Mercurial > public > ostc4
view OtherSources/data_central_mini.c @ 634:7c73f066cd16
Enable sensor check for Analog PPO2 mode:
Checks which may trigger a fallback warning were not activated in previous versions. Beside enabling the checks the test logic has been changed. Before the change an avarage was build automatically using the remaining both sensors if one sensor failed. The scenario that also one of the remaining sensors may be out of bounds was not covered. The new implementation allows an out of bounds detection for all sensors in parallel. In that special case the last valid value will be used until the diver takes action (Fallback warning)
author | Ideenmodellierer |
---|---|
date | Wed, 24 Feb 2021 19:18:26 +0100 |
parents | 7801c5d8a562 |
children |
line wrap: on
line source
/** ****************************************************************************** * @copyright heinrichs weikamp * @file data_central_mini.c - bootloader only - * @author heinrichs weikamp gmbh * @date 10-November-2014 * @version V1.0.3 * @since 10-Nov-2014 * @brief * @bug * @warning @verbatim @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2015 heinrichs weikamp</center></h2> * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include <string.h> #include "data_central.h" #include "stm32f4xx_hal.h" #include "crcmodel.h" void translateDate(uint32_t datetmpreg, RTC_DateTypeDef *sDate) { datetmpreg = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK); /* Fill the structure fields with the read parameters */ sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> 16); sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> 8); sDate->Date = (uint8_t)(datetmpreg & (RTC_DR_DT | RTC_DR_DU)); sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> 13); /* Convert the date structure parameters to Binary format */ sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year); sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month); sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date); } void translateTime(uint32_t tmpreg, RTC_TimeTypeDef *sTime) { tmpreg = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK); /* Fill the structure fields with the read parameters */ sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> 16); sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >>8); sTime->Seconds = (uint8_t)(tmpreg & (RTC_TR_ST | RTC_TR_SU)); sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> 16); /* Convert the time structure parameters to Binary format */ sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours); sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes); sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds); sTime->SubSeconds = 0; } /* This is derived from crc32b but does table lookup. First the table itself is calculated, if it has not yet been set up. Not counting the table setup (which would probably be a separate function), when compiled to Cyclops with GCC, this function executes in 7 + 13n instructions, where n is the number of bytes in the input message. It should be doable in 4 + 9n instructions. In any case, two of the 13 or 9 instrucions are load byte. This is Figure 14-7 in the text. */ /* http://www.hackersdelight.org/ i guess ;-) *hw */ uint32_t crc32c_checksum(uint8_t* message, uint16_t length, uint8_t* message2, uint16_t length2) { int i, j; uint32_t byte, crc, mask; static unsigned int table[256] = {0}; /* Set up the table, if necessary. */ if (table[1] == 0) { for (byte = 0; byte <= 255; byte++) { crc = byte; for (j = 7; j >= 0; j--) { // Do eight times. mask = -(crc & 1); crc = (crc >> 1) ^ (0xEDB88320 & mask); } table[byte] = crc; } } /* Through with table setup, now calculate the CRC. */ i = 0; crc = 0xFFFFFFFF; while (length--) { byte = message[i]; crc = (crc >> 8) ^ table[(crc ^ byte) & 0xFF]; i = i + 1; } if(length2) { i = 0; while (length2--) { byte = message2[i]; crc = (crc >> 8) ^ table[(crc ^ byte) & 0xFF]; i = i + 1; } } return ~crc; } uint32_t CRC_CalcBlockCRC_moreThan768000(uint32_t *buffer1, uint32_t *buffer2, uint32_t words) { cm_t crc_model; uint32_t word_to_do; uint8_t byte_to_do; int i; // Values for the STM32F generator. crc_model.cm_width = 32; // 32-bit CRC crc_model.cm_poly = 0x04C11DB7; // CRC-32 polynomial crc_model.cm_init = 0xFFFFFFFF; // CRC initialized to 1's crc_model.cm_refin = FALSE; // CRC calculated MSB first crc_model.cm_refot = FALSE; // Final result is not bit-reversed crc_model.cm_xorot = 0x00000000; // Final result XOR'ed with this cm_ini(&crc_model); while (words--) { // The STM32F10x hardware does 32-bit words at a time!!! if(words > (768000/4)) word_to_do = *buffer2++; else word_to_do = *buffer1++; // Do all bytes in the 32-bit word. for (i = 0; i < sizeof(word_to_do); i++) { // We calculate a *byte* at a time. If the CRC is MSB first we // do the next MS byte and vica-versa. if (crc_model.cm_refin == FALSE) { // MSB first. Do the next MS byte. byte_to_do = (uint8_t) ((word_to_do & 0xFF000000) >> 24); word_to_do <<= 8; } else { // LSB first. Do the next LS byte. byte_to_do = (uint8_t) (word_to_do & 0x000000FF); word_to_do >>= 8; } cm_nxt(&crc_model, byte_to_do); } } // Return the final result. return (cm_crc(&crc_model)); } uint32_t CRC_CalcBlockCRC(uint32_t *buffer, uint32_t words) { cm_t crc_model; uint32_t word_to_do; uint8_t byte_to_do; int i; // Values for the STM32F generator. crc_model.cm_width = 32; // 32-bit CRC crc_model.cm_poly = 0x04C11DB7; // CRC-32 polynomial crc_model.cm_init = 0xFFFFFFFF; // CRC initialized to 1's crc_model.cm_refin = FALSE; // CRC calculated MSB first crc_model.cm_refot = FALSE; // Final result is not bit-reversed crc_model.cm_xorot = 0x00000000; // Final result XOR'ed with this cm_ini(&crc_model); while (words--) { // The STM32F10x hardware does 32-bit words at a time!!! word_to_do = *buffer++; // Do all bytes in the 32-bit word. for (i = 0; i < sizeof(word_to_do); i++) { // We calculate a *byte* at a time. If the CRC is MSB first we // do the next MS byte and vica-versa. if (crc_model.cm_refin == FALSE) { // MSB first. Do the next MS byte. byte_to_do = (uint8_t) ((word_to_do & 0xFF000000) >> 24); word_to_do <<= 8; } else { // LSB first. Do the next LS byte. byte_to_do = (uint8_t) (word_to_do & 0x000000FF); word_to_do >>= 8; } cm_nxt(&crc_model, byte_to_do); } } // Return the final result. return (cm_crc(&crc_model)); }