Mercurial > public > ostc4
view Small_CPU/Src/rtc.c @ 250:822416168585 bm-2
Buelmann: new implementation for ceiling
Since my first functional fix in the ceiling computation in
commit ceecabfddb57, I noticed that the computation used a
linear search, that became rather computational expensive after
that commit. The simple question is: why not a binary search?
So, this commit implements the binary search. But there is a long
story attached to this. Comparing ceiling results from hwOS and this
OSTC4 code were very different. Basically, the original OSTC4
algorithm computed the ceiling using the same GFlow to GFhigh
slope, in such a way, that the ceiling was in sync with the
presented deco stops, where the hwOS code presents a GFhigh
based ceiling.
This said, it is more logical when the OSTC4 and hwOS code give
similar results. This new recursive algorithm gives very similar
results for the ceiling compared to hwOS.
To be complete here, the Buelmann ceiling is the depth to which
you can ascend, so that the leading tissue reaches GFhigh. This
also explains why the deepest deco stop is normally deeper than
the ceiling (unless one dives with GF like 80/80).
The code implemented here is rather straightforward recursion.
Signed-off-by: Jan Mulder <jlmulder@xs4all.nl>
author | Jan Mulder <jlmulder@xs4all.nl> |
---|---|
date | Thu, 11 Apr 2019 17:48:48 +0200 |
parents | f0069f002c55 |
children |
line wrap: on
line source
/** ****************************************************************************** * @file rtc.c * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 10-Oct-2014 * @brief Source code for rtc control * @verbatim ============================================================================== ##### How to use ##### ============================================================================== @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2015 heinrichs weikamp</center></h2> * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "rtc.h" #include "stm32f4xx_hal.h" #include "stm32f4xx_hal_conf.h" #include "baseCPU2.h" RTC_HandleTypeDef RTCHandle; static void RTC_Error_Handler(void); void RTC_SetTime(RTC_TimeTypeDef stimestructure) { stimestructure.SubSeconds = 0; stimestructure.TimeFormat = RTC_HOURFORMAT_24; stimestructure.DayLightSaving = RTC_DAYLIGHTSAVING_NONE ; stimestructure.StoreOperation = RTC_STOREOPERATION_RESET; if(HAL_RTC_SetTime(&RTCHandle, &stimestructure, FORMAT_BIN) != HAL_OK) { RTC_Error_Handler(); } } void RTC_SetDate(RTC_DateTypeDef sdatestructure) { if(HAL_RTC_SetDate(&RTCHandle, &sdatestructure, FORMAT_BIN) != HAL_OK) { RTC_Error_Handler(); } } /* static void RTC_CalendarConfig(void) { RTC_DateTypeDef sdatestructure; RTC_TimeTypeDef stimestructure; //##-1- Configure the Date ################################################# // Set Date: Monday April 14th 2014 sdatestructure.Year = 0; sdatestructure.Month = RTC_MONTH_JANUARY; sdatestructure.Date = 1; sdatestructure.WeekDay = RTC_WEEKDAY_MONDAY; if(HAL_RTC_SetDate(&RTCHandle,&sdatestructure,FORMAT_BCD) != HAL_OK) { RTC_Error_Handler(); } //##-2- Configure the Time ################################################# // Set Time: 02:00:00 stimestructure.Hours = 0; stimestructure.Minutes = 0; stimestructure.Seconds = 0; stimestructure.DayLightSaving = RTC_DAYLIGHTSAVING_NONE ; stimestructure.StoreOperation = RTC_STOREOPERATION_RESET; if(HAL_RTC_SetTime(&RTCHandle,&stimestructure,FORMAT_BCD) != HAL_OK) { RTC_Error_Handler(); } //##-3- Writes a data in a RTC Backup data Register0 ####################### // HAL_RTCEx_BKUPWrite(&RTCHandle,RTC_BKP_DR0,0x32F2); } */ /* ##-1- Configure the RTC peripheral ####################################### Configure RTC prescaler and RTC data registers RTC configured as follow: - Hour Format = Format 24 - Asynch Prediv = Value according to source clock - Synch Prediv = Value according to source clock - OutPut = Output Disable - OutPutPolarity = High Polarity - OutPutType = Open Drain */ void MX_RTC_init(void) { /* Initialize RTC */ RTCHandle.Instance = RTC; RTCHandle.Init.HourFormat = RTC_HOURFORMAT_24; RTCHandle.Init.AsynchPrediv = 127; RTCHandle.Init.SynchPrediv = 255; RTCHandle.Init.OutPut = RTC_OUTPUT_DISABLE; RTCHandle.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; RTCHandle.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN; HAL_RTC_Init(&RTCHandle); } void RTC_StopMode_2seconds(void) { /* Enable Power Control clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* Disable Wake-up timer */ HAL_RTCEx_DeactivateWakeUpTimer(&RTCHandle); /* Enable Wake-up timer */ HAL_RTCEx_SetWakeUpTimer_IT(&RTCHandle, (0x1000-1), RTC_WAKEUPCLOCK_RTCCLK_DIV16); /* FLASH Deep Power Down Mode enabled */ HAL_PWREx_EnableFlashPowerDown(); /*## Enter Stop Mode #######################################################*/ HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI); /* Configures system clock after wake-up from STOP: enable HSI, PLL and select PLL as system clock source (HSI and PLL are disabled in STOP mode) */ SYSCLKConfig_STOP(); HAL_RTCEx_DeactivateWakeUpTimer(&RTCHandle); } void RTC_Stop_11ms(void) { /* Disable Wake-up timer */ HAL_RTCEx_DeactivateWakeUpTimer(&RTCHandle); /* Enable Wake-up timer */ HAL_RTCEx_SetWakeUpTimer_IT(&RTCHandle, (0x18-1), RTC_WAKEUPCLOCK_RTCCLK_DIV16); /* FLASH Deep Power Down Mode enabled */ HAL_PWREx_DisableFlashPowerDown(); /*## Enter Stop Mode #######################################################*/ HAL_PWR_EnterSTOPMode(PWR_MAINREGULATOR_ON, PWR_STOPENTRY_WFI); /* Configures system clock after wake-up from STOP: enable HSI, PLL and select PLL as system clock source (HSI and PLL are disabled in STOP mode) */ SYSCLKConfig_STOP(); HAL_RTCEx_DeactivateWakeUpTimer(&RTCHandle); } static void RTC_Error_Handler(void) { while(1); } /************************ (C) COPYRIGHT heinrichs weikamp *****END OF FILE****/