Mercurial > public > ostc4
view Small_CPU/Src/spi.c @ 189:8b8074080d7b avg-temp
Bugfix: average temperature on arrival from RTE instead of display time
This commit is heavily inspired by commits 05c770dc2911 and ecb71521d004.
Reading the code, it was clear that a display time averaging process
for measured temperature was implemented as was fixed for current
depth display in the two mentioned commits. The bug for the late
averaging of the temperature is, obviously, not as prominent as the
current depth fault. The bug fixed here was nothing more than a
visual glitch when first selecting the temperature display in the
lower left corner (by default at the start of the dive, or by manually
selecting it during the dive using the left button).
So, to summarize. A small visual glitch fix, but more important,
more consistent data handling and code.
Signed-off-by: Jan Mulder <jlmulder@xs4all.nl>
author | Jan Mulder <jlmulder@xs4all.nl> |
---|---|
date | Fri, 15 Mar 2019 15:04:57 +0100 |
parents | ee744c7160ce |
children | 9fc06e1e0f66 |
line wrap: on
line source
/** ****************************************************************************** * @file spi.c * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 16-Sept-2014 * @brief Source code for spi control * @verbatim ============================================================================== ##### How to use ##### ============================================================================== @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2014 heinrichs weikamp</center></h2> * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "global_constants.h" #include "spi.h" #include "dma.h" //#include "gpio.h" /* USER CODE BEGIN 0 */ #include "scheduler.h" #ifdef DEBUG_GPIO extern void GPIO_new_DEBUG_LOW(void); extern void GPIO_new_DEBUG_HIGH(void); #endif // SPI header by index used for synchronization check (package sequence counter) #define SPI_HEADER_INDEX_MASTER 1 #define SPI_HEADER_INDEX_SLAVE 2 uint8_t data_error = 0; uint32_t data_error_time = 0; uint8_t SPIDataRX = 0; /* Flag to signal that SPI RX callback has been triggered */ extern void HardSyncToSPI(void); static void SPI_Error_Handler(void); /* USER CODE END 0 */ static uint8_t SPI_check_header_and_footer_ok(void); static uint8_t DataEX_check_header_and_footer_shifted(void); SPI_HandleTypeDef hspi1; SPI_HandleTypeDef hspi3; DMA_HandleTypeDef hdma_tx; DMA_HandleTypeDef hdma_rx; // SPI3 init function void MX_SPI3_Init(void) { hspi3.Instance = SPI3; hspi3.Init.Mode = SPI_MODE_MASTER; hspi3.Init.Direction = SPI_DIRECTION_2LINES; hspi3.Init.DataSize = SPI_DATASIZE_8BIT; hspi3.Init.CLKPolarity = SPI_POLARITY_HIGH; hspi3.Init.CLKPhase = SPI_PHASE_1EDGE; hspi3.Init.NSS = SPI_NSS_SOFT; hspi3.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; hspi3.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi3.Init.TIMode = SPI_TIMODE_DISABLED; hspi3.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLED; hspi3.Init.CRCPolynomial = 7; HAL_SPI_Init(&hspi3); } void MX_SPI3_DeInit(void) { HAL_SPI_DeInit(&hspi3); } uint8_t SPI3_ButtonAdjust(uint8_t *arrayInput, uint8_t *arrayOutput) { HAL_StatusTypeDef status; uint8_t answer[10]; uint8_t rework[10]; rework[0] = 0xFF; for (int i = 0; i < 3; i++) { // limiter if (arrayInput[i] == 0xFF) arrayInput[i] = 0xFE; if (arrayInput[i] >= 15) { // copy - ausl�se-schwelle rework[i + 1] = arrayInput[i]; // wieder-scharf-schalte-schwelle rework[i + 3 + 1] = arrayInput[i] - 10; } else if (arrayInput[i] >= 10) { // copy - ausl�se-schwelle rework[i + 1] = arrayInput[i]; // wieder-scharf-schalte-schwelle rework[i + 3 + 1] = arrayInput[i] - 5; } else { // copy - ausl�se-schwelle rework[i + 1] = 7; // wieder-scharf-schalte-schwelle rework[i + 3 + 1] = 6; } } status = HAL_OK; /* = 0 */ HAL_GPIO_WritePin(GPIOC, GPIO_PIN_9, GPIO_PIN_SET); for (int i = 0; i < 7; i++) { HAL_Delay(10); HAL_GPIO_WritePin(GPIOC, GPIO_PIN_9, GPIO_PIN_RESET); HAL_Delay(10); status += HAL_SPI_TransmitReceive(&hspi3, &rework[i], &answer[i], 1, 20); HAL_Delay(10); HAL_GPIO_WritePin(GPIOC, GPIO_PIN_9, GPIO_PIN_SET); } if (status == HAL_OK) { for (int i = 0; i < 3; i++) { arrayOutput[i] = answer[i + 2]; // first not, return of 0xFF not } return 1; } else return 0; } // SPI5 init function void MX_SPI1_Init(void) { hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_SLAVE; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.DataSize = SPI_DATASIZE_8BIT; hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; hspi1.Init.NSS = SPI_NSS_HARD_INPUT; //SPI_NSS_SOFT; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128; hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi1.Init.TIMode = SPI_TIMODE_DISABLED; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLED; //_DISABLED; _ENABLED; hspi1.Init.CRCPolynomial = 7; HAL_SPI_Init(&hspi1); } void MX_SPI_DeInit(void) { HAL_SPI_DeInit(&hspi1); } void HAL_SPI_MspInit(SPI_HandleTypeDef* hspi) { GPIO_InitTypeDef GPIO_InitStruct; if (hspi->Instance == SPI1) { SPIDataRX = 0; // Peripheral clock enable __SPI1_CLK_ENABLE(); __GPIOA_CLK_ENABLE(); //SPI1 GPIO Configuration //PA4 ------> SPI1_CS //PA5 ------> SPI1_SCK //PA6 ------> SPI1_MISO //PA7 ------> SPI1_MOSI GPIO_InitStruct.Pin = GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7; // GPIO_InitStruct.Pin = GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FAST; /* Decision is based on errata which recommends FAST for GPIO at 90Mhz */ GPIO_InitStruct.Alternate = GPIO_AF5_SPI1; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); //##-3- Configure the DMA streams ########################################## // Configure the DMA handler for Transmission process hdma_tx.Instance = DMA2_Stream3; hdma_tx.Init.Channel = DMA_CHANNEL_3; hdma_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_tx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_tx.Init.MemInc = DMA_MINC_ENABLE; hdma_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_tx.Init.Mode = DMA_NORMAL; hdma_tx.Init.Priority = DMA_PRIORITY_VERY_HIGH; hdma_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE; hdma_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; hdma_tx.Init.MemBurst = DMA_MBURST_INC4; hdma_tx.Init.PeriphBurst = DMA_PBURST_INC4; HAL_DMA_Init(&hdma_tx); // Associate the initialized DMA handle to the the SPI handle __HAL_LINKDMA(hspi, hdmatx, hdma_tx); // Configure the DMA handler for Transmission process hdma_rx.Instance = DMA2_Stream0; hdma_rx.Init.Channel = DMA_CHANNEL_3; hdma_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_rx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_rx.Init.MemInc = DMA_MINC_ENABLE; hdma_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_rx.Init.Mode = DMA_NORMAL; hdma_rx.Init.Priority = DMA_PRIORITY_HIGH; hdma_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE; hdma_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; hdma_rx.Init.MemBurst = DMA_MBURST_INC4; hdma_rx.Init.PeriphBurst = DMA_PBURST_INC4; HAL_DMA_Init(&hdma_rx); // Associate the initialized DMA handle to the the SPI handle __HAL_LINKDMA(hspi, hdmarx, hdma_rx); //##-4- Configure the NVIC for DMA ######################################### //NVIC configuration for DMA transfer complete interrupt (SPI3_RX) HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 1, 0); HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn); // NVIC configuration for DMA transfer complete interrupt (SPI1_TX) HAL_NVIC_SetPriority(DMA2_Stream3_IRQn, 1, 1); HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn); } else if (hspi->Instance == SPI3) { __GPIOC_CLK_ENABLE(); __SPI3_CLK_ENABLE(); //SPI1 GPIO Configuration //PC10 ------> SPI3_SCK //PC11 ------> SPI3_MISO //PC12 ------> SPI3_MOSI //PA15 ------> SPI3_NSS (official) //PC9 ------> SPI3_NSS (hw) GPIO_InitStruct.Pin = GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FAST; GPIO_InitStruct.Alternate = GPIO_AF6_SPI3; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_9; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); HAL_GPIO_WritePin(GPIOC, GPIO_PIN_9, GPIO_PIN_SET); } } void HAL_SPI_MspDeInit(SPI_HandleTypeDef* hspi) { if (hspi->Instance == SPI1) { __SPI1_FORCE_RESET(); __SPI1_RELEASE_RESET(); //SPI1 GPIO Configuration //PA5 ------> SPI1_SCK //PA6 ------> SPI1_MISO //PA7 ------> SPI1_MOSI HAL_GPIO_DeInit(GPIOA, GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7); HAL_DMA_DeInit(&hdma_tx); HAL_DMA_DeInit(&hdma_rx); HAL_NVIC_DisableIRQ(DMA2_Stream3_IRQn); HAL_NVIC_DisableIRQ(DMA2_Stream0_IRQn); } else if (hspi->Instance == SPI3) { __SPI3_FORCE_RESET(); __SPI3_RELEASE_RESET(); //SPI1 GPIO Configuration //PC10 ------> SPI3_SCK //PC11 ------> SPI3_MISO //PC12 ------> SPI3_MOSI //PA15 ------> SPI3_NSS (official) //PC9 ------> SPI3_NSS (hw) HAL_GPIO_DeInit(GPIOC, GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12); } } void SPI_synchronize_with_Master(void) { #ifdef USE_OLD_SYNC_METHOD GPIO_InitTypeDef GPIO_InitStruct; // __GPIOA_CLK_ENABLE(); /**SPI1 GPIO Configuration PA5 ------> SPI1_SCK */ GPIO_InitStruct.Pin = GPIO_PIN_4 | GPIO_PIN_5; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FAST; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); // HAL_Delay(10); while (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_4) == 0); HAL_Delay(10); while (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_5) == 1); HAL_Delay(50); #endif } void SPI_Start_single_TxRx_with_Master(void) { uint8_t * pOutput; HAL_StatusTypeDef retval; if (global.dataSendToSlave.getDeviceDataNow) { global.dataSendToSlave.getDeviceDataNow = 0; pOutput = (uint8_t*) &(global.deviceDataSendToMaster); } else { pOutput = (uint8_t*) &(global.dataSendToMaster); } retval = HAL_SPI_TransmitReceive_DMA(&hspi1, pOutput,(uint8_t*) &(global.dataSendToSlave), EXCHANGE_BUFFERSIZE); if ( retval!= HAL_OK) { SPI_Error_Handler(); } } void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi) { /* restart SPI */ if (hspi == &hspi1) { HardSyncToSPI(); SPIDataRX = 1; global.check_sync_not_running = 0; /* stop data exchange? */ if (global.mode == MODE_SHUTDOWN) { global.mode = MODE_SLEEP; global.dataSendToSlavePending = 0; global.dataSendToSlaveIsValid = 1; global.dataSendToSlaveIsNotValidCount = 0; } } } void SPI_Evaluate_RX_Data() { if ((global.mode != MODE_SHUTDOWN) && ( global.mode != MODE_SLEEP) && (SPIDataRX)) { SPIDataRX = 0; /* data consistent? */ if (SPI_check_header_and_footer_ok()) { // GPIO_new_DEBUG_HIGH(); //For debug. global.dataSendToSlaveIsValid = 1; global.dataSendToSlaveIsNotValidCount = 0; /* use sequence index from master to indicate correct reception */ if(global.dataSendToSlave.header.checkCode[SPI_HEADER_INDEX_SLAVE] > 0x7F) { HAL_SPI_Abort_IT(&hspi1); global.dataSendToMaster.header.checkCode[SPI_HEADER_INDEX_SLAVE] = global.dataSendToSlave.header.checkCode[SPI_HEADER_INDEX_MASTER]; global.dataSendToSlave.header.checkCode[SPI_HEADER_INDEX_SLAVE] = 0; } else { global.dataSendToMaster.header.checkCode[SPI_HEADER_INDEX_SLAVE] = global.dataSendToSlave.header.checkCode[SPI_HEADER_INDEX_MASTER]; } } else { // GPIO_new_DEBUG_LOW(); //For debug. global.dataSendToSlaveIsValid = 0; global.dataSendToSlaveIsNotValidCount++; if(DataEX_check_header_and_footer_shifted()) { if (global.dataSendToSlaveIsNotValidCount == 1) { HAL_SPI_Abort_IT(&hspi1); /* reset DMA only once */ } } } global.dataSendToMaster.power_on_reset = 0; global.deviceDataSendToMaster.power_on_reset = 0; //TODO:REMOVE // if ( !global.dataSendToSlaveStopEval ) { // scheduleSpecial_Evaluate_DataSendToSlave(); // } scheduleSpecial_Evaluate_DataSendToSlave(); SPI_Start_single_TxRx_with_Master(); //Send data always. } } static uint8_t SPI_check_header_and_footer_ok(void) { if (global.dataSendToSlave.header.checkCode[0] != 0xBB) return 0; #ifdef USE_OLD_HEADER_FORMAT if (global.dataSendToSlave.header.checkCode[1] != 0x01) return 0; if (global.dataSendToSlave.header.checkCode[2] != 0x01) return 0; #endif if (global.dataSendToSlave.header.checkCode[3] != 0xBB) return 0; if (global.dataSendToSlave.footer.checkCode[0] != 0xF4) return 0; if (global.dataSendToSlave.footer.checkCode[1] != 0xF3) return 0; if (global.dataSendToSlave.footer.checkCode[2] != 0xF2) return 0; if (global.dataSendToSlave.footer.checkCode[3] != 0xF1) return 0; return 1; } /* Check if there is an empty frame providec by RTE (all 0) or even no data provided by RTE (all 0xFF) * If that is not the case the DMA is somehow not in sync */ uint8_t DataEX_check_header_and_footer_shifted() { uint8_t ret = 1; if((global.dataSendToSlave.footer.checkCode[0] == 0x00) && (global.dataSendToSlave.footer.checkCode[1] == 0x00) && (global.dataSendToSlave.footer.checkCode[2] == 0x00) && (global.dataSendToSlave.footer.checkCode[3] == 0x00)) { ret = 0; } if((global.dataSendToSlave.footer.checkCode[0] == 0xff) && (global.dataSendToSlave.footer.checkCode[1] == 0xff) && (global.dataSendToSlave.footer.checkCode[2] == 0xff) && (global.dataSendToSlave.footer.checkCode[3] == 0xff)) { ret = 0; } return ret; } static void SPI_Error_Handler(void) { //The device is locks. Hard to recover. // while(1) // { // } } /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/