Mercurial > public > ostc4
view OtherSources/data_central_mini.c @ 681:7fa5ef6ae419 Betatest
Bugfix screen clipping (Flipdisplay mode):
part of characters may be truncated in case they do not fit on the screen. The truncation was not working for flip mode causing some black areas e.g. in the simulator menu. The code does now consider the inversed boundaries of the screen in case flip mode is active.
author | Ideenmodellierer |
---|---|
date | Mon, 25 Apr 2022 21:10:10 +0200 |
parents | 7801c5d8a562 |
children |
line wrap: on
line source
/** ****************************************************************************** * @copyright heinrichs weikamp * @file data_central_mini.c - bootloader only - * @author heinrichs weikamp gmbh * @date 10-November-2014 * @version V1.0.3 * @since 10-Nov-2014 * @brief * @bug * @warning @verbatim @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2015 heinrichs weikamp</center></h2> * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include <string.h> #include "data_central.h" #include "stm32f4xx_hal.h" #include "crcmodel.h" void translateDate(uint32_t datetmpreg, RTC_DateTypeDef *sDate) { datetmpreg = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK); /* Fill the structure fields with the read parameters */ sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> 16); sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> 8); sDate->Date = (uint8_t)(datetmpreg & (RTC_DR_DT | RTC_DR_DU)); sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> 13); /* Convert the date structure parameters to Binary format */ sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year); sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month); sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date); } void translateTime(uint32_t tmpreg, RTC_TimeTypeDef *sTime) { tmpreg = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK); /* Fill the structure fields with the read parameters */ sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> 16); sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >>8); sTime->Seconds = (uint8_t)(tmpreg & (RTC_TR_ST | RTC_TR_SU)); sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> 16); /* Convert the time structure parameters to Binary format */ sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours); sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes); sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds); sTime->SubSeconds = 0; } /* This is derived from crc32b but does table lookup. First the table itself is calculated, if it has not yet been set up. Not counting the table setup (which would probably be a separate function), when compiled to Cyclops with GCC, this function executes in 7 + 13n instructions, where n is the number of bytes in the input message. It should be doable in 4 + 9n instructions. In any case, two of the 13 or 9 instrucions are load byte. This is Figure 14-7 in the text. */ /* http://www.hackersdelight.org/ i guess ;-) *hw */ uint32_t crc32c_checksum(uint8_t* message, uint16_t length, uint8_t* message2, uint16_t length2) { int i, j; uint32_t byte, crc, mask; static unsigned int table[256] = {0}; /* Set up the table, if necessary. */ if (table[1] == 0) { for (byte = 0; byte <= 255; byte++) { crc = byte; for (j = 7; j >= 0; j--) { // Do eight times. mask = -(crc & 1); crc = (crc >> 1) ^ (0xEDB88320 & mask); } table[byte] = crc; } } /* Through with table setup, now calculate the CRC. */ i = 0; crc = 0xFFFFFFFF; while (length--) { byte = message[i]; crc = (crc >> 8) ^ table[(crc ^ byte) & 0xFF]; i = i + 1; } if(length2) { i = 0; while (length2--) { byte = message2[i]; crc = (crc >> 8) ^ table[(crc ^ byte) & 0xFF]; i = i + 1; } } return ~crc; } uint32_t CRC_CalcBlockCRC_moreThan768000(uint32_t *buffer1, uint32_t *buffer2, uint32_t words) { cm_t crc_model; uint32_t word_to_do; uint8_t byte_to_do; int i; // Values for the STM32F generator. crc_model.cm_width = 32; // 32-bit CRC crc_model.cm_poly = 0x04C11DB7; // CRC-32 polynomial crc_model.cm_init = 0xFFFFFFFF; // CRC initialized to 1's crc_model.cm_refin = FALSE; // CRC calculated MSB first crc_model.cm_refot = FALSE; // Final result is not bit-reversed crc_model.cm_xorot = 0x00000000; // Final result XOR'ed with this cm_ini(&crc_model); while (words--) { // The STM32F10x hardware does 32-bit words at a time!!! if(words > (768000/4)) word_to_do = *buffer2++; else word_to_do = *buffer1++; // Do all bytes in the 32-bit word. for (i = 0; i < sizeof(word_to_do); i++) { // We calculate a *byte* at a time. If the CRC is MSB first we // do the next MS byte and vica-versa. if (crc_model.cm_refin == FALSE) { // MSB first. Do the next MS byte. byte_to_do = (uint8_t) ((word_to_do & 0xFF000000) >> 24); word_to_do <<= 8; } else { // LSB first. Do the next LS byte. byte_to_do = (uint8_t) (word_to_do & 0x000000FF); word_to_do >>= 8; } cm_nxt(&crc_model, byte_to_do); } } // Return the final result. return (cm_crc(&crc_model)); } uint32_t CRC_CalcBlockCRC(uint32_t *buffer, uint32_t words) { cm_t crc_model; uint32_t word_to_do; uint8_t byte_to_do; int i; // Values for the STM32F generator. crc_model.cm_width = 32; // 32-bit CRC crc_model.cm_poly = 0x04C11DB7; // CRC-32 polynomial crc_model.cm_init = 0xFFFFFFFF; // CRC initialized to 1's crc_model.cm_refin = FALSE; // CRC calculated MSB first crc_model.cm_refot = FALSE; // Final result is not bit-reversed crc_model.cm_xorot = 0x00000000; // Final result XOR'ed with this cm_ini(&crc_model); while (words--) { // The STM32F10x hardware does 32-bit words at a time!!! word_to_do = *buffer++; // Do all bytes in the 32-bit word. for (i = 0; i < sizeof(word_to_do); i++) { // We calculate a *byte* at a time. If the CRC is MSB first we // do the next MS byte and vica-versa. if (crc_model.cm_refin == FALSE) { // MSB first. Do the next MS byte. byte_to_do = (uint8_t) ((word_to_do & 0xFF000000) >> 24); word_to_do <<= 8; } else { // LSB first. Do the next LS byte. byte_to_do = (uint8_t) (word_to_do & 0x000000FF); word_to_do >>= 8; } cm_nxt(&crc_model, byte_to_do); } } // Return the final result. return (cm_crc(&crc_model)); }