Mercurial > public > ostc4
view Common/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_i2s.c @ 295:718e5feded62
Merged in janlmulder/ostc4/div-fixes-6 (pull request #23)
Cleanup VPM, NDL to 240 min, and more cleanup
author | heinrichsweikamp <bitbucket@heinrichsweikamp.com> |
---|---|
date | Mon, 13 May 2019 13:37:34 +0000 |
parents | c78bcbd5deda |
children |
line wrap: on
line source
/** ****************************************************************************** * @file stm32f4xx_hal_i2s.c * @author MCD Application Team * @brief I2S HAL module driver. * This file provides firmware functions to manage the following * functionalities of the Integrated Interchip Sound (I2S) peripheral: * + Initialization and de-initialization functions * + IO operation functions * + Peripheral State and Errors functions @verbatim =============================================================================== ##### How to use this driver ##### =============================================================================== [..] The I2S HAL driver can be used as follow: (#) Declare a I2S_HandleTypeDef handle structure. (#) Initialize the I2S low level resources by implement the HAL_I2S_MspInit() API: (##) Enable the SPIx interface clock. (##) I2S pins configuration: (+++) Enable the clock for the I2S GPIOs. (+++) Configure these I2S pins as alternate function pull-up. (##) NVIC configuration if you need to use interrupt process (HAL_I2S_Transmit_IT() and HAL_I2S_Receive_IT() APIs). (+++) Configure the I2Sx interrupt priority. (+++) Enable the NVIC I2S IRQ handle. (##) DMA Configuration if you need to use DMA process (HAL_I2S_Transmit_DMA() and HAL_I2S_Receive_DMA() APIs: (+++) Declare a DMA handle structure for the Tx/Rx stream. (+++) Enable the DMAx interface clock. (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. (+++) Configure the DMA Tx/Rx Stream. (+++) Associate the initialized DMA handle to the I2S DMA Tx/Rx handle. (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx Stream. (#) Program the Mode, Standard, Data Format, MCLK Output, Audio frequency and Polarity using HAL_I2S_Init() function. -@- The specific I2S interrupts (Transmission complete interrupt, RXNE interrupt and Error Interrupts) will be managed using the macros __HAL_I2S_ENABLE_IT() and __HAL_I2S_DISABLE_IT() inside the transmit and receive process. -@- Make sure that either: (+@) I2S PLL is configured or (+@) External clock source is configured after setting correctly the define constant EXTERNAL_CLOCK_VALUE in the stm32f4xx_hal_conf.h file. (#) Three operation modes are available within this driver : *** Polling mode IO operation *** ================================= [..] (+) Send an amount of data in blocking mode using HAL_I2S_Transmit() (+) Receive an amount of data in blocking mode using HAL_I2S_Receive() *** Interrupt mode IO operation *** =================================== [..] (+) Send an amount of data in non blocking mode using HAL_I2S_Transmit_IT() (+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback (+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can add his own code by customization of function pointer HAL_I2S_TxCpltCallback (+) Receive an amount of data in non blocking mode using HAL_I2S_Receive_IT() (+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback (+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can add his own code by customization of function pointer HAL_I2S_RxCpltCallback (+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can add his own code by customization of function pointer HAL_I2S_ErrorCallback *** DMA mode IO operation *** ============================== [..] (+) Send an amount of data in non blocking mode (DMA) using HAL_I2S_Transmit_DMA() (+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback (+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can add his own code by customization of function pointer HAL_I2S_TxCpltCallback (+) Receive an amount of data in non blocking mode (DMA) using HAL_I2S_Receive_DMA() (+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback (+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can add his own code by customization of function pointer HAL_I2S_RxCpltCallback (+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can add his own code by customization of function pointer HAL_I2S_ErrorCallback (+) Pause the DMA Transfer using HAL_I2S_DMAPause() (+) Resume the DMA Transfer using HAL_I2S_DMAResume() (+) Stop the DMA Transfer using HAL_I2S_DMAStop() *** I2S HAL driver macros list *** ============================================= [..] Below the list of most used macros in I2S HAL driver. (+) __HAL_I2S_ENABLE: Enable the specified SPI peripheral (in I2S mode) (+) __HAL_I2S_DISABLE: Disable the specified SPI peripheral (in I2S mode) (+) __HAL_I2S_ENABLE_IT : Enable the specified I2S interrupts (+) __HAL_I2S_DISABLE_IT : Disable the specified I2S interrupts (+) __HAL_I2S_GET_FLAG: Check whether the specified I2S flag is set or not [..] (@) You can refer to the I2S HAL driver header file for more useful macros @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f4xx_hal.h" /** @addtogroup STM32F4xx_HAL_Driver * @{ */ #ifdef HAL_I2S_MODULE_ENABLED /** @defgroup I2S I2S * @brief I2S HAL module driver * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /** @addtogroup I2S_Private_Functions * @{ */ static void I2S_DMATxCplt(DMA_HandleTypeDef *hdma); static void I2S_DMATxHalfCplt(DMA_HandleTypeDef *hdma); static void I2S_DMARxCplt(DMA_HandleTypeDef *hdma); static void I2S_DMARxHalfCplt(DMA_HandleTypeDef *hdma); static void I2S_DMAError(DMA_HandleTypeDef *hdma); static void I2S_Transmit_IT(I2S_HandleTypeDef *hi2s); static void I2S_Receive_IT(I2S_HandleTypeDef *hi2s); static void I2S_IRQHandler(I2S_HandleTypeDef *hi2s); static HAL_StatusTypeDef I2S_WaitFlagStateUntilTimeout(I2S_HandleTypeDef *hi2s, uint32_t Flag, uint32_t State, uint32_t Timeout); /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @addtogroup I2S_Exported_Functions I2S Exported Functions * @{ */ /** @addtogroup I2S_Exported_Functions_Group1 * @brief Initialization and Configuration functions * @verbatim =============================================================================== ##### Initialization and de-initialization functions ##### =============================================================================== [..] This subsection provides a set of functions allowing to initialize and de-initialize the I2Sx peripheral in simplex mode: (+) User must Implement HAL_I2S_MspInit() function in which he configures all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). (+) Call the function HAL_I2S_Init() to configure the selected device with the selected configuration: (++) Mode (++) Standard (++) Data Format (++) MCLK Output (++) Audio frequency (++) Polarity (++) Full duplex mode (+) Call the function HAL_I2S_DeInit() to restore the default configuration of the selected I2Sx peripheral. @endverbatim * @{ */ /** * @brief Initializes the I2S according to the specified parameters * in the I2S_InitTypeDef and create the associated handle. * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @retval HAL status */ HAL_StatusTypeDef HAL_I2S_Init(I2S_HandleTypeDef *hi2s) { uint32_t tmpreg = 0U, i2sdiv = 2U, i2sodd = 0U, packetlength = 16U; uint32_t tmp = 0U, i2sclk = 0U; /* Check the I2S handle allocation */ if(hi2s == NULL) { return HAL_ERROR; } /* Check the I2S parameters */ assert_param(IS_I2S_ALL_INSTANCE(hi2s->Instance)); assert_param(IS_I2S_MODE(hi2s->Init.Mode)); assert_param(IS_I2S_STANDARD(hi2s->Init.Standard)); assert_param(IS_I2S_DATA_FORMAT(hi2s->Init.DataFormat)); assert_param(IS_I2S_MCLK_OUTPUT(hi2s->Init.MCLKOutput)); assert_param(IS_I2S_AUDIO_FREQ(hi2s->Init.AudioFreq)); assert_param(IS_I2S_CPOL(hi2s->Init.CPOL)); assert_param(IS_I2S_CLOCKSOURCE(hi2s->Init.ClockSource)); hi2s->State = HAL_I2S_STATE_BUSY; /* Initialize Default I2S IrqHandler ISR */ hi2s->IrqHandlerISR = I2S_IRQHandler; /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ HAL_I2S_MspInit(hi2s); /*----------------------- SPIx I2SCFGR & I2SPR Configuration ---------------*/ /* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */ CLEAR_BIT(hi2s->Instance->I2SCFGR,(SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CKPOL | \ SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC | SPI_I2SCFGR_I2SCFG | \ SPI_I2SCFGR_I2SE | SPI_I2SCFGR_I2SMOD)); hi2s->Instance->I2SPR = 0x0002U; /* Get the I2SCFGR register value */ tmpreg = hi2s->Instance->I2SCFGR; /* If the default frequency value has to be written, reinitialize i2sdiv and i2sodd */ /* If the requested audio frequency is not the default, compute the prescaler */ if(hi2s->Init.AudioFreq != I2S_AUDIOFREQ_DEFAULT) { /* Check the frame length (For the Prescaler computing) *******************/ /* Set I2S Packet Length value*/ if(hi2s->Init.DataFormat != I2S_DATAFORMAT_16B) { /* Packet length is 32 bits */ packetlength = 32U; } else { /* Packet length is 16 bits */ packetlength = 16U; } /* I2S standard */ if(hi2s->Init.Standard <= I2S_STANDARD_LSB) { /* In I2S standard packet lenght is multiplied by 2 */ packetlength = packetlength * 2U; } /* Get I2S source Clock frequency from RCC ********************************/ #if defined(I2S_APB1_APB2_FEATURE) if(IS_I2S_APB1_INSTANCE(hi2s->Instance)) { i2sclk = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_I2S_APB1); } else { i2sclk = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_I2S_APB2); } #else i2sclk = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_I2S); #endif /* Compute the Real divider depending on the MCLK output state, with a floating point */ if(hi2s->Init.MCLKOutput == I2S_MCLKOUTPUT_ENABLE) { /* MCLK output is enabled */ if (hi2s->Init.DataFormat != I2S_DATAFORMAT_16B) { tmp = (uint32_t)(((((i2sclk / (packetlength*4)) * 10) / hi2s->Init.AudioFreq)) + 5); } else { tmp = (uint32_t)(((((i2sclk / (packetlength*8)) * 10) / hi2s->Init.AudioFreq)) + 5); } } else { /* MCLK output is disabled */ tmp = (uint32_t)(((((i2sclk / packetlength) *10 ) / hi2s->Init.AudioFreq)) + 5); } /* Remove the flatting point */ tmp = tmp / 10U; /* Check the parity of the divider */ i2sodd = (uint16_t)(tmp & (uint16_t)1U); /* Compute the i2sdiv prescaler */ i2sdiv = (uint16_t)((tmp - i2sodd) / 2U); /* Get the Mask for the Odd bit (SPI_I2SPR[8]) register */ i2sodd = (uint32_t) (i2sodd << 8U); } /* Test if the divider is 1 or 0 or greater than 0xFF */ if((i2sdiv < 2U) || (i2sdiv > 0xFFU)) { /* Set the default values */ i2sdiv = 2U; i2sodd = 0U; /* Set the error code and execute error callback*/ SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_PRESCALER); HAL_I2S_ErrorCallback(hi2s); return HAL_ERROR; } /* Write to SPIx I2SPR register the computed value */ hi2s->Instance->I2SPR = (uint32_t)((uint32_t)i2sdiv | (uint32_t)(i2sodd | (uint32_t)hi2s->Init.MCLKOutput)); /* Configure the I2S with the I2S_InitStruct values */ tmpreg |= (uint16_t)((uint16_t)SPI_I2SCFGR_I2SMOD | (uint16_t)(hi2s->Init.Mode | \ (uint16_t)(hi2s->Init.Standard | (uint16_t)(hi2s->Init.DataFormat | \ (uint16_t)hi2s->Init.CPOL)))); #if defined(SPI_I2SCFGR_ASTRTEN) if ((hi2s->Init.Standard == I2S_STANDARD_PCM_SHORT) ||(hi2s->Init.Standard == I2S_STANDARD_PCM_LONG)) { /* Write to SPIx I2SCFGR */ WRITE_REG(hi2s->Instance->I2SCFGR,(tmpreg | SPI_I2SCFGR_ASTRTEN)); } else { /* Write to SPIx I2SCFGR */ WRITE_REG(hi2s->Instance->I2SCFGR,tmpreg); } #else /* Write to SPIx I2SCFGR */ WRITE_REG(hi2s->Instance->I2SCFGR, tmpreg); #endif #if defined (SPI_I2S_FULLDUPLEX_SUPPORT) /* Configure the I2S extended if the full duplex mode is enabled */ assert_param(IS_I2S_FULLDUPLEX_MODE(hi2s->Init.FullDuplexMode)); if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE) { /* Set FullDuplex I2S IrqHandler ISR if FULLDUPLEXMODE is enabled */ hi2s->IrqHandlerISR = HAL_I2SEx_FullDuplex_IRQHandler; /* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */ CLEAR_BIT(I2SxEXT(hi2s->Instance)->I2SCFGR,(SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CKPOL | \ SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC | SPI_I2SCFGR_I2SCFG | \ SPI_I2SCFGR_I2SE | SPI_I2SCFGR_I2SMOD)); I2SxEXT(hi2s->Instance)->I2SPR = 2U; /* Get the I2SCFGR register value */ tmpreg = I2SxEXT(hi2s->Instance)->I2SCFGR; /* Get the mode to be configured for the extended I2S */ if((hi2s->Init.Mode == I2S_MODE_MASTER_TX) || (hi2s->Init.Mode == I2S_MODE_SLAVE_TX)) { tmp = I2S_MODE_SLAVE_RX; } else /* I2S_MODE_MASTER_RX || I2S_MODE_SLAVE_RX */ { tmp = I2S_MODE_SLAVE_TX; } /* Configure the I2S Slave with the I2S Master parameter values */ tmpreg |= (uint16_t)((uint16_t)SPI_I2SCFGR_I2SMOD | (uint16_t)(tmp | \ (uint16_t)(hi2s->Init.Standard | (uint16_t)(hi2s->Init.DataFormat | \ (uint16_t)hi2s->Init.CPOL)))); /* Write to SPIx I2SCFGR */ WRITE_REG(I2SxEXT(hi2s->Instance)->I2SCFGR,tmpreg); } #endif /* SPI_I2S_FULLDUPLEX_SUPPORT */ hi2s->ErrorCode = HAL_I2S_ERROR_NONE; hi2s->State = HAL_I2S_STATE_READY; return HAL_OK; } /** * @brief DeInitializes the I2S peripheral * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @retval HAL status */ HAL_StatusTypeDef HAL_I2S_DeInit(I2S_HandleTypeDef *hi2s) { /* Check the I2S handle allocation */ if(hi2s == NULL) { return HAL_ERROR; } hi2s->State = HAL_I2S_STATE_BUSY; /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ HAL_I2S_MspDeInit(hi2s); hi2s->ErrorCode = HAL_I2S_ERROR_NONE; hi2s->State = HAL_I2S_STATE_RESET; /* Release Lock */ __HAL_UNLOCK(hi2s); return HAL_OK; } /** * @brief I2S MSP Init * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @retval None */ __weak void HAL_I2S_MspInit(I2S_HandleTypeDef *hi2s) { /* Prevent unused argument(s) compilation warning */ UNUSED(hi2s); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_I2S_MspInit could be implemented in the user file */ } /** * @brief I2S MSP DeInit * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @retval None */ __weak void HAL_I2S_MspDeInit(I2S_HandleTypeDef *hi2s) { /* Prevent unused argument(s) compilation warning */ UNUSED(hi2s); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_I2S_MspDeInit could be implemented in the user file */ } /** * @} */ /** @addtogroup I2S_Exported_Functions_Group2 * @brief Data transfers functions * @verbatim =============================================================================== ##### IO operation functions ##### =============================================================================== [..] This subsection provides a set of functions allowing to manage the I2S data transfers. (#) There are two modes of transfer: (++) Blocking mode : The communication is performed in the polling mode. The status of all data processing is returned by the same function after finishing transfer. (++) No-Blocking mode : The communication is performed using Interrupts or DMA. These functions return the status of the transfer startup. The end of the data processing will be indicated through the dedicated I2S IRQ when using Interrupt mode or the DMA IRQ when using DMA mode. (#) Blocking mode functions are : (++) HAL_I2S_Transmit() (++) HAL_I2S_Receive() (#) No-Blocking mode functions with Interrupt are : (++) HAL_I2S_Transmit_IT() (++) HAL_I2S_Receive_IT() (#) No-Blocking mode functions with DMA are : (++) HAL_I2S_Transmit_DMA() (++) HAL_I2S_Receive_DMA() (#) A set of Transfer Complete Callbacks are provided in non Blocking mode: (++) HAL_I2S_TxCpltCallback() (++) HAL_I2S_RxCpltCallback() (++) HAL_I2S_ErrorCallback() @endverbatim * @{ */ /** * @brief Transmit an amount of data in blocking mode * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @param pData a 16-bit pointer to data buffer. * @param Size number of data sample to be sent: * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S * configuration phase, the Size parameter means the number of 16-bit data length * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected * the Size parameter means the number of 16-bit data length. * @param Timeout Timeout duration * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization * between Master and Slave(example: audio streaming). * @retval HAL status */ HAL_StatusTypeDef HAL_I2S_Transmit(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size, uint32_t Timeout) { uint32_t tmp1 = 0U; if((pData == NULL ) || (Size == 0U)) { return HAL_ERROR; } if(hi2s->State == HAL_I2S_STATE_READY) { tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); if((tmp1 == I2S_DATAFORMAT_24B) || (tmp1 == I2S_DATAFORMAT_32B)) { hi2s->TxXferSize = (Size << 1U); hi2s->TxXferCount = (Size << 1U); } else { hi2s->TxXferSize = Size; hi2s->TxXferCount = Size; } /* Process Locked */ __HAL_LOCK(hi2s); hi2s->ErrorCode = HAL_I2S_ERROR_NONE; hi2s->State = HAL_I2S_STATE_BUSY_TX; /* Check if the I2S is already enabled */ if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) { /* Enable I2S peripheral */ __HAL_I2S_ENABLE(hi2s); } while(hi2s->TxXferCount > 0U) { hi2s->Instance->DR = (*pData++); hi2s->TxXferCount--; /* Wait until TXE flag is set */ if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_TXE, SET, Timeout) != HAL_OK) { /* Set the error code and execute error callback*/ SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_TIMEOUT); HAL_I2S_ErrorCallback(hi2s); return HAL_TIMEOUT; } /* Check if an underrun occurs */ if(__HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_UDR) == SET) { /* Clear underrun flag */ __HAL_I2S_CLEAR_UDRFLAG(hi2s); /* Set the I2S State ready */ hi2s->State = HAL_I2S_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hi2s); /* Set the error code and execute error callback*/ SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_UDR); HAL_I2S_ErrorCallback(hi2s); return HAL_ERROR; } } hi2s->State = HAL_I2S_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hi2s); return HAL_OK; } else { return HAL_BUSY; } } /** * @brief Receive an amount of data in blocking mode * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @param pData a 16-bit pointer to data buffer * @param Size number of data sample to be sent: * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S * configuration phase, the Size parameter means the number of 16-bit data length * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected * the Size parameter means the number of 16-bit data length. * @param Timeout Timeout duration * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization * between Master and Slave(example: audio streaming) * @note In I2S Master Receiver mode, just after enabling the peripheral the clock will be generate * in continuous way and as the I2S is not disabled at the end of the I2S transaction * @retval HAL status */ HAL_StatusTypeDef HAL_I2S_Receive(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size, uint32_t Timeout) { uint32_t tmp1 = 0U; if((pData == NULL ) || (Size == 0U)) { return HAL_ERROR; } if(hi2s->State == HAL_I2S_STATE_READY) { tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); if((tmp1 == I2S_DATAFORMAT_24B) || (tmp1 == I2S_DATAFORMAT_32B)) { hi2s->RxXferSize = (Size << 1U); hi2s->RxXferCount = (Size << 1U); } else { hi2s->RxXferSize = Size; hi2s->RxXferCount = Size; } /* Process Locked */ __HAL_LOCK(hi2s); hi2s->ErrorCode = HAL_I2S_ERROR_NONE; hi2s->State = HAL_I2S_STATE_BUSY_RX; /* Check if the I2S is already enabled */ if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) { /* Enable I2S peripheral */ __HAL_I2S_ENABLE(hi2s); } /* Check if Master Receiver mode is selected */ if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX) { /* Clear the Overrun Flag by a read operation on the SPI_DR register followed by a read access to the SPI_SR register. */ __HAL_I2S_CLEAR_OVRFLAG(hi2s); } /* Receive data */ while(hi2s->RxXferCount > 0U) { /* Wait until RXNE flag is set */ if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_RXNE, SET, Timeout) != HAL_OK) { /* Set the error code and execute error callback*/ SET_BIT(hi2s->ErrorCode,HAL_I2S_ERROR_TIMEOUT); HAL_I2S_ErrorCallback(hi2s); return HAL_TIMEOUT; } /* Check if an overrun occurs */ if(__HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_OVR) == SET) { /* Clear overrun flag */ __HAL_I2S_CLEAR_OVRFLAG(hi2s); /* Set the I2S State ready */ hi2s->State = HAL_I2S_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hi2s); /* Set the error code and execute error callback*/ SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_OVR); HAL_I2S_ErrorCallback(hi2s); return HAL_ERROR; } (*pData++) = hi2s->Instance->DR; hi2s->RxXferCount--; } hi2s->State = HAL_I2S_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hi2s); return HAL_OK; } else { return HAL_BUSY; } } /** * @brief Transmit an amount of data in non-blocking mode with Interrupt * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @param pData a 16-bit pointer to data buffer. * @param Size number of data sample to be sent: * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S * configuration phase, the Size parameter means the number of 16-bit data length * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected * the Size parameter means the number of 16-bit data length. * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization * between Master and Slave(example: audio streaming). * @retval HAL status */ HAL_StatusTypeDef HAL_I2S_Transmit_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size) { uint32_t tmp1 = 0U; if(hi2s->State == HAL_I2S_STATE_READY) { if((pData == NULL) || (Size == 0U)) { return HAL_ERROR; } hi2s->pTxBuffPtr = pData; tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); if((tmp1 == I2S_DATAFORMAT_24B) || (tmp1 == I2S_DATAFORMAT_32B)) { hi2s->TxXferSize = (Size << 1U); hi2s->TxXferCount = (Size << 1U); } else { hi2s->TxXferSize = Size; hi2s->TxXferCount = Size; } /* Process Locked */ __HAL_LOCK(hi2s); hi2s->State = HAL_I2S_STATE_BUSY_TX; hi2s->ErrorCode = HAL_I2S_ERROR_NONE; /* Enable TXE and ERR interrupt */ __HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR)); /* Check if the I2S is already enabled */ if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) { /* Enable I2S peripheral */ __HAL_I2S_ENABLE(hi2s); } /* Process Unlocked */ __HAL_UNLOCK(hi2s); return HAL_OK; } else { return HAL_BUSY; } } /** * @brief Receive an amount of data in non-blocking mode with Interrupt * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @param pData a 16-bit pointer to the Receive data buffer. * @param Size number of data sample to be sent: * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S * configuration phase, the Size parameter means the number of 16-bit data length * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected * the Size parameter means the number of 16-bit data length. * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization * between Master and Slave(example: audio streaming). * @note It is recommended to use DMA for the I2S receiver to avoid de-synchronisation * between Master and Slave otherwise the I2S interrupt should be optimized. * @retval HAL status */ HAL_StatusTypeDef HAL_I2S_Receive_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size) { uint32_t tmp1 = 0U; if(hi2s->State == HAL_I2S_STATE_READY) { if((pData == NULL) || (Size == 0U)) { return HAL_ERROR; } hi2s->pRxBuffPtr = pData; tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); if((tmp1 == I2S_DATAFORMAT_24B) || (tmp1 == I2S_DATAFORMAT_32B)) { hi2s->RxXferSize = (Size << 1U); hi2s->RxXferCount = (Size << 1U); } else { hi2s->RxXferSize = Size; hi2s->RxXferCount = Size; } /* Process Locked */ __HAL_LOCK(hi2s); hi2s->State = HAL_I2S_STATE_BUSY_RX; hi2s->ErrorCode = HAL_I2S_ERROR_NONE; /* Enable TXE and ERR interrupt */ __HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR)); /* Check if the I2S is already enabled */ if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) { /* Enable I2S peripheral */ __HAL_I2S_ENABLE(hi2s); } /* Process Unlocked */ __HAL_UNLOCK(hi2s); return HAL_OK; } else { return HAL_BUSY; } } /** * @brief Transmit an amount of data in non-blocking mode with DMA * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @param pData a 16-bit pointer to the Transmit data buffer. * @param Size number of data sample to be sent: * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S * configuration phase, the Size parameter means the number of 16-bit data length * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected * the Size parameter means the number of 16-bit data length. * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization * between Master and Slave(example: audio streaming). * @retval HAL status */ HAL_StatusTypeDef HAL_I2S_Transmit_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size) { uint32_t *tmp = NULL; uint32_t tmp1 = 0U; if((pData == NULL) || (Size == 0U)) { return HAL_ERROR; } if(hi2s->State == HAL_I2S_STATE_READY) { hi2s->pTxBuffPtr = pData; tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); if((tmp1 == I2S_DATAFORMAT_24B) || (tmp1 == I2S_DATAFORMAT_32B)) { hi2s->TxXferSize = (Size << 1U); hi2s->TxXferCount = (Size << 1U); } else { hi2s->TxXferSize = Size; hi2s->TxXferCount = Size; } /* Process Locked */ __HAL_LOCK(hi2s); hi2s->ErrorCode = HAL_I2S_ERROR_NONE; hi2s->State = HAL_I2S_STATE_BUSY_TX; /* Set the I2S Tx DMA Half transfer complete callback */ hi2s->hdmatx->XferHalfCpltCallback = I2S_DMATxHalfCplt; /* Set the I2S Tx DMA transfer complete callback */ hi2s->hdmatx->XferCpltCallback = I2S_DMATxCplt; /* Set the DMA error callback */ hi2s->hdmatx->XferErrorCallback = I2S_DMAError; /* Enable the Tx DMA Stream */ tmp = (uint32_t*)&pData; HAL_DMA_Start_IT(hi2s->hdmatx, *(uint32_t*)tmp, (uint32_t)&hi2s->Instance->DR, hi2s->TxXferSize); /* Check if the I2S is already enabled */ if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) { /* Enable I2S peripheral */ __HAL_I2S_ENABLE(hi2s); } /* Check if the I2S Tx request is already enabled */ if((hi2s->Instance->CR2 & SPI_CR2_TXDMAEN) != SPI_CR2_TXDMAEN) { /* Enable Tx DMA Request */ SET_BIT(hi2s->Instance->CR2, SPI_CR2_TXDMAEN); } /* Process Unlocked */ __HAL_UNLOCK(hi2s); return HAL_OK; } else { return HAL_BUSY; } } /** * @brief Receive an amount of data in non-blocking mode with DMA * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @param pData a 16-bit pointer to the Receive data buffer. * @param Size number of data sample to be sent: * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S * configuration phase, the Size parameter means the number of 16-bit data length * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected * the Size parameter means the number of 16-bit data length. * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization * between Master and Slave(example: audio streaming). * @retval HAL status */ HAL_StatusTypeDef HAL_I2S_Receive_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size) { uint32_t *tmp = NULL; uint32_t tmp1 = 0U; if((pData == NULL) || (Size == 0U)) { return HAL_ERROR; } if(hi2s->State == HAL_I2S_STATE_READY) { hi2s->pRxBuffPtr = pData; tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); if((tmp1 == I2S_DATAFORMAT_24B) || (tmp1 == I2S_DATAFORMAT_32B)) { hi2s->RxXferSize = (Size << 1U); hi2s->RxXferCount = (Size << 1U); } else { hi2s->RxXferSize = Size; hi2s->RxXferCount = Size; } /* Process Locked */ __HAL_LOCK(hi2s); hi2s->State = HAL_I2S_STATE_BUSY_RX; hi2s->ErrorCode = HAL_I2S_ERROR_NONE; /* Set the I2S Rx DMA Half transfer complete callback */ hi2s->hdmarx->XferHalfCpltCallback = I2S_DMARxHalfCplt; /* Set the I2S Rx DMA transfer complete callback */ hi2s->hdmarx->XferCpltCallback = I2S_DMARxCplt; /* Set the DMA error callback */ hi2s->hdmarx->XferErrorCallback = I2S_DMAError; /* Check if Master Receiver mode is selected */ if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX) { /* Clear the Overrun Flag by a read operation to the SPI_DR register followed by a read access to the SPI_SR register. */ __HAL_I2S_CLEAR_OVRFLAG(hi2s); } /* Enable the Rx DMA Stream */ tmp = (uint32_t*)&pData; HAL_DMA_Start_IT(hi2s->hdmarx, (uint32_t)&hi2s->Instance->DR, *(uint32_t*)tmp, hi2s->RxXferSize); /* Check if the I2S is already enabled */ if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) { /* Enable I2S peripheral */ __HAL_I2S_ENABLE(hi2s); } /* Check if the I2S Rx request is already enabled */ if((hi2s->Instance->CR2 &SPI_CR2_RXDMAEN) != SPI_CR2_RXDMAEN) { /* Enable Rx DMA Request */ SET_BIT(hi2s->Instance->CR2,SPI_CR2_RXDMAEN); } /* Process Unlocked */ __HAL_UNLOCK(hi2s); return HAL_OK; } else { return HAL_BUSY; } } /** * @brief Pauses the audio stream playing from the Media. * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @retval HAL status */ HAL_StatusTypeDef HAL_I2S_DMAPause(I2S_HandleTypeDef *hi2s) { /* Process Locked */ __HAL_LOCK(hi2s); if(hi2s->State == HAL_I2S_STATE_BUSY_TX) { /* Disable the I2S DMA Tx request */ CLEAR_BIT(hi2s->Instance->CR2,SPI_CR2_TXDMAEN); } else if(hi2s->State == HAL_I2S_STATE_BUSY_RX) { /* Disable the I2S DMA Rx request */ CLEAR_BIT(hi2s->Instance->CR2,SPI_CR2_RXDMAEN); } #if defined (SPI_I2S_FULLDUPLEX_SUPPORT) else if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX) { /* Pause the audio file playing by disabling the I2S DMA request */ CLEAR_BIT(hi2s->Instance->CR2,(SPI_CR2_TXDMAEN|SPI_CR2_RXDMAEN)); CLEAR_BIT(I2SxEXT(hi2s->Instance)->CR2,(SPI_CR2_TXDMAEN|SPI_CR2_RXDMAEN)); } #endif /* SPI_I2S_FULLDUPLEX_SUPPORT */ /* Process Unlocked */ __HAL_UNLOCK(hi2s); return HAL_OK; } /** * @brief Resumes the audio stream playing from the Media. * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @retval HAL status */ HAL_StatusTypeDef HAL_I2S_DMAResume(I2S_HandleTypeDef *hi2s) { /* Process Locked */ __HAL_LOCK(hi2s); if(hi2s->State == HAL_I2S_STATE_BUSY_TX) { /* Enable the I2S DMA Tx request */ SET_BIT(hi2s->Instance->CR2,SPI_CR2_TXDMAEN); } else if(hi2s->State == HAL_I2S_STATE_BUSY_RX) { /* Enable the I2S DMA Rx request */ SET_BIT(hi2s->Instance->CR2,SPI_CR2_RXDMAEN); } #if defined (SPI_I2S_FULLDUPLEX_SUPPORT) else if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX) { /* Pause the audio file playing by disabling the I2S DMA request */ SET_BIT(hi2s->Instance->CR2,(SPI_CR2_RXDMAEN | SPI_CR2_TXDMAEN)); SET_BIT(I2SxEXT(hi2s->Instance)->CR2,(SPI_CR2_RXDMAEN | SPI_CR2_TXDMAEN)); /* If the I2Sext peripheral is still not enabled, enable it */ if ((I2SxEXT(hi2s->Instance)->I2SCFGR & SPI_I2SCFGR_I2SE) == 0U) { /* Enable I2Sext peripheral */ __HAL_I2SEXT_ENABLE(hi2s); } } #endif /* SPI_I2S_FULLDUPLEX_SUPPORT */ /* If the I2S peripheral is still not enabled, enable it */ if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) == 0U) { /* Enable I2S peripheral */ __HAL_I2S_ENABLE(hi2s); } /* Process Unlocked */ __HAL_UNLOCK(hi2s); return HAL_OK; } /** * @brief Resumes the audio stream playing from the Media. * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @retval HAL status */ HAL_StatusTypeDef HAL_I2S_DMAStop(I2S_HandleTypeDef *hi2s) { /* Process Locked */ __HAL_LOCK(hi2s); if(hi2s->State == HAL_I2S_STATE_BUSY_TX) { /* Disable the I2S DMA requests */ CLEAR_BIT(hi2s->Instance->CR2,SPI_CR2_TXDMAEN); /* Disable the I2S DMA Channel */ HAL_DMA_Abort(hi2s->hdmatx); } else if(hi2s->State == HAL_I2S_STATE_BUSY_RX) { /* Disable the I2S DMA requests */ CLEAR_BIT(hi2s->Instance->CR2,SPI_CR2_RXDMAEN); /* Disable the I2S DMA Channel */ HAL_DMA_Abort(hi2s->hdmarx); } #if defined (SPI_I2S_FULLDUPLEX_SUPPORT) else if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX) { /* Disable the I2S DMA requests */ CLEAR_BIT(hi2s->Instance->CR2,(SPI_CR2_RXDMAEN | SPI_CR2_TXDMAEN)); CLEAR_BIT(I2SxEXT(hi2s->Instance)->CR2,(SPI_CR2_RXDMAEN | SPI_CR2_TXDMAEN)); /* Disable the I2S DMA Channels */ HAL_DMA_Abort(hi2s->hdmatx); HAL_DMA_Abort(hi2s->hdmarx); /* Disable I2Sext peripheral */ __HAL_I2SEXT_DISABLE(hi2s); } #endif /* SPI_I2S_FULLDUPLEX_SUPPORT */ /* Disable I2S peripheral */ __HAL_I2S_DISABLE(hi2s); hi2s->State = HAL_I2S_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hi2s); return HAL_OK; } /** * @brief This function handles I2S interrupt request. * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @retval None */ void HAL_I2S_IRQHandler(I2S_HandleTypeDef *hi2s) { /* Call the IrqHandler ISR set during HAL_I2S_INIT */ hi2s->IrqHandlerISR(hi2s); } /** * @brief Tx Transfer Half completed callbacks * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @retval None */ __weak void HAL_I2S_TxHalfCpltCallback(I2S_HandleTypeDef *hi2s) { /* Prevent unused argument(s) compilation warning */ UNUSED(hi2s); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_I2S_TxHalfCpltCallback could be implemented in the user file */ } /** * @brief Tx Transfer completed callbacks * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @retval None */ __weak void HAL_I2S_TxCpltCallback(I2S_HandleTypeDef *hi2s) { /* Prevent unused argument(s) compilation warning */ UNUSED(hi2s); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_I2S_TxCpltCallback could be implemented in the user file */ } /** * @brief Rx Transfer half completed callbacks * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @retval None */ __weak void HAL_I2S_RxHalfCpltCallback(I2S_HandleTypeDef *hi2s) { /* Prevent unused argument(s) compilation warning */ UNUSED(hi2s); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_I2S_RxCpltCallback could be implemented in the user file */ } /** * @brief Rx Transfer completed callbacks * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @retval None */ __weak void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s) { /* Prevent unused argument(s) compilation warning */ UNUSED(hi2s); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_I2S_RxCpltCallback could be implemented in the user file */ } /** * @brief I2S error callbacks * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @retval None */ __weak void HAL_I2S_ErrorCallback(I2S_HandleTypeDef *hi2s) { /* Prevent unused argument(s) compilation warning */ UNUSED(hi2s); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_I2S_ErrorCallback could be implemented in the user file */ } /** * @} */ /** @addtogroup I2S_Exported_Functions_Group3 * @brief Peripheral State functions * @verbatim =============================================================================== ##### Peripheral State and Errors functions ##### =============================================================================== [..] This subsection permits to get in run-time the status of the peripheral and the data flow. @endverbatim * @{ */ /** * @brief Return the I2S state * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @retval HAL state */ HAL_I2S_StateTypeDef HAL_I2S_GetState(I2S_HandleTypeDef *hi2s) { return hi2s->State; } /** * @brief Return the I2S error code * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @retval I2S Error Code */ uint32_t HAL_I2S_GetError(I2S_HandleTypeDef *hi2s) { return hi2s->ErrorCode; } /** * @} */ /** * @} */ /** @addtogroup I2S_Private_Functions I2S Private Functions * @{ */ /** * @brief DMA I2S transmit process complete callback * @param hdma pointer to a DMA_HandleTypeDef structure that contains * the configuration information for the specified DMA module. * @retval None */ static void I2S_DMATxCplt(DMA_HandleTypeDef *hdma) { I2S_HandleTypeDef* hi2s = ( I2S_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0U) { /* Disable Tx DMA Request */ CLEAR_BIT(hi2s->Instance->CR2,SPI_CR2_TXDMAEN); hi2s->TxXferCount = 0U; hi2s->State = HAL_I2S_STATE_READY; } HAL_I2S_TxCpltCallback(hi2s); } /** * @brief DMA I2S transmit process half complete callback * @param hdma pointer to a DMA_HandleTypeDef structure that contains * the configuration information for the specified DMA module. * @retval None */ static void I2S_DMATxHalfCplt(DMA_HandleTypeDef *hdma) { I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; HAL_I2S_TxHalfCpltCallback(hi2s); } /** * @brief DMA I2S receive process complete callback * @param hdma pointer to a DMA_HandleTypeDef structure that contains * the configuration information for the specified DMA module. * @retval None */ static void I2S_DMARxCplt(DMA_HandleTypeDef *hdma) { I2S_HandleTypeDef* hi2s = ( I2S_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0U) { /* Disable Rx DMA Request */ CLEAR_BIT(hi2s->Instance->CR2,SPI_CR2_RXDMAEN); hi2s->RxXferCount = 0U; hi2s->State = HAL_I2S_STATE_READY; } HAL_I2S_RxCpltCallback(hi2s); } /** * @brief DMA I2S receive process half complete callback * @param hdma pointer to a DMA_HandleTypeDef structure that contains * the configuration information for the specified DMA module. * @retval None */ static void I2S_DMARxHalfCplt(DMA_HandleTypeDef *hdma) { I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; HAL_I2S_RxHalfCpltCallback(hi2s); } /** * @brief DMA I2S communication error callback * @param hdma pointer to a DMA_HandleTypeDef structure that contains * the configuration information for the specified DMA module. * @retval None */ static void I2S_DMAError(DMA_HandleTypeDef *hdma) { I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; /* Disable Rx and Tx DMA Request */ CLEAR_BIT(hi2s->Instance->CR2,(SPI_CR2_RXDMAEN | SPI_CR2_TXDMAEN)); hi2s->TxXferCount = 0U; hi2s->RxXferCount = 0U; hi2s->State= HAL_I2S_STATE_READY; SET_BIT(hi2s->ErrorCode,HAL_I2S_ERROR_DMA); HAL_I2S_ErrorCallback(hi2s); } /** * @brief Transmit an amount of data in non-blocking mode with Interrupt * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @retval HAL status */ static void I2S_Transmit_IT(I2S_HandleTypeDef *hi2s) { /* Transmit data */ hi2s->Instance->DR = (*hi2s->pTxBuffPtr++); hi2s->TxXferCount--; if(hi2s->TxXferCount == 0U) { /* Disable TXE and ERR interrupt */ __HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR)); hi2s->State = HAL_I2S_STATE_READY; HAL_I2S_TxCpltCallback(hi2s); } } /** * @brief Receive an amount of data in non-blocking mode with Interrupt * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @retval HAL status */ static void I2S_Receive_IT(I2S_HandleTypeDef *hi2s) { /* Receive data */ (*hi2s->pRxBuffPtr++) = hi2s->Instance->DR; hi2s->RxXferCount--; if(hi2s->RxXferCount == 0U) { /* Disable RXNE and ERR interrupt */ __HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR)); hi2s->State = HAL_I2S_STATE_READY; HAL_I2S_RxCpltCallback(hi2s); } } /** * @brief This function handles I2S interrupt request. * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @retval None */ static void I2S_IRQHandler(I2S_HandleTypeDef *hi2s) { __IO uint32_t i2ssr = hi2s->Instance->SR; if(hi2s->State == HAL_I2S_STATE_BUSY_RX) { /* I2S in mode Receiver ------------------------------------------------*/ if(((i2ssr & I2S_FLAG_RXNE) == I2S_FLAG_RXNE) && (__HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_RXNE) != RESET)) { I2S_Receive_IT(hi2s); } /* I2S Overrun error interrupt occured -------------------------------------*/ if(((i2ssr & I2S_FLAG_OVR) == I2S_FLAG_OVR) && (__HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR) != RESET)) { /* Disable RXNE and ERR interrupt */ __HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR)); /* Clear Overrun flag */ __HAL_I2S_CLEAR_OVRFLAG(hi2s); /* Set the I2S State ready */ hi2s->State = HAL_I2S_STATE_READY; /* Set the error code and execute error callback*/ SET_BIT(hi2s->ErrorCode,HAL_I2S_ERROR_OVR); HAL_I2S_ErrorCallback(hi2s); } } if(hi2s->State == HAL_I2S_STATE_BUSY_TX) { /* I2S in mode Transmitter -----------------------------------------------*/ if(((i2ssr & I2S_FLAG_TXE) == I2S_FLAG_TXE) && (__HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_TXE) != RESET)) { I2S_Transmit_IT(hi2s); } /* I2S Underrun error interrupt occurred --------------------------------*/ if(((i2ssr & I2S_FLAG_UDR) == I2S_FLAG_UDR) && (__HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR) != RESET)) { /* Disable TXE and ERR interrupt */ __HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR)); /* Clear Underrun flag */ __HAL_I2S_CLEAR_UDRFLAG(hi2s); /* Set the I2S State ready */ hi2s->State = HAL_I2S_STATE_READY; /* Set the error code and execute error callback*/ SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_UDR); HAL_I2S_ErrorCallback(hi2s); } } } /** * @brief This function handles I2S Communication Timeout. * @param hi2s pointer to a I2S_HandleTypeDef structure that contains * the configuration information for I2S module * @param Flag Flag checked * @param State Value of the flag expected * @param Timeout Duration of the timeout * @retval HAL status */ static HAL_StatusTypeDef I2S_WaitFlagStateUntilTimeout(I2S_HandleTypeDef *hi2s, uint32_t Flag, uint32_t State, uint32_t Timeout) { uint32_t tickstart = HAL_GetTick(); /* Wait until flag is set to status*/ while(((__HAL_I2S_GET_FLAG(hi2s, Flag)) ? SET : RESET) != State) { if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout)) { /* Set the I2S State ready */ hi2s->State = HAL_I2S_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(hi2s); return HAL_TIMEOUT; } } } return HAL_OK; } /** * @} */ /** * @} */ #endif /* HAL_I2S_MODULE_ENABLED */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/