Mercurial > public > ostc4
view Small_CPU/Src/uart_Internal.c @ 927:908d9a8e8c84 Evo_2_23
Cleanup Internal Uart:
The internal UART was using the wrong UART RX channel. In addition the compile switches have been updated to allow GNSS data flow if new GPIO config is available or if GNSS is enabled for the external UART.
author | Ideenmodellierer |
---|---|
date | Tue, 26 Nov 2024 21:01:13 +0100 |
parents | 6fc0e3d230e4 |
children | 5a9bc2e6112d |
line wrap: on
line source
/** ****************************************************************************** * @file uart_Internal.c * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 03-November-2044 * @brief Control functions for devices connected to the internal UART * @verbatim ============================================================================== ##### How to use ##### ============================================================================== @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2015 heinrichs weikamp</center></h2> * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "uart.h" #include "uart_Internal.h" #include "uartProtocol_GNSS.h" #include "GNSS.h" #include "externalInterface.h" #include "data_exchange.h" #include <string.h> /* memset */ static uint8_t isEndIndication6(uint8_t index); static uint8_t gnssState = UART_GNSS_INIT; /* Private variables ---------------------------------------------------------*/ #define TX_BUF_SIZE (40u) /* max length for commands */ #define CHUNK_SIZE (25u) /* the DMA will handle chunk size transfers */ #define CHUNKS_PER_BUFFER (6u) #define REQUEST_INT_SENSOR_MS (1500) /* Minimum time interval for cyclic sensor data requests per sensor (UART mux) */ #define COMMAND_TX_DELAY (30u) /* The time the sensor needs to recover from a invalid command request */ #define TIMEOUT_SENSOR_ANSWER (300) /* Time till a request is repeated if no answer was received */ static receiveStateGnss_t rxState = GNSSRX_READY; static uint8_t GnssConnected = 0; /* Binary indicator if a sensor is connected or not */ static uint8_t writeIndex = 0; static uint8_t dataToRead = 0; DMA_HandleTypeDef hdma_usart6_rx, hdma_usart6_tx; uint8_t tx6Buffer[CHUNK_SIZE]; /* tx uses less bytes */ uint8_t tx6BufferQue[TX_BUF_SIZE]; /* In MUX mode command may be send shortly after each other => allow q 1 entry que */ uint8_t tx6BufferQueLen; uint8_t rxBufferUart6[CHUNK_SIZE * CHUNKS_PER_BUFFER]; /* The complete buffer has a X * chunk size to allow variations in buffer read time */ uint8_t txBufferUart6[CHUNK_SIZE * CHUNKS_PER_BUFFER]; /* The complete buffer has a X * chunk size to allow variations in buffer read time */ static uint8_t rx6WriteIndex; /* Index of the data item which is analysed */ static uint8_t rx6ReadIndex; /* Index at which new data is stared */ static uint8_t dmaRx6Active; /* Indicator if DMA reception needs to be started */ static uint8_t dmaTx6Active; /* Indicator if DMA reception needs to be started */ /* Exported functions --------------------------------------------------------*/ void UART_clearRx6Buffer(void) { uint16_t index = 0; do { rxBufferUart6[index++] = BUFFER_NODATA_LOW; rxBufferUart6[index++] = BUFFER_NODATA_HIGH; } while (index < sizeof(rxBufferUart6)); rx6ReadIndex = 0; rx6WriteIndex = 0; } void GNSS_IO_init() { GPIO_InitTypeDef GPIO_InitStruct = { 0 }; /* Peripheral clock enable */ __HAL_RCC_USART6_CLK_ENABLE() ; __HAL_RCC_GPIOA_CLK_ENABLE() ; /**USART6 GPIO Configuration PA11 ------> USART6_TX PA12 ------> USART6_RX */ GPIO_InitStruct.Pin = GPIO_PIN_11 | GPIO_PIN_12; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FAST; GPIO_InitStruct.Alternate = GPIO_AF8_USART6; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /* USART6 DMA Init */ /* USART6_RX Init */ hdma_usart6_rx.Instance = DMA2_Stream2; hdma_usart6_rx.Init.Channel = DMA_CHANNEL_5; hdma_usart6_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_usart6_rx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart6_rx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart6_rx.Init.PeriphDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart6_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart6_rx.Init.Mode = DMA_NORMAL; hdma_usart6_rx.Init.Priority = DMA_PRIORITY_LOW; hdma_usart6_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE; HAL_DMA_Init(&hdma_usart6_rx); __HAL_LINKDMA(&huart6, hdmarx, hdma_usart6_rx); /* USART6_TX Init */ hdma_usart6_tx.Instance = DMA2_Stream6; hdma_usart6_tx.Init.Channel = DMA_CHANNEL_5; hdma_usart6_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_usart6_tx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart6_tx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart6_tx.Init.PeriphDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart6_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart6_tx.Init.Mode = DMA_NORMAL; hdma_usart6_tx.Init.Priority = DMA_PRIORITY_LOW; hdma_usart6_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE; HAL_DMA_Init(&hdma_usart6_tx); __HAL_LINKDMA(&huart6, hdmatx, hdma_usart6_tx); /* USART6 interrupt Init */ HAL_NVIC_SetPriority(USART6_IRQn, 0, 0); HAL_NVIC_EnableIRQ(USART6_IRQn); MX_USART6_DMA_Init(); } void MX_USART6_DMA_Init() { /* DMA controller clock enable */ __HAL_RCC_DMA2_CLK_ENABLE(); /* DMA interrupt init */ /* DMA2_Stream2_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA2_Stream2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA2_Stream2_IRQn); /* DMA2_Stream6_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA2_Stream6_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA2_Stream6_IRQn); } void MX_USART6_UART_DeInit(void) { HAL_DMA_Abort(&hdma_usart6_rx); HAL_DMA_DeInit(&hdma_usart6_rx); HAL_DMA_Abort(&hdma_usart6_tx); HAL_DMA_DeInit(&hdma_usart6_tx); HAL_UART_DeInit(&huart6); HAL_UART_DeInit(&huart6); } void MX_USART6_UART_Init(void) { huart6.Instance = USART6; huart6.Init.BaudRate = 9600; huart6.Init.WordLength = UART_WORDLENGTH_8B; huart6.Init.StopBits = UART_STOPBITS_1; huart6.Init.Parity = UART_PARITY_NONE; huart6.Init.Mode = UART_MODE_TX_RX; huart6.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart6.Init.OverSampling = UART_OVERSAMPLING_16; HAL_UART_Init(&huart6); UART_clearRx6Buffer(); dmaRx6Active = 0; dmaTx6Active = 0; tx6BufferQueLen = 0; } void UART6_SendCmdUbx(const uint8_t *cmd, uint8_t len) { if(len < TX_BUF_SIZE) /* A longer string is an indication for a missing 0 termination */ { if(dmaRx6Active == 0) { UART6_StartDMA_Receiption(); } memcpy(tx6Buffer, cmd, len); if(HAL_OK == HAL_UART_Transmit_DMA(&huart6,tx6Buffer,len)) { dmaTx6Active = 1; } } } uint8_t isEndIndication6(uint8_t index) { uint8_t ret = 0; if(index % 2) { if(rxBufferUart6[index] == BUFFER_NODATA_HIGH) { ret = 1; } } else { if(rxBufferUart6[index] == BUFFER_NODATA_LOW) { ret = 1; } } return ret; } void UART6_StartDMA_Receiption() { if(dmaRx6Active == 0) { if(((rx6WriteIndex / CHUNK_SIZE) != (rx6ReadIndex / CHUNK_SIZE)) || ((isEndIndication6(rx6WriteIndex)) && (isEndIndication6(rx6WriteIndex + 1)))) /* start next transfer if we did not catch up with read index */ { if(HAL_OK == HAL_UART_Receive_DMA (&huart6, &rxBufferUart6[rx6WriteIndex], CHUNK_SIZE)) { dmaRx6Active = 1; } } } } void UART6_RxCpltCallback(UART_HandleTypeDef *huart) { if(huart == &huart6) { dmaRx6Active = 0; rx6WriteIndex+=CHUNK_SIZE; if(rx6WriteIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) { rx6WriteIndex = 0; } UART6_StartDMA_Receiption(); } } void UART6_TxCpltCallback(UART_HandleTypeDef *huart) { if(huart == &huart6) { dmaTx6Active = 0; UART6_WriteData(); if(tx6BufferQueLen) { memcpy(tx6Buffer, tx6BufferQue, tx6BufferQueLen); HAL_UART_Transmit_DMA(&huart6,tx6Buffer,tx6BufferQueLen); dmaTx6Active = 1; tx6BufferQueLen = 0; } } } void UART6_ReadData() { uint8_t localRX = rx6ReadIndex; uint8_t futureIndex = rx6ReadIndex + 1; uint8_t moreData = 0; if(futureIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) { futureIndex = 0; } if((!isEndIndication6(localRX)) || (!isEndIndication6(futureIndex))) do { while((!isEndIndication6(localRX)) || (moreData)) { moreData = 0; UART6_Gnss_ProcessData(rxBufferUart6[localRX]); if(localRX % 2) { rxBufferUart6[localRX] = BUFFER_NODATA_HIGH; } else { rxBufferUart6[localRX] = BUFFER_NODATA_LOW; } localRX++; rx6ReadIndex++; if(rx6ReadIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) { localRX = 0; rx6ReadIndex = 0; } futureIndex++; if(futureIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) { futureIndex = 0; } } if(!isEndIndication6(futureIndex)) { moreData = 1; } } while(moreData); } void UART6_WriteData(void) { if(huart6.hdmatx->State == HAL_DMA_STATE_READY) { huart6.gState = HAL_UART_STATE_READY; dmaTx6Active = 0; } if(huart6.hdmarx->State == HAL_DMA_STATE_READY) { huart6.RxState = HAL_UART_STATE_READY; dmaRx6Active = 0; } } void UART6_Gnss_SendCmd(uint8_t GnssCmd) { const uint8_t* pData; uint8_t txLength = 0; switch (GnssCmd) { case GNSSCMD_LOADCONF_0: pData = configUBX; txLength = sizeof(configUBX) / sizeof(uint8_t); break; case GNSSCMD_LOADCONF_1: pData = setNMEA410; txLength = sizeof(setNMEA410) / sizeof(uint8_t); break; case GNSSCMD_LOADCONF_2: pData = setGNSS; txLength = sizeof(setGNSS) / sizeof(uint8_t); break; case GNSSCMD_GET_PVT_DATA: pData = getPVTData; txLength = sizeof(getPVTData) / sizeof(uint8_t); break; case GNSSCMD_GET_NAV_DATA: pData = getNavigatorData; txLength = sizeof(getNavigatorData) / sizeof(uint8_t); break; default: break; } if(txLength != 0) { UART6_SendCmdUbx(pData, txLength); } } void UART6_Gnss_Control(void) { static uint32_t warmupTick = 0; switch (gnssState) { case UART_GNSS_INIT: gnssState = UART_GNSS_WARMUP; warmupTick = HAL_GetTick(); UART_clearRxBuffer(); break; case UART_GNSS_WARMUP: if(time_elapsed_ms(warmupTick,HAL_GetTick()) > 1000) { gnssState = UART_GNSS_LOADCONF_0; } break; case UART_GNSS_LOADCONF_0: UART6_Gnss_SendCmd(GNSSCMD_LOADCONF_0); gnssState = UART_GNSS_LOADCONF_1; rxState = GNSSRX_DETECT_ACK_0; break; case UART_GNSS_LOADCONF_1: UART6_Gnss_SendCmd(GNSSCMD_LOADCONF_1); gnssState = UART_GNSS_LOADCONF_2; rxState = GNSSRX_DETECT_ACK_0; break; case UART_GNSS_LOADCONF_2: UART6_Gnss_SendCmd(GNSSCMD_LOADCONF_2); gnssState = UART_GNSS_IDLE; rxState = GNSSRX_DETECT_ACK_0; break; case UART_GNSS_IDLE: UART6_Gnss_SendCmd(GNSSCMD_GET_PVT_DATA); gnssState = UART_GNSS_GET_PVT; rxState = GNSSRX_DETECT_HEADER_0; break; default: break; } } void UART6_Gnss_ProcessData(uint8_t data) { GNSS_Handle.uartWorkingBuffer[writeIndex++] = data; switch(rxState) { case GNSSRX_DETECT_ACK_0: case GNSSRX_DETECT_HEADER_0: if(data == 0xB5) { writeIndex = 0; memset(GNSS_Handle.uartWorkingBuffer,0, sizeof(GNSS_Handle.uartWorkingBuffer)); GNSS_Handle.uartWorkingBuffer[writeIndex++] = data; rxState++; } break; case GNSSRX_DETECT_ACK_1: case GNSSRX_DETECT_HEADER_1: if(data == 0x62) { rxState++; } else { rxState = GNSSRX_DETECT_HEADER_0; } break; case GNSSRX_DETECT_ACK_2: if(data == 0x05) { rxState++; } else { rxState = GNSSRX_DETECT_HEADER_0; } break; case GNSSRX_DETECT_ACK_3: if((data == 0x01) || (data == 0x00)) { GnssConnected = 1; rxState = GNSSRX_READY; } else { rxState = GNSSRX_DETECT_HEADER_0; } break; case GNSSRX_DETECT_HEADER_2: if(data == 0x01) { rxState++; } else { rxState = GNSSRX_DETECT_HEADER_0; } break; case GNSSRX_DETECT_HEADER_3: switch(data) { case 0x21: rxState = GNSSRX_READ_NAV_DATA; dataToRead = 20; break; case 0x07: rxState = GNSSRX_READ_PVT_DATA; dataToRead = 92; break; case 0x02: rxState = GNSSRX_READ_POSLLH_DATA; break; default: rxState = GNSSRX_DETECT_HEADER_0; break; } break; case GNSSRX_READ_NAV_DATA: case GNSSRX_READ_PVT_DATA: case GNSSRX_READ_POSLLH_DATA: if(dataToRead > 0) { dataToRead--; } else { switch(rxState) { case GNSSRX_READ_NAV_DATA: GNSS_ParseNavigatorData(&GNSS_Handle); break; case GNSSRX_READ_PVT_DATA: GNSS_ParsePVTData(&GNSS_Handle); break; case GNSSRX_READ_POSLLH_DATA: GNSS_ParsePOSLLHData(&GNSS_Handle); break; default: rxState = GNSSRX_DETECT_HEADER_0; break; } rxState = GNSSRX_DETECT_HEADER_0; gnssState = UART_GNSS_IDLE; } break; default: rxState = GNSSRX_READY; break; } } void UART6_HandleUART() { static uint8_t retryRequest = 0; static uint32_t lastRequestTick = 0; static uint32_t TriggerTick = 0; static uint8_t timeToTrigger = 0; uint32_t tick = HAL_GetTick(); if(gnssState != UART_GNSS_INIT) { UART6_ReadData(); UART6_WriteData(); } if(gnssState == UART_GNSS_INIT) { lastRequestTick = tick; TriggerTick = tick - 10; /* just to make sure control is triggered */ timeToTrigger = 1; retryRequest = 0; } else if(((retryRequest == 0) /* timeout or error */ && (((time_elapsed_ms(lastRequestTick,tick) > (TIMEOUT_SENSOR_ANSWER)) && (gnssState != UART_GNSS_IDLE)) /* retry if no answer after half request interval */ || (gnssState == UART_GNSS_ERROR)))) { /* The channel switch will cause the sensor to respond with an error message. */ /* The sensor needs ~30ms to recover before he is ready to receive the next command => transmission delay needed */ TriggerTick = tick; timeToTrigger = COMMAND_TX_DELAY; retryRequest = 1; } else if(time_elapsed_ms(lastRequestTick,tick) > 1000) /* switch sensor and / or trigger next request */ { lastRequestTick = tick; TriggerTick = tick; retryRequest = 0; timeToTrigger = 1; if((gnssState == UART_GNSS_GET_PVT)) /* timeout */ { gnssState = UART_GNSS_IDLE; } timeToTrigger = 1; } if((timeToTrigger != 0) && (time_elapsed_ms(TriggerTick,tick) > timeToTrigger)) { timeToTrigger = 0; UART6_Gnss_Control(); } } /************************ (C) COPYRIGHT heinrichs weikamp *****END OF FILE****/