view Small_CPU/Src/uart.c @ 835:717b460294cd Evo_2_23

Added autofocus for BF Navigation view: In case of activated autofocus feature for big font the navigation view will now be activated in case the OSTC4 is hold in horizontal position (like it is for example done if you take a bearing). The OSTC4 will return to the previous view in case the OSTC4 is no longer hold in horizontal position.
author Ideenmodellierer
date Sun, 17 Dec 2023 21:49:02 +0100
parents 9602a7338f28
children c3dd461ca3f9
line wrap: on
line source

/**
  ******************************************************************************
  * @file    uart.c 
  * @author  heinrichs weikamp gmbh
  * @version V0.0.1
  * @date    27-March-2014
  * @brief   button control
  *           
  @verbatim                 
  ============================================================================== 
                        ##### How to use #####
  ============================================================================== 
  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2015 heinrichs weikamp</center></h2>
  *
  ******************************************************************************
  */ 
/* Includes ------------------------------------------------------------------*/
#include "uart.h"
#include "uartProtocol_O2.h"
#include "uartProtocol_Co2.h"
#include "externalInterface.h"
#include "data_exchange.h"
#include <string.h>	/* memset */

/* Private variables ---------------------------------------------------------*/



#define CHUNK_SIZE				(25u)		/* the DMA will handle chunk size transfers */
#define CHUNKS_PER_BUFFER		(5u)

UART_HandleTypeDef huart1;

DMA_HandleTypeDef  hdma_usart1_rx;

uint8_t rxBuffer[CHUNK_SIZE * CHUNKS_PER_BUFFER];		/* The complete buffer has a X * chunk size to allow fariations in buffer read time */
static uint8_t rxWriteIndex;							/* Index of the data item which is analysed */
static uint8_t rxReadIndex;								/* Index at which new data is stared */
static uint8_t lastCmdIndex;							/* Index of last command which has not been completly received */
static uint8_t dmaActive;								/* Indicator if DMA reception needs to be started */


static uint8_t SentinelConnected = 0;					/* Binary indicator if a sensor is connected or not */


/* Exported functions --------------------------------------------------------*/


void MX_USART1_UART_Init(void)
{
/* regular init */	

  huart1.Instance = USART1;
  huart1.Init.BaudRate = 19200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;

  HAL_UART_Init(&huart1);

  MX_USART1_DMA_Init();

  memset(rxBuffer,BUFFER_NODATA,sizeof(rxBuffer));
  rxReadIndex = 0;
  lastCmdIndex = 0;
  rxWriteIndex = 0;
  dmaActive = 0;

  SentinelConnected = 0;

}

void MX_USART1_UART_DeInit(void)
{
	HAL_DMA_Abort(&hdma_usart1_rx);
	HAL_DMA_DeInit(&hdma_usart1_rx);
	HAL_UART_DeInit(&huart1);
	dmaActive = 0;
}

void  MX_USART1_DMA_Init()
{
  /* DMA controller clock enable */
  __DMA2_CLK_ENABLE();

  /* Peripheral DMA init*/
  hdma_usart1_rx.Instance = DMA2_Stream5;
  hdma_usart1_rx.Init.Channel = DMA_CHANNEL_4;
  hdma_usart1_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; //DMA_MEMORY_TO_PERIPH;
  hdma_usart1_rx.Init.PeriphInc = DMA_PINC_DISABLE;
  hdma_usart1_rx.Init.MemInc = DMA_MINC_ENABLE;
  hdma_usart1_rx.Init.PeriphDataAlignment = DMA_MDATAALIGN_BYTE;
  hdma_usart1_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  hdma_usart1_rx.Init.Mode = DMA_NORMAL;
  hdma_usart1_rx.Init.Priority = DMA_PRIORITY_LOW;
  hdma_usart1_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  HAL_DMA_Init(&hdma_usart1_rx);

  __HAL_LINKDMA(&huart1,hdmarx,hdma_usart1_rx);

  /* DMA interrupt init */
  HAL_NVIC_SetPriority(DMA2_Stream5_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA2_Stream5_IRQn);
}

void  UART_MUX_SelectAddress(uint8_t muxAddress)
{
	uint8_t indexstr[4];

	if(muxAddress <= MAX_MUX_CHANNEL)
	{
		indexstr[0] = '~';
		indexstr[1] = muxAddress;
		indexstr[2] = 0x0D;
		indexstr[3] = 0x0A;

		HAL_UART_Transmit(&huart1,indexstr,4,10);
	}
}


void UART_SendCmdString(uint8_t *cmdString)
{
	uint8_t cmdLength = strlen((char*)cmdString);

	if(cmdLength < 20)		/* A longer string is an indication for a missing 0 termination */
	{
		if(dmaActive == 0)
		{
			UART_StartDMA_Receiption();
		}
		HAL_UART_Transmit(&huart1,cmdString,cmdLength,10);
	}
}


void StringToInt(char *pstr, uint32_t *puInt32)
{
	uint8_t index = 0;
	uint32_t result = 0;
	while((pstr[index] >= '0') && (pstr[index] <= '9'))
	{
		result *=10;
		result += pstr[index] - '0';
		index++;
	}
	*puInt32 = result;
}

void StringToUInt64(char *pstr, uint64_t *puint64)
{
	uint8_t index = 0;
	uint64_t result = 0;
	while((pstr[index] >= '0') && (pstr[index] <= '9'))
	{
		result *=10;
		result += pstr[index] - '0';
		index++;
	}
	*puint64 = result;
}
void ConvertByteToHexString(uint8_t byte, char* str)
{
	uint8_t worker = 0;
	uint8_t digit = 0;
	uint8_t digitCnt = 1;

	worker = byte;
	while((worker!=0) && (digitCnt != 255))
	{
		digit = worker % 16;
		if( digit < 10)
		{
			digit += '0';
		}
		else
		{
			digit += 'A' - 10;
		}
		str[digitCnt--]= digit;
		worker = worker / 16;
	}
}

void UART_StartDMA_Receiption()
{
	if(dmaActive == 0)
	{
		if(HAL_OK == HAL_UART_Receive_DMA (&huart1, &rxBuffer[rxWriteIndex], CHUNK_SIZE))
		{
			dmaActive = 1;
		}
	}
}

void UART_ChangeBaudrate(uint32_t newBaudrate)
{
	uint8_t dmaWasActive = dmaActive;
//	HAL_DMA_Abort(&hdma_usart1_rx);
		MX_USART1_UART_DeInit();
		//HAL_UART_Abort(&huart1);
		//HAL_DMA_DeInit(&hdma_usart1_rx);


//	huart1.Instance->BRR = UART_BRR_SAMPLING8(HAL_RCC_GetPCLK2Freq()/2, newBaudrate);
	huart1.Init.BaudRate = newBaudrate;
	HAL_UART_Init(&huart1);
	MX_USART1_DMA_Init();
	if(dmaWasActive)
	{
		memset(rxBuffer,BUFFER_NODATA,sizeof(rxBuffer));
		rxReadIndex = 0;
		rxWriteIndex = 0;
		dmaActive = 0;
		UART_StartDMA_Receiption();
	}
}

#ifdef ENABLE_SENTINEL_MODE
void UART_HandleSentinelData(void)
{
	uint8_t localRX = rxReadIndex;
	static uint8_t dataType = 0;
	static uint32_t dataValue[3];
	static uint8_t dataValueIdx = 0;
	static receiveState_t rxState = RX_Ready;
	static uint32_t lastReceiveTick = 0;
	static uint8_t lastAlive = 0;
	static uint8_t curAlive = 0;
	static uint8_t checksum = 0;
	static char checksum_str[]="00";

	while((rxBuffer[localRX]!=0))
	{
		lastReceiveTick = HAL_GetTick();

		switch(rxState)
		{
			case RX_Ready:	if((rxBuffer[localRX] >= 'a') && (rxBuffer[localRX] <= 'z'))
							{
								rxState = RX_DetectStart;
								curAlive = rxBuffer[localRX];
								checksum = 0;
							}
					break;

			case RX_DetectStart: 	checksum += rxBuffer[localRX];
									if(rxBuffer[localRX] == '1')
								 	{
								 		rxState = RX_SelectData;
								 		dataType = 0xFF;

								 	}
									else
									{
										rxState = RX_Ready;
									}
					break;

			case RX_SelectData:		checksum += rxBuffer[localRX];
									switch(rxBuffer[localRX])
									{
										case 'T':	dataType = rxBuffer[localRX];
											break;
										case '0': 	if(dataType != 0xff)
													{
														rxState = RX_Data0;
														dataValueIdx = 0;
														dataValue[0] = 0;

													}
													else
													{
														rxState = RX_Ready;
													}
											break;
										default:	rxState = RX_Ready;
									}
					break;

			case RX_Data0:
			case RX_Data1:
			case RX_Data2:
			case RX_Data4:
			case RX_Data5:
			case RX_Data6:
			case RX_Data8:
			case RX_Data9:
			case RX_Data10: checksum += rxBuffer[localRX];
							if((rxBuffer[localRX] >= '0') && (rxBuffer[localRX] <= '9'))
							{
								dataValue[dataValueIdx] = dataValue[dataValueIdx] * 10 + (rxBuffer[localRX] - '0');
								rxState++;
							}
							else
							{
								rxState = RX_Ready;
							}
					break;

			case RX_Data3:
			case RX_Data7:	checksum += rxBuffer[localRX];
							if(rxBuffer[localRX] == '0')
							{
								rxState++;
								dataValueIdx++;
								dataValue[dataValueIdx] = 0;
							}
							else
							{
								rxState = RX_Ready;
							}
					break;
			case RX_Data11: rxState = RX_DataComplete;
							ConvertByteToHexString(checksum,checksum_str);
							if(rxBuffer[localRX] == checksum_str[0])
							{
								rxState = RX_DataComplete;
							}
							else
							{
								rxState = RX_Ready;
							}

				break;

			case RX_DataComplete:	if(rxBuffer[localRX] == checksum_str[1])
									{
										setExternalInterfaceChannel(0,(float)(dataValue[0] / 10.0));
										setExternalInterfaceChannel(1,(float)(dataValue[1] / 10.0));
										setExternalInterfaceChannel(2,(float)(dataValue[2] / 10.0));
										SentinelConnected = 1;
									}
									rxState = RX_Ready;
				break;


			default:				rxState = RX_Ready;
				break;

		}
		localRX++;
		rxReadIndex++;
		if(rxReadIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER)
		{
			localRX = 0;
			rxReadIndex = 0;
		}
	}

	if(time_elapsed_ms(lastReceiveTick,HAL_GetTick()) > 4000)	/* check for communication timeout */
	{
		if(curAlive == lastAlive)
		{
			setExternalInterfaceChannel(0,0.0);
			setExternalInterfaceChannel(1,0.0);
			setExternalInterfaceChannel(2,0.0);
			SentinelConnected = 0;
		}
		lastAlive = curAlive;
	}

	if((dmaActive == 0)	&& (externalInterface_isEnabledPower33()))	/* Should never happen in normal operation => restart in case of communication error */
	{
		UART_StartDMA_Receiption();
	}
}
#endif



uint8_t UART_isSentinelConnected()
{
	return SentinelConnected;
}

void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
    if(huart == &huart1)
    {
    	dmaActive = 0;
    	rxWriteIndex+=CHUNK_SIZE;
    	if(rxWriteIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER)
    	{
    		rxWriteIndex = 0;
    	}
    	if((rxWriteIndex / CHUNK_SIZE) != (rxReadIndex / CHUNK_SIZE) || (rxWriteIndex == rxReadIndex))	/* start next transfer if we did not catch up with read index */
    	{
			UART_StartDMA_Receiption();
    	}
    }
}

void UART_ReadData(uint8_t sensorType)
{
	uint8_t localRX = rxReadIndex;

	while((rxBuffer[localRX]!=BUFFER_NODATA))
	{
		switch (sensorType)
		{
			case SENSOR_MUX:
			case SENSOR_DIGO2:	uartO2_ProcessData(rxBuffer[localRX]);
				break;
#ifdef ENABLE_CO2_SUPPORT
			case SENSOR_CO2:	uartCo2_ProcessData(rxBuffer[localRX]);
				break;
#endif
			default:
				break;
		}

		rxBuffer[localRX] = BUFFER_NODATA;
		localRX++;
		rxReadIndex++;
		if(rxReadIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER)
		{
			localRX = 0;
			rxReadIndex = 0;
		}
	}
}

void UART_FlushRxBuffer(void)
{
	while(rxBuffer[rxReadIndex] != BUFFER_NODATA)
	{
		rxBuffer[rxReadIndex] = BUFFER_NODATA;
		rxReadIndex++;
		if(rxReadIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER)
		{
			rxReadIndex = 0;
		}
	}
}



/************************ (C) COPYRIGHT heinrichs weikamp *****END OF FILE****/