Mercurial > public > ostc4
view Common/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_nand.c @ 373:7b981f8bdd41 MotionDetection
Add scroll event by pitch angle detection:
Add a function to scroll through the custom view in case the computer is not in the typical center position
Refine Pitch Detection:
Changed implementation to use sectors for detection. Increased detection window
author | ideenmodellierer |
---|---|
date | Sun, 08 Sep 2019 13:45:17 +0200 |
parents | c78bcbd5deda |
children |
line wrap: on
line source
/** ****************************************************************************** * @file stm32f4xx_hal_nand.c * @author MCD Application Team * @brief NAND HAL module driver. * This file provides a generic firmware to drive NAND memories mounted * as external device. * @verbatim ============================================================================== ##### How to use this driver ##### ============================================================================== [..] This driver is a generic layered driver which contains a set of APIs used to control NAND flash memories. It uses the FMC/FSMC layer functions to interface with NAND devices. This driver is used as follows: (+) NAND flash memory configuration sequence using the function HAL_NAND_Init() with control and timing parameters for both common and attribute spaces. (+) Read NAND flash memory maker and device IDs using the function HAL_NAND_Read_ID(). The read information is stored in the NAND_ID_TypeDef structure declared by the function caller. (+) Access NAND flash memory by read/write operations using the functions HAL_NAND_Read_Page_8b()/HAL_NAND_Read_SpareArea_8b(), HAL_NAND_Write_Page_8b()/HAL_NAND_Write_SpareArea_8b(), HAL_NAND_Read_Page_16b()/HAL_NAND_Read_SpareArea_16b(), HAL_NAND_Write_Page_16b()/HAL_NAND_Write_SpareArea_16b() to read/write page(s)/spare area(s). These functions use specific device information (Block, page size..) predefined by the user in the HAL_NAND_Info_TypeDef structure. The read/write address information is contained by the Nand_Address_Typedef structure passed as parameter. (+) Perform NAND flash Reset chip operation using the function HAL_NAND_Reset(). (+) Perform NAND flash erase block operation using the function HAL_NAND_Erase_Block(). The erase block address information is contained in the Nand_Address_Typedef structure passed as parameter. (+) Read the NAND flash status operation using the function HAL_NAND_Read_Status(). (+) You can also control the NAND device by calling the control APIs HAL_NAND_ECC_Enable()/ HAL_NAND_ECC_Disable() to respectively enable/disable the ECC code correction feature or the function HAL_NAND_GetECC() to get the ECC correction code. (+) You can monitor the NAND device HAL state by calling the function HAL_NAND_GetState() [..] (@) This driver is a set of generic APIs which handle standard NAND flash operations. If a NAND flash device contains different operations and/or implementations, it should be implemented separately. @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f4xx_hal.h" /** @addtogroup STM32F4xx_HAL_Driver * @{ */ #ifdef HAL_NAND_MODULE_ENABLED #if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\ defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\ defined(STM32F446xx) || defined(STM32F469xx) || defined(STM32F479xx) /** @defgroup NAND NAND * @brief NAND HAL module driver * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /** @defgroup NAND_Private_Constants NAND Private Constants * @{ */ /** * @} */ /* Private macro -------------------------------------------------------------*/ /** @defgroup NAND_Private_Macros NAND Private Macros * @{ */ /** * @} */ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Exported functions --------------------------------------------------------*/ /** @defgroup NAND_Exported_Functions NAND Exported Functions * @{ */ /** @defgroup NAND_Exported_Functions_Group1 Initialization and de-initialization functions * @brief Initialization and Configuration functions * @verbatim ============================================================================== ##### NAND Initialization and de-initialization functions ##### ============================================================================== [..] This section provides functions allowing to initialize/de-initialize the NAND memory @endverbatim * @{ */ /** * @brief Perform NAND memory Initialization sequence * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @param ComSpace_Timing pointer to Common space timing structure * @param AttSpace_Timing pointer to Attribute space timing structure * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_Init(NAND_HandleTypeDef *hnand, FMC_NAND_PCC_TimingTypeDef *ComSpace_Timing, FMC_NAND_PCC_TimingTypeDef *AttSpace_Timing) { /* Check the NAND handle state */ if(hnand == NULL) { return HAL_ERROR; } if(hnand->State == HAL_NAND_STATE_RESET) { /* Allocate lock resource and initialize it */ hnand->Lock = HAL_UNLOCKED; /* Initialize the low level hardware (MSP) */ HAL_NAND_MspInit(hnand); } /* Initialize NAND control Interface */ FMC_NAND_Init(hnand->Instance, &(hnand->Init)); /* Initialize NAND common space timing Interface */ FMC_NAND_CommonSpace_Timing_Init(hnand->Instance, ComSpace_Timing, hnand->Init.NandBank); /* Initialize NAND attribute space timing Interface */ FMC_NAND_AttributeSpace_Timing_Init(hnand->Instance, AttSpace_Timing, hnand->Init.NandBank); /* Enable the NAND device */ __FMC_NAND_ENABLE(hnand->Instance, hnand->Init.NandBank); /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_READY; return HAL_OK; } /** * @brief Perform NAND memory De-Initialization sequence * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_DeInit(NAND_HandleTypeDef *hnand) { /* Initialize the low level hardware (MSP) */ HAL_NAND_MspDeInit(hnand); /* Configure the NAND registers with their reset values */ FMC_NAND_DeInit(hnand->Instance, hnand->Init.NandBank); /* Reset the NAND controller state */ hnand->State = HAL_NAND_STATE_RESET; /* Release Lock */ __HAL_UNLOCK(hnand); return HAL_OK; } /** * @brief NAND MSP Init * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @retval None */ __weak void HAL_NAND_MspInit(NAND_HandleTypeDef *hnand) { /* Prevent unused argument(s) compilation warning */ UNUSED(hnand); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_NAND_MspInit could be implemented in the user file */ } /** * @brief NAND MSP DeInit * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @retval None */ __weak void HAL_NAND_MspDeInit(NAND_HandleTypeDef *hnand) { /* Prevent unused argument(s) compilation warning */ UNUSED(hnand); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_NAND_MspDeInit could be implemented in the user file */ } /** * @brief This function handles NAND device interrupt request. * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @retval HAL status */ void HAL_NAND_IRQHandler(NAND_HandleTypeDef *hnand) { /* Check NAND interrupt Rising edge flag */ if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_RISING_EDGE)) { /* NAND interrupt callback*/ HAL_NAND_ITCallback(hnand); /* Clear NAND interrupt Rising edge pending bit */ __FMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_RISING_EDGE); } /* Check NAND interrupt Level flag */ if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_LEVEL)) { /* NAND interrupt callback*/ HAL_NAND_ITCallback(hnand); /* Clear NAND interrupt Level pending bit */ __FMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_LEVEL); } /* Check NAND interrupt Falling edge flag */ if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FALLING_EDGE)) { /* NAND interrupt callback*/ HAL_NAND_ITCallback(hnand); /* Clear NAND interrupt Falling edge pending bit */ __FMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FALLING_EDGE); } /* Check NAND interrupt FIFO empty flag */ if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FEMPT)) { /* NAND interrupt callback*/ HAL_NAND_ITCallback(hnand); /* Clear NAND interrupt FIFO empty pending bit */ __FMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FEMPT); } } /** * @brief NAND interrupt feature callback * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @retval None */ __weak void HAL_NAND_ITCallback(NAND_HandleTypeDef *hnand) { /* Prevent unused argument(s) compilation warning */ UNUSED(hnand); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_NAND_ITCallback could be implemented in the user file */ } /** * @} */ /** @defgroup NAND_Exported_Functions_Group2 Input and Output functions * @brief Input Output and memory control functions * @verbatim ============================================================================== ##### NAND Input and Output functions ##### ============================================================================== [..] This section provides functions allowing to use and control the NAND memory @endverbatim * @{ */ /** * @brief Read the NAND memory electronic signature * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @param pNAND_ID NAND ID structure * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_Read_ID(NAND_HandleTypeDef *hnand, NAND_IDTypeDef *pNAND_ID) { __IO uint32_t data = 0U; __IO uint32_t data1 = 0U; uint32_t deviceaddress = 0U; /* Process Locked */ __HAL_LOCK(hnand); /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Identify the device address */ if(hnand->Init.NandBank == FMC_NAND_BANK2) { deviceaddress = NAND_DEVICE1; } else { deviceaddress = NAND_DEVICE2; } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_BUSY; /* Send Read ID command sequence */ *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_READID; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; /* Read the electronic signature from NAND flash */ #ifdef FSMC_PCR2_PWID if (hnand->Init.MemoryDataWidth == FSMC_NAND_PCC_MEM_BUS_WIDTH_8) #else /* FMC_PCR2_PWID is defined */ if (hnand->Init.MemoryDataWidth == FMC_NAND_PCC_MEM_BUS_WIDTH_8) #endif { data = *(__IO uint32_t *)deviceaddress; /* Return the data read */ pNAND_ID->Maker_Id = ADDR_1ST_CYCLE(data); pNAND_ID->Device_Id = ADDR_2ND_CYCLE(data); pNAND_ID->Third_Id = ADDR_3RD_CYCLE(data); pNAND_ID->Fourth_Id = ADDR_4TH_CYCLE(data); } else { data = *(__IO uint32_t *)deviceaddress; data1 = *((__IO uint32_t *)deviceaddress + 4U); /* Return the data read */ pNAND_ID->Maker_Id = ADDR_1ST_CYCLE(data); pNAND_ID->Device_Id = ADDR_3RD_CYCLE(data); pNAND_ID->Third_Id = ADDR_1ST_CYCLE(data1); pNAND_ID->Fourth_Id = ADDR_3RD_CYCLE(data1); } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hnand); return HAL_OK; } /** * @brief NAND memory reset * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_Reset(NAND_HandleTypeDef *hnand) { uint32_t deviceaddress = 0U; /* Process Locked */ __HAL_LOCK(hnand); /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Identify the device address */ if(hnand->Init.NandBank == FMC_NAND_BANK2) { deviceaddress = NAND_DEVICE1; } else { deviceaddress = NAND_DEVICE2; } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_BUSY; /* Send NAND reset command */ *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = 0xFF; /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hnand); return HAL_OK; } /** * @brief Configure the device: Enter the physical parameters of the device * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @param pDeviceConfig pointer to NAND_DeviceConfigTypeDef structure * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_ConfigDevice(NAND_HandleTypeDef *hnand, NAND_DeviceConfigTypeDef *pDeviceConfig) { hnand->Config.PageSize = pDeviceConfig->PageSize; hnand->Config.SpareAreaSize = pDeviceConfig->SpareAreaSize; hnand->Config.BlockSize = pDeviceConfig->BlockSize; hnand->Config.BlockNbr = pDeviceConfig->BlockNbr; hnand->Config.PlaneSize = pDeviceConfig->PlaneSize; hnand->Config.PlaneNbr = pDeviceConfig->PlaneNbr; hnand->Config.ExtraCommandEnable = pDeviceConfig->ExtraCommandEnable; return HAL_OK; } /** * @brief Read Page(s) from NAND memory block (8-bits addressing) * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @param pAddress pointer to NAND address structure * @param pBuffer pointer to destination read buffer * @param NumPageToRead number of pages to read from block * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_Read_Page_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumPageToRead) { __IO uint32_t index = 0U; uint32_t tickstart = 0U; uint32_t deviceaddress = 0U, size = 0U, numPagesRead = 0U, nandaddress = 0U; /* Process Locked */ __HAL_LOCK(hnand); /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Identify the device address */ if(hnand->Init.NandBank == FMC_NAND_BANK2) { deviceaddress = NAND_DEVICE1; } else { deviceaddress = NAND_DEVICE2; } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_BUSY; /* NAND raw address calculation */ nandaddress = ARRAY_ADDRESS(pAddress, hnand); /* Page(s) read loop */ while((NumPageToRead != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) { /* update the buffer size */ size = (hnand->Config.PageSize) + ((hnand->Config.PageSize) * numPagesRead); /* Send read page command sequence */ *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; /* Cards with page size <= 512 bytes */ if((hnand->Config.PageSize) <= 512U) { if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U) { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); } else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); } } else /* (hnand->Config.PageSize) > 512 */ { if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U) { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); } else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); } } *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; /* Check if an extra command is needed for reading pages */ if(hnand->Config.ExtraCommandEnable == ENABLE) { /* Get tick */ tickstart = HAL_GetTick(); /* Read status until NAND is ready */ while(HAL_NAND_Read_Status(hnand) != NAND_READY) { if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT) { return HAL_TIMEOUT; } } /* Go back to read mode */ *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); __DSB(); } /* Get Data into Buffer */ for(; index < size; index++) { *(uint8_t *)pBuffer++ = *(uint8_t *)deviceaddress; } /* Increment read pages number */ numPagesRead++; /* Decrement pages to read */ NumPageToRead--; /* Increment the NAND address */ nandaddress = (uint32_t)(nandaddress + 1U); } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hnand); return HAL_OK; } /** * @brief Read Page(s) from NAND memory block (16-bits addressing) * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @param pAddress pointer to NAND address structure * @param pBuffer pointer to destination read buffer. pBuffer should be 16bits aligned * @param NumPageToRead number of pages to read from block * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_Read_Page_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, uint32_t NumPageToRead) { __IO uint32_t index = 0U; uint32_t tickstart = 0U; uint32_t deviceaddress = 0U, size = 0U, numPagesRead = 0U, nandaddress = 0U; /* Process Locked */ __HAL_LOCK(hnand); /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Identify the device address */ if(hnand->Init.NandBank == FMC_NAND_BANK2) { deviceaddress = NAND_DEVICE1; } else { deviceaddress = NAND_DEVICE2; } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_BUSY; /* NAND raw address calculation */ nandaddress = ARRAY_ADDRESS(pAddress, hnand); /* Page(s) read loop */ while((NumPageToRead != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) { /* update the buffer size */ size = (hnand->Config.PageSize) + ((hnand->Config.PageSize) * numPagesRead); /* Send read page command sequence */ *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; __DSB(); /* Cards with page size <= 512 bytes */ if((hnand->Config.PageSize) <= 512U) { if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U) { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); } else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); } } else /* (hnand->Config.PageSize) > 512 */ { if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U) { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); } else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); } } *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; if(hnand->Config.ExtraCommandEnable == ENABLE) { /* Get tick */ tickstart = HAL_GetTick(); /* Read status until NAND is ready */ while(HAL_NAND_Read_Status(hnand) != NAND_READY) { if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT) { return HAL_TIMEOUT; } } /* Go back to read mode */ *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); } /* Get Data into Buffer */ for(; index < size; index++) { *(uint16_t *)pBuffer++ = *(uint16_t *)deviceaddress; } /* Increment read pages number */ numPagesRead++; /* Decrement pages to read */ NumPageToRead--; /* Increment the NAND address */ nandaddress = (uint32_t)(nandaddress + 1U); } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hnand); return HAL_OK; } /** * @brief Write Page(s) to NAND memory block (8-bits addressing) * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @param pAddress pointer to NAND address structure * @param pBuffer pointer to source buffer to write * @param NumPageToWrite number of pages to write to block * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_Write_Page_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumPageToWrite) { __IO uint32_t index = 0U; uint32_t tickstart = 0U; uint32_t deviceaddress = 0U, size = 0U, numPagesWritten = 0U, nandaddress = 0U; /* Process Locked */ __HAL_LOCK(hnand); /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Identify the device address */ if(hnand->Init.NandBank == FMC_NAND_BANK2) { deviceaddress = NAND_DEVICE1; } else { deviceaddress = NAND_DEVICE2; } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_BUSY; /* NAND raw address calculation */ nandaddress = ARRAY_ADDRESS(pAddress, hnand); /* Page(s) write loop */ while((NumPageToWrite != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) { /* update the buffer size */ size = hnand->Config.PageSize + ((hnand->Config.PageSize) * numPagesWritten); /* Send write page command sequence */ *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; /* Cards with page size <= 512 bytes */ if((hnand->Config.PageSize) <= 512U) { if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U) { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); } else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); } } else /* (hnand->Config.PageSize) > 512 */ { if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U) { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); } else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); __DSB(); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); __DSB(); } } /* Write data to memory */ for(; index < size; index++) { *(__IO uint8_t *)deviceaddress = *(uint8_t *)pBuffer++; } *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; /* Read status until NAND is ready */ while(HAL_NAND_Read_Status(hnand) != NAND_READY) { /* Get tick */ tickstart = HAL_GetTick(); if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT) { return HAL_TIMEOUT; } } /* Increment written pages number */ numPagesWritten++; /* Decrement pages to write */ NumPageToWrite--; /* Increment the NAND address */ nandaddress = (uint32_t)(nandaddress + 1U); } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hnand); return HAL_OK; } /** * @brief Write Page(s) to NAND memory block (16-bits addressing) * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @param pAddress pointer to NAND address structure * @param pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned * @param NumPageToWrite number of pages to write to block * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_Write_Page_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, uint32_t NumPageToWrite) { __IO uint32_t index = 0U; uint32_t tickstart = 0U; uint32_t deviceaddress = 0U, size = 0U, numPagesWritten = 0U, nandaddress = 0U; /* Process Locked */ __HAL_LOCK(hnand); /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Identify the device address */ if(hnand->Init.NandBank == FMC_NAND_BANK2) { deviceaddress = NAND_DEVICE1; } else { deviceaddress = NAND_DEVICE2; } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_BUSY; /* NAND raw address calculation */ nandaddress = ARRAY_ADDRESS(pAddress, hnand); /* Page(s) write loop */ while((NumPageToWrite != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) { /* update the buffer size */ size = (hnand->Config.PageSize) + ((hnand->Config.PageSize) * numPagesWritten); /* Send write page command sequence */ *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; __DSB(); *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; __DSB(); /* Cards with page size <= 512 bytes */ if((hnand->Config.PageSize) <= 512U) { if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U) { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); } else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); } } else /* (hnand->Config.PageSize) > 512 */ { if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U) { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); } else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); } } /* Write data to memory */ for(; index < size; index++) { *(__IO uint16_t *)deviceaddress = *(uint16_t *)pBuffer++; } *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; /* Read status until NAND is ready */ while(HAL_NAND_Read_Status(hnand) != NAND_READY) { /* Get tick */ tickstart = HAL_GetTick(); if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT) { return HAL_TIMEOUT; } } /* Increment written pages number */ numPagesWritten++; /* Decrement pages to write */ NumPageToWrite--; /* Increment the NAND address */ nandaddress = (uint32_t)(nandaddress + 1U); } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hnand); return HAL_OK; } /** * @brief Read Spare area(s) from NAND memory * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @param pAddress pointer to NAND address structure * @param pBuffer pointer to source buffer to write * @param NumSpareAreaToRead Number of spare area to read * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_Read_SpareArea_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumSpareAreaToRead) { __IO uint32_t index = 0U; uint32_t tickstart = 0U; uint32_t deviceaddress = 0U, size = 0U, numSpareAreaRead = 0U, nandaddress = 0U, columnaddress = 0U; /* Process Locked */ __HAL_LOCK(hnand); /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Identify the device address */ if(hnand->Init.NandBank == FMC_NAND_BANK2) { deviceaddress = NAND_DEVICE1; } else { deviceaddress = NAND_DEVICE2; } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_BUSY; /* NAND raw address calculation */ nandaddress = ARRAY_ADDRESS(pAddress, hnand); /* Column in page address */ columnaddress = COLUMN_ADDRESS(hnand); /* Spare area(s) read loop */ while((NumSpareAreaToRead != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) { /* update the buffer size */ size = (hnand->Config.SpareAreaSize) + ((hnand->Config.SpareAreaSize) * numSpareAreaRead); /* Cards with page size <= 512 bytes */ if((hnand->Config.PageSize) <= 512U) { /* Send read spare area command sequence */ *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U) { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); } else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); } } else /* (hnand->Config.PageSize) > 512 */ { /* Send read spare area command sequence */ *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U) { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); } else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); } } *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; if(hnand->Config.ExtraCommandEnable == ENABLE) { /* Get tick */ tickstart = HAL_GetTick(); /* Read status until NAND is ready */ while(HAL_NAND_Read_Status(hnand) != NAND_READY) { if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT) { return HAL_TIMEOUT; } } /* Go back to read mode */ *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); } /* Get Data into Buffer */ for(; index < size; index++) { *(uint8_t *)pBuffer++ = *(uint8_t *)deviceaddress; } /* Increment read spare areas number */ numSpareAreaRead++; /* Decrement spare areas to read */ NumSpareAreaToRead--; /* Increment the NAND address */ nandaddress = (uint32_t)(nandaddress + 1U); } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hnand); return HAL_OK; } /** * @brief Read Spare area(s) from NAND memory (16-bits addressing) * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @param pAddress pointer to NAND address structure * @param pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned. * @param NumSpareAreaToRead Number of spare area to read * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_Read_SpareArea_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, uint32_t NumSpareAreaToRead) { __IO uint32_t index = 0U; uint32_t tickstart = 0U; uint32_t deviceaddress = 0U, size = 0U, numSpareAreaRead = 0U, nandaddress = 0U, columnaddress = 0U; /* Process Locked */ __HAL_LOCK(hnand); /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Identify the device address */ if(hnand->Init.NandBank == FMC_NAND_BANK2) { deviceaddress = NAND_DEVICE1; } else { deviceaddress = NAND_DEVICE2; } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_BUSY; /* NAND raw address calculation */ nandaddress = ARRAY_ADDRESS(pAddress, hnand); /* Column in page address */ columnaddress = (uint32_t)(COLUMN_ADDRESS(hnand) * 2U); /* Spare area(s) read loop */ while((NumSpareAreaToRead != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) { /* update the buffer size */ size = (hnand->Config.SpareAreaSize) + ((hnand->Config.SpareAreaSize) * numSpareAreaRead); /* Cards with page size <= 512 bytes */ if((hnand->Config.PageSize) <= 512U) { /* Send read spare area command sequence */ *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U) { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); } else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); } } else /* (hnand->Config.PageSize) > 512 */ { /* Send read spare area command sequence */ *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U) { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); } else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); } } *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; if(hnand->Config.ExtraCommandEnable == ENABLE) { /* Get tick */ tickstart = HAL_GetTick(); /* Read status until NAND is ready */ while(HAL_NAND_Read_Status(hnand) != NAND_READY) { if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT) { return HAL_TIMEOUT; } } /* Go back to read mode */ *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); } /* Get Data into Buffer */ for(; index < size; index++) { *(uint16_t *)pBuffer++ = *(uint16_t *)deviceaddress; } /* Increment read spare areas number */ numSpareAreaRead++; /* Decrement spare areas to read */ NumSpareAreaToRead--; /* Increment the NAND address */ nandaddress = (uint32_t)(nandaddress + 1U); } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hnand); return HAL_OK; } /** * @brief Write Spare area(s) to NAND memory * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @param pAddress pointer to NAND address structure * @param pBuffer pointer to source buffer to write * @param NumSpareAreaTowrite number of spare areas to write to block * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_Write_SpareArea_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumSpareAreaTowrite) { __IO uint32_t index = 0U; uint32_t tickstart = 0U; uint32_t deviceaddress = 0U, size = 0U, numSpareAreaWritten = 0U, nandaddress = 0U, columnaddress = 0U; /* Process Locked */ __HAL_LOCK(hnand); /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Identify the device address */ if(hnand->Init.NandBank == FMC_NAND_BANK2) { deviceaddress = NAND_DEVICE1; } else { deviceaddress = NAND_DEVICE2; } /* Update the FMC_NAND controller state */ hnand->State = HAL_NAND_STATE_BUSY; /* Page address calculation */ nandaddress = ARRAY_ADDRESS(pAddress, hnand); /* Column in page address */ columnaddress = COLUMN_ADDRESS(hnand); /* Spare area(s) write loop */ while((NumSpareAreaTowrite != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) { /* update the buffer size */ size = (hnand->Config.SpareAreaSize) + ((hnand->Config.SpareAreaSize) * numSpareAreaWritten); /* Cards with page size <= 512 bytes */ if((hnand->Config.PageSize) <= 512U) { /* Send write Spare area command sequence */ *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U) { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); } else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); } } else /* (hnand->Config.PageSize) > 512 */ { /* Send write Spare area command sequence */ *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U) { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); } else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); } } /* Write data to memory */ for(; index < size; index++) { *(__IO uint8_t *)deviceaddress = *(uint8_t *)pBuffer++; } *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; /* Get tick */ tickstart = HAL_GetTick(); /* Read status until NAND is ready */ while(HAL_NAND_Read_Status(hnand) != NAND_READY) { if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT) { return HAL_TIMEOUT; } } /* Increment written spare areas number */ numSpareAreaWritten++; /* Decrement spare areas to write */ NumSpareAreaTowrite--; /* Increment the NAND address */ nandaddress = (uint32_t)(nandaddress + 1U); } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hnand); return HAL_OK; } /** * @brief Write Spare area(s) to NAND memory (16-bits addressing) * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @param pAddress pointer to NAND address structure * @param pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned. * @param NumSpareAreaTowrite number of spare areas to write to block * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_Write_SpareArea_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, uint32_t NumSpareAreaTowrite) { __IO uint32_t index = 0U; uint32_t tickstart = 0U; uint32_t deviceaddress = 0U, size = 0U, numSpareAreaWritten = 0U, nandaddress = 0U, columnaddress = 0U; /* Process Locked */ __HAL_LOCK(hnand); /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Identify the device address */ if(hnand->Init.NandBank == FMC_NAND_BANK2) { deviceaddress = NAND_DEVICE1; } else { deviceaddress = NAND_DEVICE2; } /* Update the FMC_NAND controller state */ hnand->State = HAL_NAND_STATE_BUSY; /* NAND raw address calculation */ nandaddress = ARRAY_ADDRESS(pAddress, hnand); /* Column in page address */ columnaddress = (uint32_t)(COLUMN_ADDRESS(hnand) * 2U); /* Spare area(s) write loop */ while((NumSpareAreaTowrite != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) { /* update the buffer size */ size = (hnand->Config.SpareAreaSize) + ((hnand->Config.SpareAreaSize) * numSpareAreaWritten); /* Cards with page size <= 512 bytes */ if((hnand->Config.PageSize) <= 512U) { /* Send write Spare area command sequence */ *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U) { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); } else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); } } else /* (hnand->Config.PageSize) > 512 */ { /* Send write Spare area command sequence */ *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U) { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); } else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ { *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); } } /* Write data to memory */ for(; index < size; index++) { *(__IO uint16_t *)deviceaddress = *(uint16_t *)pBuffer++; } *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; /* Read status until NAND is ready */ while(HAL_NAND_Read_Status(hnand) != NAND_READY) { /* Get tick */ tickstart = HAL_GetTick(); if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT) { return HAL_TIMEOUT; } } /* Increment written spare areas number */ numSpareAreaWritten++; /* Decrement spare areas to write */ NumSpareAreaTowrite--; /* Increment the NAND address */ nandaddress = (uint32_t)(nandaddress + 1U); } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hnand); return HAL_OK; } /** * @brief NAND memory Block erase * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @param pAddress pointer to NAND address structure * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_Erase_Block(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress) { uint32_t deviceaddress = 0U; uint32_t tickstart = 0U; /* Process Locked */ __HAL_LOCK(hnand); /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Identify the device address */ if(hnand->Init.NandBank == FMC_NAND_BANK2) { deviceaddress = NAND_DEVICE1; } else { deviceaddress = NAND_DEVICE2; } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_BUSY; /* Send Erase block command sequence */ *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_ERASE0; *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_ERASE1; /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_READY; /* Get tick */ tickstart = HAL_GetTick(); /* Read status until NAND is ready */ while(HAL_NAND_Read_Status(hnand) != NAND_READY) { if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT) { /* Process unlocked */ __HAL_UNLOCK(hnand); return HAL_TIMEOUT; } } /* Process unlocked */ __HAL_UNLOCK(hnand); return HAL_OK; } /** * @brief NAND memory read status * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @retval NAND status */ uint32_t HAL_NAND_Read_Status(NAND_HandleTypeDef *hnand) { uint32_t data = 0U; uint32_t deviceaddress = 0U; /* Identify the device address */ if(hnand->Init.NandBank == FMC_NAND_BANK2) { deviceaddress = NAND_DEVICE1; } else { deviceaddress = NAND_DEVICE2; } /* Send Read status operation command */ *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_STATUS; /* Read status register data */ data = *(__IO uint8_t *)deviceaddress; /* Return the status */ if((data & NAND_ERROR) == NAND_ERROR) { return NAND_ERROR; } else if((data & NAND_READY) == NAND_READY) { return NAND_READY; } return NAND_BUSY; } /** * @brief Increment the NAND memory address * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @param pAddress pointer to NAND address structure * @retval The new status of the increment address operation. It can be: * - NAND_VALID_ADDRESS: When the new address is valid address * - NAND_INVALID_ADDRESS: When the new address is invalid address */ uint32_t HAL_NAND_Address_Inc(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress) { uint32_t status = NAND_VALID_ADDRESS; /* Increment page address */ pAddress->Page++; /* Check NAND address is valid */ if(pAddress->Page == hnand->Config.BlockSize) { pAddress->Page = 0U; pAddress->Block++; if(pAddress->Block == hnand->Config.PlaneSize) { pAddress->Block = 0U; pAddress->Plane++; if(pAddress->Plane == (hnand->Config.PlaneNbr)) { status = NAND_INVALID_ADDRESS; } } } return (status); } /** * @} */ /** @defgroup NAND_Exported_Functions_Group3 Peripheral Control functions * @brief management functions * @verbatim ============================================================================== ##### NAND Control functions ##### ============================================================================== [..] This subsection provides a set of functions allowing to control dynamically the NAND interface. @endverbatim * @{ */ /** * @brief Enables dynamically NAND ECC feature. * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_ECC_Enable(NAND_HandleTypeDef *hnand) { /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Update the NAND state */ hnand->State = HAL_NAND_STATE_BUSY; /* Enable ECC feature */ FMC_NAND_ECC_Enable(hnand->Instance, hnand->Init.NandBank); /* Update the NAND state */ hnand->State = HAL_NAND_STATE_READY; return HAL_OK; } /** * @brief Disables dynamically FMC_NAND ECC feature. * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_ECC_Disable(NAND_HandleTypeDef *hnand) { /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Update the NAND state */ hnand->State = HAL_NAND_STATE_BUSY; /* Disable ECC feature */ FMC_NAND_ECC_Disable(hnand->Instance, hnand->Init.NandBank); /* Update the NAND state */ hnand->State = HAL_NAND_STATE_READY; return HAL_OK; } /** * @brief Disables dynamically NAND ECC feature. * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @param ECCval pointer to ECC value * @param Timeout maximum timeout to wait * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_GetECC(NAND_HandleTypeDef *hnand, uint32_t *ECCval, uint32_t Timeout) { HAL_StatusTypeDef status = HAL_OK; /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Update the NAND state */ hnand->State = HAL_NAND_STATE_BUSY; /* Get NAND ECC value */ status = FMC_NAND_GetECC(hnand->Instance, ECCval, hnand->Init.NandBank, Timeout); /* Update the NAND state */ hnand->State = HAL_NAND_STATE_READY; return status; } /** * @} */ /** @defgroup NAND_Exported_Functions_Group4 Peripheral State functions * @brief Peripheral State functions * @verbatim ============================================================================== ##### NAND State functions ##### ============================================================================== [..] This subsection permits to get in run-time the status of the NAND controller and the data flow. @endverbatim * @{ */ /** * @brief return the NAND state * @param hnand pointer to a NAND_HandleTypeDef structure that contains * the configuration information for NAND module. * @retval HAL state */ HAL_NAND_StateTypeDef HAL_NAND_GetState(NAND_HandleTypeDef *hnand) { return hnand->State; } /** * @} */ /** * @} */ /** * @} */ #endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx ||\ STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx ||\ STM32F446xx || STM32F469xx || STM32F479xx */ #endif /* HAL_NAND_MODULE_ENABLED */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/