYP_SetKey(CRYP_HandleTypeDef *hcryp); static HAL_StatusTypeDef CRYP_AES_IT(CRYP_HandleTypeDef *hcryp); /** * @} */ /* Exported functions ---------------------------------------------------------*/ /** @defgroup CRYP_Exported_Functions CRYP Exported Functions * @{ */ /** @defgroup CRYP_Exported_Functions_Group1 Initialization and deinitialization functions * @brief Initialization and Configuration functions. * @verbatim ============================================================================== ##### Initialization and deinitialization functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize the CRYP according to the specified parameters in the CRYP_InitTypeDef and creates the associated handle (+) DeInitialize the CRYP peripheral (+) Initialize the CRYP MSP (MCU Specific Package) (+) De-Initialize the CRYP MSP [..] (@) Specific care must be taken to format the key and the Initialization Vector IV! [..] If the key is defined as a 128-bit long array key[127..0] = {b127 ... b0} where b127 is the MSB and b0 the LSB, the key must be stored in MCU memory (+) as a sequence of words where the MSB word comes first (occupies the lowest memory address) (+) where each word is byte-swapped: (++) address n+0 : 0b b103 .. b96 b111 .. b104 b119 .. b112 b127 .. b120 (++) address n+4 : 0b b71 .. b64 b79 .. b72 b87 .. b80 b95 .. b88 (++) address n+8 : 0b b39 .. b32 b47 .. b40 b55 .. b48 b63 .. b56 (++) address n+C : 0b b7 .. b0 b15 .. b8 b23 .. b16 b31 .. b24 [..] Hereafter, another illustration when considering a 128-bit long key made of 16 bytes {B15..B0}. The 4 32-bit words that make the key must be stored as follows in MCU memory: (+) address n+0 : 0x B12 B13 B14 B15 (+) address n+4 : 0x B8 B9 B10 B11 (+) address n+8 : 0x B4 B5 B6 B7 (+) address n+C : 0x B0 B1 B2 B3 [..] which leads to the expected setting (+) AES_KEYR3 = 0x B15 B14 B13 B12 (+) AES_KEYR2 = 0x B11 B10 B9 B8 (+) AES_KEYR1 = 0x B7 B6 B5 B4 (+) AES_KEYR0 = 0x B3 B2 B1 B0 [..] Same format must be applied for a 256-bit long key made of 32 bytes {B31..B0}. The 8 32-bit words that make the key must be stored as follows in MCU memory: (+) address n+00 : 0x B28 B29 B30 B31 (+) address n+04 : 0x B24 B25 B26 B27 (+) address n+08 : 0x B20 B21 B22 B23 (+) address n+0C : 0x B16 B17 B18 B19 (+) address n+10 : 0x B12 B13 B14 B15 (+) address n+14 : 0x B8 B9 B10 B11 (+) address n+18 : 0x B4 B5 B6 B7 (+) address n+1C : 0x B0 B1 B2 B3 [..] which leads to the expected setting (+) AES_KEYR7 = 0x B31 B30 B29 B28 (+) AES_KEYR6 = 0x B27 B26 B25 B24 (+) AES_KEYR5 = 0x B23 B22 B21 B20 (+) AES_KEYR4 = 0x B19 B18 B17 B16 (+) AES_KEYR3 = 0x B15 B14 B13 B12 (+) AES_KEYR2 = 0x B11 B10 B9 B8 (+) AES_KEYR1 = 0x B7 B6 B5 B4 (+) AES_KEYR0 = 0x B3 B2 B1 B0 [..] Initialization Vector IV (4 32-bit words) format must follow the same as that of a 128-bit long key. [..] @endverbatim * @{ */ /** * @brief Initialize the CRYP according to the specified * parameters in the CRYP_InitTypeDef and initialize the associated handle. * @note Specific care must be taken to format the key and the Initialization Vector IV * stored in the MCU memory before calling HAL_CRYP_Init(). Refer to explanations * hereabove. * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp) { /* Check the CRYP handle allocation */ if(hcryp == NULL) { return HAL_ERROR; } /* Check the instance */ assert_param(IS_AES_ALL_INSTANCE(hcryp->Instance)); /* Check the parameters */ assert_param(IS_CRYP_KEYSIZE(hcryp->Init.KeySize)); assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType)); assert_param(IS_CRYP_ALGOMODE(hcryp->Init.OperatingMode)); /* ChainingMode parameter is irrelevant when mode is set to Key derivation */ if (hcryp->Init.OperatingMode != CRYP_ALGOMODE_KEYDERIVATION) { assert_param(IS_CRYP_CHAINMODE(hcryp->Init.ChainingMode)); } assert_param(IS_CRYP_WRITE(hcryp->Init.KeyWriteFlag)); /*========================================================*/ /* Check the proper operating/chaining modes combinations */ /*========================================================*/ /* Check the proper chaining when the operating mode is key derivation and decryption */ #if defined(AES_CR_NPBLB) if ((hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION_DECRYPT) &&\ ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CTR) \ || (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC) \ || (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC))) #else if ((hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION_DECRYPT) &&\ ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CTR) \ || (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC) \ || (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC))) #endif { return HAL_ERROR; } /* Check that key derivation is not set in CMAC mode or CCM mode when applicable */ #if defined(AES_CR_NPBLB) if ((hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION) && (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC)) #else if ((hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION) && (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)) #endif { return HAL_ERROR; } /*================*/ /* Initialization */ /*================*/ /* Initialization start */ if(hcryp->State == HAL_CRYP_STATE_RESET) { /* Allocate lock resource and initialize it */ hcryp->Lock = HAL_UNLOCKED; /* Init the low level hardware */ HAL_CRYP_MspInit(hcryp); } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Disable the Peripheral */ __HAL_CRYP_DISABLE(); /*=============================================================*/ /* AES initialization common to all operating modes */ /*=============================================================*/ /* Set the Key size selection */ MODIFY_REG(hcryp->Instance->CR, AES_CR_KEYSIZE, hcryp->Init.KeySize); /* Set the default CRYP phase when this parameter is not used. Phase is updated below in case of GCM/GMAC/CMAC(/CCM) setting. */ hcryp->Phase = HAL_CRYP_PHASE_NOT_USED; /*=============================================================*/ /* Carry on the initialization based on the AES operating mode */ /*=============================================================*/ /* Key derivation */ if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION) { MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_ALGOMODE_KEYDERIVATION); /* Configure the Key registers */ if (CRYP_SetKey(hcryp) != HAL_OK) { return HAL_ERROR; } } else /* Encryption / Decryption (with or without key derivation) / authentication */ { /* Set data type, operating and chaining modes. In case of GCM or GMAC, data type is forced to 0b00 */ if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC) { MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE|AES_CR_MODE|AES_CR_CHMOD, hcryp->Init.OperatingMode|hcryp->Init.ChainingMode); } else { MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE|AES_CR_MODE|AES_CR_CHMOD, hcryp->Init.DataType|hcryp->Init.OperatingMode|hcryp->Init.ChainingMode); } /* Specify the encryption/decryption phase in case of Galois counter mode (GCM), Galois message authentication code (GMAC), cipher message authentication code (CMAC) or Counter with Cipher Mode (CCM) when applicable */ #if defined(AES_CR_NPBLB) if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC) || (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC)) #else if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC) || (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)) #endif { MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, hcryp->Init.GCMCMACPhase); hcryp->Phase = HAL_CRYP_PHASE_START; } /* Configure the Key registers if no need to bypass this step */ if (hcryp->Init.KeyWriteFlag == CRYP_KEY_WRITE_ENABLE) { if (CRYP_SetKey(hcryp) != HAL_OK) { return HAL_ERROR; } } /* If applicable, configure the Initialization Vector */ if (hcryp->Init.ChainingMode != CRYP_CHAINMODE_AES_ECB) { if (CRYP_SetInitVector(hcryp) != HAL_OK) { return HAL_ERROR; } } } #if defined(AES_CR_NPBLB) /* Clear NPBLB field */ CLEAR_BIT(hcryp->Instance->CR, AES_CR_NPBLB); #endif /* Reset CrypInCount and CrypOutCount */ hcryp->CrypInCount = 0U; hcryp->CrypOutCount = 0U; /* Reset ErrorCode field */ hcryp->ErrorCode = HAL_CRYP_ERROR_NONE; /* Reset Mode suspension request */ hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE; /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Enable the Peripheral */ __HAL_CRYP_ENABLE(); /* Return function status */ return HAL_OK; } /** * @brief DeInitialize the CRYP peripheral. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp) { /* Check the CRYP handle allocation */ if(hcryp == NULL) { return HAL_ERROR; } /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_BUSY; /* Set the default CRYP phase */ hcryp->Phase = HAL_CRYP_PHASE_READY; /* Reset CrypInCount and CrypOutCount */ hcryp->CrypInCount = 0U; hcryp->CrypOutCount = 0U; /* Disable the CRYP Peripheral Clock */ __HAL_CRYP_DISABLE(); /* DeInit the low level hardware: CLOCK, NVIC.*/ HAL_CRYP_MspDeInit(hcryp); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_RESET; /* Release Lock */ __HAL_UNLOCK(hcryp); /* Return function status */ return HAL_OK; } /** * @brief Initialize the CRYP MSP. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function should not be modified; when the callback is needed, the HAL_CRYP_MspInit can be implemented in the user file */ } /** * @brief DeInitialize CRYP MSP. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function should not be modified; when the callback is needed, the HAL_CRYP_MspDeInit can be implemented in the user file */ } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group2 AES processing functions * @brief Processing functions. * @verbatim ============================================================================== ##### AES processing functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Encrypt plaintext using AES algorithm in different chaining modes (+) Decrypt cyphertext using AES algorithm in different chaining modes [..] Three processing functions are available: (+) Polling mode (+) Interrupt mode (+) DMA mode @endverbatim * @{ */ /** * @brief Encrypt pPlainData in AES ECB encryption mode. The cypher data are available in pCypherData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_ECB; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES(hcryp, pPlainData, Size, pCypherData, Timeout); } /** * @brief Encrypt pPlainData in AES CBC encryption mode with key derivation. The cypher data are available in pCypherData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CBC; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES(hcryp, pPlainData, Size, pCypherData, Timeout); } /** * @brief Encrypt pPlainData in AES CTR encryption mode. The cypher data are available in pCypherData * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @param Timeout Specify Timeout value * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CTR; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES(hcryp, pPlainData, Size, pCypherData, Timeout); } /** * @brief Decrypt pCypherData in AES ECB decryption mode with key derivation, * the decyphered data are available in pPlainData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @param Timeout Specify Timeout value * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_KEYDERIVATION_DECRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_ECB; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES(hcryp, pCypherData, Size, pPlainData, Timeout); } /** * @brief Decrypt pCypherData in AES ECB decryption mode with key derivation, * the decyphered data are available in pPlainData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @param Timeout Specify Timeout value * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_KEYDERIVATION_DECRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CBC; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES(hcryp, pCypherData, Size, pPlainData, Timeout); } /** * @brief Decrypt pCypherData in AES CTR decryption mode, * the decyphered data are available in pPlainData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @param Timeout Specify Timeout value * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_DECRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CTR; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES(hcryp, pCypherData, Size, pPlainData, Timeout); } /** * @brief Encrypt pPlainData in AES ECB encryption mode using Interrupt, * the cypher data are available in pCypherData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_IT() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_ECB; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_IT(hcryp, pPlainData, Size, pCypherData); } /** * @brief Encrypt pPlainData in AES CBC encryption mode using Interrupt, * the cypher data are available in pCypherData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_IT() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CBC; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_IT(hcryp, pPlainData, Size, pCypherData); } /** * @brief Encrypt pPlainData in AES CTR encryption mode using Interrupt, * the cypher data are available in pCypherData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_IT() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CTR; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_IT(hcryp, pPlainData, Size, pCypherData); } /** * @brief Decrypt pCypherData in AES ECB decryption mode using Interrupt, * the decyphered data are available in pPlainData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer. * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_IT() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_KEYDERIVATION_DECRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_ECB; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_IT(hcryp, pCypherData, Size, pPlainData); } /** * @brief Decrypt pCypherData in AES CBC decryption mode using Interrupt, * the decyphered data are available in pPlainData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_IT() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_KEYDERIVATION_DECRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CBC; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_IT(hcryp, pCypherData, Size, pPlainData); } /** * @brief Decrypt pCypherData in AES CTR decryption mode using Interrupt, * the decyphered data are available in pPlainData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_IT() API instead (usage recommended). * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_DECRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CTR; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_IT(hcryp, pCypherData, Size, pPlainData); } /** * @brief Encrypt pPlainData in AES ECB encryption mode using DMA, * the cypher data are available in pCypherData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_DMA() API instead (usage recommended). * @note pPlainData and pCypherData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP. * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_ECB; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_DMA(hcryp, pPlainData, Size, pCypherData); } /** * @brief Encrypt pPlainData in AES CBC encryption mode using DMA, * the cypher data are available in pCypherData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_DMA() API instead (usage recommended). * @note pPlainData and pCypherData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP. * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CBC; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_DMA(hcryp, pPlainData, Size, pCypherData); } /** * @brief Encrypt pPlainData in AES CTR encryption mode using DMA, * the cypher data are available in pCypherData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pPlainData Pointer to the plaintext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pCypherData Pointer to the cyphertext buffer. * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_DMA() API instead (usage recommended). * @note pPlainData and pCypherData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP. * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CTR; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_DMA(hcryp, pPlainData, Size, pCypherData); } /** * @brief Decrypt pCypherData in AES ECB decryption mode using DMA, * the decyphered data are available in pPlainData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_DMA() API instead (usage recommended). * @note pPlainData and pCypherData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP. * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_KEYDERIVATION_DECRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_ECB; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_DMA(hcryp, pCypherData, Size, pPlainData); } /** * @brief Decrypt pCypherData in AES CBC decryption mode using DMA, * the decyphered data are available in pPlainData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_DMA() API instead (usage recommended). * @note pPlainData and pCypherData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP. * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_KEYDERIVATION_DECRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CBC; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_DMA(hcryp, pCypherData, Size, pPlainData); } /** * @brief Decrypt pCypherData in AES CTR decryption mode using DMA, * the decyphered data are available in pPlainData. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @param pCypherData Pointer to the cyphertext buffer * @param Size Length of the plaintext buffer in bytes, must be a multiple of 16. * @param pPlainData Pointer to the plaintext buffer * @note This API is provided only to maintain compatibility with legacy software. Users should directly * resort to generic HAL_CRYPEx_AES_DMA() API instead (usage recommended). * @note pPlainData and pCypherData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP. * @retval HAL status */ HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) { /* Re-initialize AES IP with proper parameters */ if (HAL_CRYP_DeInit(hcryp) != HAL_OK) { return HAL_ERROR; } hcryp->Init.OperatingMode = CRYP_ALGOMODE_DECRYPT; hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CTR; hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE; if (HAL_CRYP_Init(hcryp) != HAL_OK) { return HAL_ERROR; } return HAL_CRYPEx_AES_DMA(hcryp, pCypherData, Size, pPlainData); } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group3 Callback functions * @brief Callback functions. * @verbatim ============================================================================== ##### Callback functions ##### ============================================================================== [..] This section provides Interruption and DMA callback functions: (+) DMA Input data transfer complete (+) DMA Output data transfer complete (+) DMA or Interrupt error @endverbatim * @{ */ /** * @brief CRYP error callback. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function should not be modified; when the callback is needed, the HAL_CRYP_ErrorCallback can be implemented in the user file */ } /** * @brief Input DMA transfer complete callback. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function should not be modified; when the callback is needed, the HAL_CRYP_InCpltCallback can be implemented in the user file */ } /** * @brief Output DMA transfer complete callback. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ __weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcryp); /* NOTE : This function should not be modified; when the callback is needed, the HAL_CRYP_OutCpltCallback can be implemented in the user file */ } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group4 CRYP IRQ handler * @brief AES IRQ handler. * @verbatim ============================================================================== ##### AES IRQ handler management ##### ============================================================================== [..] This section provides AES IRQ handler function. @endverbatim * @{ */ /** * @brief Handle AES interrupt request. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp) { /* Check if error occurred */ if (__HAL_CRYP_GET_IT_SOURCE(CRYP_IT_ERRIE) != RESET) { /* If Write Error occurred */ if (__HAL_CRYP_GET_FLAG(CRYP_IT_WRERR) != RESET) { hcryp->ErrorCode |= HAL_CRYP_WRITE_ERROR; hcryp->State = HAL_CRYP_STATE_ERROR; } /* If Read Error occurred */ if (__HAL_CRYP_GET_FLAG(CRYP_IT_RDERR) != RESET) { hcryp->ErrorCode |= HAL_CRYP_READ_ERROR; hcryp->State = HAL_CRYP_STATE_ERROR; } /* If an error has been reported */ if (hcryp->State == HAL_CRYP_STATE_ERROR) { /* Disable Error and Computation Complete Interrupts */ __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE); /* Clear all Interrupt flags */ __HAL_CRYP_CLEAR_FLAG(CRYP_ERR_CLEAR|CRYP_CCF_CLEAR); /* Process Unlocked */ __HAL_UNLOCK(hcryp); HAL_CRYP_ErrorCallback(hcryp); return; } } /* Check if computation complete interrupt is enabled and if the computation complete flag is raised */ if((__HAL_CRYP_GET_FLAG(CRYP_IT_CCF) != RESET) && (__HAL_CRYP_GET_IT_SOURCE(CRYP_IT_CCFIE) != RESET)) { #if defined(AES_CR_NPBLB) if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC) || (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC)) #else if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC) || (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)) #endif { /* To ensure proper suspension requests management, CCF flag is reset in CRYP_AES_Auth_IT() according to the current phase under handling */ CRYP_AES_Auth_IT(hcryp); } else { /* Clear Computation Complete Flag */ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR); CRYP_AES_IT(hcryp); } } } /** * @} */ /** @defgroup CRYP_Exported_Functions_Group5 Peripheral State functions * @brief Peripheral State functions. * @verbatim ============================================================================== ##### Peripheral State functions ##### ============================================================================== [..] This subsection permits to get in run-time the status of the peripheral. @endverbatim * @{ */ /** * @brief Return the CRYP handle state. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval HAL state */ HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp) { /* Return CRYP handle state */ return hcryp->State; } /** * @brief Return the CRYP peripheral error. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @note The returned error is a bit-map combination of possible errors * @retval Error bit-map */ uint32_t HAL_CRYP_GetError(CRYP_HandleTypeDef *hcryp) { return hcryp->ErrorCode; } /** * @} */ /** * @} */ /** @addtogroup CRYP_Private_Functions * @{ */ /** * @brief Write the Key in KeyRx registers. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ static HAL_StatusTypeDef CRYP_SetKey(CRYP_HandleTypeDef *hcryp) { uint32_t keyaddr = 0x0U; if ((uint32_t)(hcryp->Init.pKey == NULL)) { return HAL_ERROR; } keyaddr = (uint32_t)(hcryp->Init.pKey); if (hcryp->Init.KeySize == CRYP_KEYSIZE_256B) { hcryp->Instance->KEYR7 = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->KEYR6 = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->KEYR5 = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->KEYR4 = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; } hcryp->Instance->KEYR3 = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->KEYR2 = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->KEYR1 = __REV(*(uint32_t*)(keyaddr)); keyaddr+=4U; hcryp->Instance->KEYR0 = __REV(*(uint32_t*)(keyaddr)); return HAL_OK; } /** * @brief Write the InitVector/InitCounter in IVRx registers. * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module * @retval None */ static HAL_StatusTypeDef CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp) { uint32_t ivaddr = 0x0U; #if !defined(AES_CR_NPBLB) if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC) { hcryp->Instance->IVR3 = 0U; hcryp->Instance->IVR2 = 0U; hcryp->Instance->IVR1 = 0U; hcryp->Instance->IVR0 = 0U; } else #endif { if (hcryp->Init.pInitVect == NULL) { return HAL_ERROR; } ivaddr = (uint32_t)(hcryp->Init.pInitVect); hcryp->Instance->IVR3 = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4U; hcryp->Instance->IVR2 = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4U; hcryp->Instance->IVR1 = __REV(*(uint32_t*)(ivaddr)); ivaddr+=4U; hcryp->Instance->IVR0 = __REV(*(uint32_t*)(ivaddr)); } return HAL_OK; } /** * @brief Handle CRYP block input/output data handling under interruption. * @note The function is called under interruption only, once * interruptions have been enabled by HAL_CRYPEx_AES_IT(). * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains * the configuration information for CRYP module. * @retval HAL status */ static HAL_StatusTypeDef CRYP_AES_IT(CRYP_HandleTypeDef *hcryp) { uint32_t inputaddr = 0U; uint32_t outputaddr = 0U; if(hcryp->State == HAL_CRYP_STATE_BUSY) { if (hcryp->Init.OperatingMode != CRYP_ALGOMODE_KEYDERIVATION) { /* Get the output data address */ outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; /* Read the last available output block from the Data Output Register */ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; outputaddr+=4U; *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; hcryp->pCrypOutBuffPtr += 16U; hcryp->CrypOutCount -= 16U; } else { /* Read the derived key from the Key registers */ if (hcryp->Init.KeySize == CRYP_KEYSIZE_256B) { *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR7); outputaddr+=4U; *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR6); outputaddr+=4U; *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR5); outputaddr+=4U; *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR4); outputaddr+=4U; } *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR3); outputaddr+=4U; *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR2); outputaddr+=4U; *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR1); outputaddr+=4U; *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR0); } /* In case of ciphering or deciphering, check if all output text has been retrieved; In case of key derivation, stop right there */ if ((hcryp->CrypOutCount == 0U) || (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)) { /* Disable Computation Complete Flag and Errors Interrupts */ __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hcryp); /* Call computation complete callback */ HAL_CRYPEx_ComputationCpltCallback(hcryp); return HAL_OK; } /* If suspension flag has been raised, suspend processing */ else if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND) { /* reset ModeSuspend */ hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE; /* Disable Computation Complete Flag and Errors Interrupts */ __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE); /* Change the CRYP state */ hcryp->State = HAL_CRYP_STATE_SUSPENDED; /* Process Unlocked */ __HAL_UNLOCK(hcryp); return HAL_OK; } else /* Process the rest of input data */ { /* Get the Intput data address */ inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; /* Increment/decrement instance pointer/counter */ hcryp->pCrypInBuffPtr += 16U; hcryp->CrypInCount -= 16U; /* Write the next input block in the Data Input register */ hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); inputaddr+=4U; hcryp->Instance->DINR = *(uint32_t*)(inputaddr); return HAL_OK; } } else { return HAL_BUSY; } } /** * @} */ #endif /* AES */ #endif /* HAL_CRYP_MODULE_ENABLED */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/