Mercurial > public > ostc4
view Discovery/Src/data_central.c @ 635:66c8a4ff9fc4
Debounce fallback warning:
In previous versions the fallback option (automatical setting of a fixed setpoint) was only done for communication timeout scenario in combination with a HUD. It is now also applied in case all sensors are rated as out of bounds. The signaling of the fallback warning (including optional automatic setpoint change) is now done taking a 5 seconds debounds time into account.
In case a fallback warning is active, then the only way to reset it is by selecting a new setpoint or by changing the sensor configuration (no change compared to previous implementation
author | Ideenmodellierer |
---|---|
date | Wed, 24 Feb 2021 21:03:22 +0100 |
parents | d784f281833a |
children | 1b995079c045 |
line wrap: on
line source
/** ****************************************************************************** * @copyright heinrichs weikamp * @file data_central.c * @author heinrichs weikamp gmbh * @date 10-November-2014 * @version V1.0.2 * @since 10-Nov-2014 * @brief All the data EXCEPT * - settings (settings.c) * feste Werte, die nur an der Oberfl�che ge�ndert werden * - dataIn and dataOut (data_exchange.h and data_exchange_main.c) * Austausch mit Small CPU * @bug * @warning @verbatim ============================================================================== ##### SDiveState Real and Sim ##### ============================================================================== [..] SDiveSettings copy of parts of Settings that are necessary during the dive and could be modified during the dive without post dive changes. [..] SLifeData written in DataEX_copy_to_LifeData(); block 1 "lifedata" set by SmallCPU in stateReal block 2 "actualGas" set by main CPU from user input and send to Small CPU block 3 "calculated data" set by main CPU based on "lifedata" [..] SVpm [..] SEvents [..] SDecoinfo [..] mode set by SmallCPU in stateReal, can be surface, dive, ... [..] data_old__lost_connection_to_slave set by DataEX_copy_to_LifeData(); ============================================================================== ##### SDiveState Deco ##### ============================================================================== [..] kjbkldafj�lasdfjasdf ============================================================================== ##### decoLock ##### ============================================================================== [..] The handler that synchronizes the data between IRQ copy and main deco loop @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2015 heinrichs weikamp</center></h2> * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include <string.h> #include <math.h> #include "data_central.h" #include "calc_crush.h" #include "decom.h" #include "stm32f4xx_hal.h" #include "settings.h" #include "data_exchange_main.h" #include "ostc.h" // for button adjust on hw testboard 1 #include "tCCR.h" #include "crcmodel.h" static SDiveState stateReal = { 0 }; SDiveState stateSim = { 0 }; SDiveState stateDeco = { 0 }; static SDevice stateDevice = { /* max is 0x7FFFFFFF, min is 0x80000000 but also defined in stdint.h :-) */ /* count, use 0 */ .batteryChargeCompleteCycles.value_int32 = 0, .batteryChargeCycles.value_int32 = 0, .diveCycles.value_int32 = 0, .hoursOfOperation.value_int32 = 0, /* max values, use min. */ .temperatureMaximum.value_int32 = INT32_MIN, .depthMaximum.value_int32 = INT32_MIN, /* min values, use max. */ .temperatureMinimum.value_int32 = INT32_MAX, .voltageMinimum.value_int32 = INT32_MAX, }; static SVpmRepetitiveData stateVPM = { .repetitive_variables_not_valid = 1, .is_data_from_RTE_CPU = 0, }; const SDiveState *stateUsed = &stateReal; SDiveState *stateUsedWrite = &stateReal; #define COMPASS_FRACTION (4.0f) /* delay till value changes to new actual */ static float compass_compensated = 0; void set_stateUsedToReal(void) { stateUsed = stateUsedWrite = &stateReal; } void set_stateUsedToSim(void) { stateUsed = stateUsedWrite = &stateSim; } _Bool is_stateUsedSetToSim(void) { return stateUsed == &stateSim; } const SDiveState * stateRealGetPointer(void) { return &stateReal; } SDiveState * stateRealGetPointerWrite(void) { return &stateReal; } const SDiveState * stateSimGetPointer(void) { return &stateSim; } SDiveState * stateSimGetPointerWrite(void) { return &stateSim; } const SDevice * stateDeviceGetPointer(void) { return &stateDevice; } SDevice * stateDeviceGetPointerWrite(void) { return &stateDevice; } const SVpmRepetitiveData * stateVpmRepetitiveDataGetPointer(void) { return &stateVPM; } SVpmRepetitiveData * stateVpmRepetitiveDataGetPointerWrite(void) { return &stateVPM; } uint32_t time_elapsed_ms(uint32_t ticksstart,uint32_t ticksnow) { if(ticksstart <= ticksnow) return ticksnow - ticksstart; else return 0xFFFFFFFF - ticksstart + ticksnow; } uint8_t decoLock = DECO_CALC_undefined; static int descent_rate_meter_per_min = 20; static int max_depth = 70; static int bottom_time = 10; _Bool vpm_crush(SDiveState* pDiveState); void setSimulationValues(int _ascent_rate_meter_per_min, int _descent_rate_meter_per_min, int _max_depth, int _bottom_time ) { descent_rate_meter_per_min = _descent_rate_meter_per_min; max_depth = _max_depth; bottom_time = _bottom_time; } int current_second(void) { return HAL_GetTick() / 1000; } #define OXY_ONE_SIXTIETH_PART 0.0166667f uint8_t calc_MOD(uint8_t gasId) { int16_t oxygen, maxppO2, result; SSettings *pSettings; pSettings = settingsGetPointer(); oxygen = (int16_t)(pSettings->gas[gasId].oxygen_percentage); if(pSettings->gas[gasId].note.ub.deco > 0) maxppO2 =(int16_t)(pSettings->ppO2_max_deco); else maxppO2 =(int16_t)(pSettings->ppO2_max_std); result = 10 * maxppO2; result /= oxygen; result -= 10; if(result < 0) return 0; if(result > 255) return 255; return result; } float get_ambiant_pressure_simulation(long dive_time_seconds, float surface_pressure_bar ) { static long descent_time; float depth_meter; descent_time = 60 * max_depth / descent_rate_meter_per_min; if(dive_time_seconds <= descent_time) { depth_meter = ((float)(dive_time_seconds * descent_rate_meter_per_min)) / 60; return surface_pressure_bar + depth_meter / 10; } //else if(dive_time_seconds <= (descent_time + bottom_time * 60)) return surface_pressure_bar + max_depth / 10; } void UpdateLifeDataTest(SDiveState * pDiveState) { static int last_second = -1; int now = current_second(); if(last_second == now) return; last_second = now; pDiveState->lifeData.dive_time_seconds += 1; pDiveState->lifeData.pressure_ambient_bar = get_ambiant_pressure_simulation(pDiveState->lifeData.dive_time_seconds,pDiveState->lifeData.pressure_surface_bar); pDiveState->lifeData.depth_meter = (pDiveState->lifeData.pressure_ambient_bar - pDiveState->lifeData.pressure_surface_bar) * 10.0f; if(pDiveState->lifeData.max_depth_meter < pDiveState->lifeData.depth_meter) pDiveState->lifeData.max_depth_meter = pDiveState->lifeData.depth_meter; decom_tissues_exposure(1, &pDiveState->lifeData); pDiveState->lifeData.ppO2 = decom_calc_ppO2( pDiveState->lifeData.pressure_ambient_bar, &pDiveState->lifeData.actualGas); decom_oxygen_calculate_cns(& pDiveState->lifeData.cns, pDiveState->lifeData.ppO2); vpm_crush(pDiveState); } _Bool vpm_crush(SDiveState* pDiveState) { int i = 0; static float starting_ambient_pressure = 0; static float ending_ambient_pressure = 0; static float time_calc_begin = -1; static float initial_helium_pressure[16]; static float initial_nitrogen_pressure[16]; ending_ambient_pressure = pDiveState->lifeData.pressure_ambient_bar * 10; if((pDiveState->lifeData.dive_time_seconds <= 4) || (starting_ambient_pressure >= ending_ambient_pressure)) { time_calc_begin = pDiveState->lifeData.dive_time_seconds; starting_ambient_pressure = pDiveState->lifeData.pressure_ambient_bar * 10; for( i = 0; i < 16; i++) { initial_helium_pressure[i] = pDiveState->lifeData.tissue_helium_bar[i] * 10; initial_nitrogen_pressure[i] = pDiveState->lifeData.tissue_nitrogen_bar[i] * 10; } return false; } if(pDiveState->lifeData.dive_time_seconds - time_calc_begin >= 4) { if(ending_ambient_pressure > starting_ambient_pressure + 0.5f) { float rate = (ending_ambient_pressure - starting_ambient_pressure) * 60 / 4; calc_crushing_pressure(&pDiveState->lifeData, &pDiveState->vpm, initial_helium_pressure, initial_nitrogen_pressure, starting_ambient_pressure, rate); time_calc_begin = pDiveState->lifeData.dive_time_seconds; starting_ambient_pressure = pDiveState->lifeData.pressure_ambient_bar * 10; for( i = 0; i < 16; i++) { initial_helium_pressure[i] = pDiveState->lifeData.tissue_helium_bar[i] * 10; initial_nitrogen_pressure[i] = pDiveState->lifeData.tissue_nitrogen_bar[i] * 10; } return true; } } return false; }; void createDiveSettings(void) { SSettings* pSettings = settingsGetPointer(); setActualGasFirst(&stateReal.lifeData); stateReal.diveSettings.compassHeading = pSettings->compassBearing; stateReal.diveSettings.ascentRate_meterperminute = 10; stateReal.diveSettings.diveMode = pSettings->dive_mode; stateReal.diveSettings.CCR_Mode = pSettings->CCR_Mode; if(stateReal.diveSettings.diveMode == DIVEMODE_CCR) stateReal.diveSettings.ccrOption = 1; else stateReal.diveSettings.ccrOption = 0; memcpy(stateReal.diveSettings.gas, pSettings->gas,sizeof(pSettings->gas)); memcpy(stateReal.diveSettings.setpoint, pSettings->setpoint,sizeof(pSettings->setpoint)); stateReal.diveSettings.gf_high = pSettings->GF_high; stateReal.diveSettings.gf_low = pSettings->GF_low; stateReal.diveSettings.input_next_stop_increment_depth_bar = ((float)pSettings->stop_increment_depth_meter) / 10.0f; stateReal.diveSettings.last_stop_depth_bar = ((float)pSettings->last_stop_depth_meter) / 10.0f; stateReal.diveSettings.vpm_conservatism = pSettings->VPM_conservatism.ub.standard; stateReal.diveSettings.deco_type.uw = pSettings->deco_type.uw; stateReal.diveSettings.fallbackOption = pSettings->fallbackToFixedSetpoint; stateReal.diveSettings.ppo2sensors_deactivated = pSettings->ppo2sensors_deactivated; stateReal.diveSettings.future_TTS_minutes = pSettings->future_TTS; decom_CreateGasChangeList(&stateReal.diveSettings, &stateReal.lifeData); // decogaslist stateReal.diveSettings.internal__pressure_first_stop_ambient_bar_as_upper_limit_for_gf_low_otherwise_zero = 0; /* for safety */ stateReal.diveSettings.input_second_to_last_stop_depth_bar = stateReal.diveSettings.last_stop_depth_bar + stateReal.diveSettings.input_next_stop_increment_depth_bar; /* and the proper calc */ for(int i = 1; i <10; i++) { if(stateReal.diveSettings.input_next_stop_increment_depth_bar * i > stateReal.diveSettings.last_stop_depth_bar) { stateReal.diveSettings.input_second_to_last_stop_depth_bar = stateReal.diveSettings.input_next_stop_increment_depth_bar * i; break; } } } void copyDiveSettingsToSim(void) { memcpy(&stateSim, &stateReal, sizeof(stateReal)); } void copyVpmRepetetiveDataToSim(void) { SDiveState * pSimData = stateSimGetPointerWrite(); const SVpmRepetitiveData * pVpmData = stateVpmRepetitiveDataGetPointer(); if(pVpmData->is_data_from_RTE_CPU) { for(int i=0; i<16;i++) { pSimData->vpm.adjusted_critical_radius_he[i] = pVpmData->adjusted_critical_radius_he[i]; pSimData->vpm.adjusted_critical_radius_n2[i] = pVpmData->adjusted_critical_radius_n2[i]; pSimData->vpm.adjusted_crushing_pressure_he[i] = pVpmData->adjusted_crushing_pressure_he[i]; pSimData->vpm.adjusted_crushing_pressure_n2[i] = pVpmData->adjusted_crushing_pressure_n2[i]; pSimData->vpm.initial_allowable_gradient_he[i] = pVpmData->initial_allowable_gradient_he[i]; pSimData->vpm.initial_allowable_gradient_n2[i] = pVpmData->initial_allowable_gradient_n2[i]; pSimData->vpm.max_actual_gradient[i] = pVpmData->max_actual_gradient[i]; } pSimData->vpm.repetitive_variables_not_valid = pVpmData->repetitive_variables_not_valid; } } void updateSetpointStateUsed(void) { if(stateUsed->diveSettings.diveMode != DIVEMODE_CCR) { stateUsedWrite->lifeData.actualGas.setPoint_cbar = 0; stateUsedWrite->lifeData.ppO2 = decom_calc_ppO2(stateUsed->lifeData.pressure_ambient_bar, &stateUsed->lifeData.actualGas); } else { if(stateUsed->diveSettings.CCR_Mode == CCRMODE_Sensors) { stateUsedWrite->lifeData.actualGas.setPoint_cbar = get_ppO2SensorWeightedResult_cbar(); } if((stateUsed->lifeData.pressure_ambient_bar * 100) < stateUsed->lifeData.actualGas.setPoint_cbar) stateUsedWrite->lifeData.ppO2 = stateUsed->lifeData.pressure_ambient_bar; else stateUsedWrite->lifeData.ppO2 = ((float)stateUsed->lifeData.actualGas.setPoint_cbar) / 100; } } void setActualGasFirst(SLifeData *lifeData) { SSettings* pSettings = settingsGetPointer(); uint8_t start = 0; uint8_t gasId = 0; uint8_t setpoint_cbar = 0; if(pSettings->dive_mode == DIVEMODE_CCR) { setpoint_cbar = pSettings->setpoint[1].setpoint_cbar; start = NUM_OFFSET_DILUENT+1; } else { setpoint_cbar = 0; start = 1; } gasId = start; for(int i=start;i<=NUM_GASES+start;i++) { if(pSettings->gas[i].note.ub.first) { gasId = i; break; } } setActualGas(lifeData, gasId, setpoint_cbar); } void setActualGasAir(SLifeData *lifeData) { uint8_t nitrogen; nitrogen = 79; lifeData->actualGas.GasIdInSettings = 0; lifeData->actualGas.nitrogen_percentage = nitrogen; lifeData->actualGas.helium_percentage =0; lifeData->actualGas.setPoint_cbar = 0; lifeData->actualGas.change_during_ascent_depth_meter_otherwise_zero = 0; } void setActualGas(SLifeData *lifeData, uint8_t gasId, uint8_t setpoint_cbar) { SSettings* pSettings = settingsGetPointer(); uint8_t nitrogen; nitrogen = 100; nitrogen -= pSettings->gas[gasId].oxygen_percentage; nitrogen -= pSettings->gas[gasId].helium_percentage; lifeData->actualGas.GasIdInSettings = gasId; lifeData->actualGas.nitrogen_percentage = nitrogen; lifeData->actualGas.helium_percentage = pSettings->gas[gasId].helium_percentage; lifeData->actualGas.setPoint_cbar = setpoint_cbar; lifeData->actualGas.change_during_ascent_depth_meter_otherwise_zero = 0; if((pSettings->dive_mode == DIVEMODE_CCR) && (gasId > NUM_OFFSET_DILUENT)) lifeData->lastDiluent_GasIdInSettings = gasId; } void setActualGas_DM(SLifeData *lifeData, uint8_t gasId, uint8_t setpoint_cbar) { if(stateUsed->diveSettings.ccrOption && gasId < 6) { if(lifeData->actualGas.GasIdInSettings != gasId) { SSettings* pSettings = settingsGetPointer(); stateUsedWrite->events.bailout = 1; stateUsedWrite->events.info_bailoutO2 = pSettings->gas[gasId].oxygen_percentage; stateUsedWrite->events.info_bailoutHe = pSettings->gas[gasId].helium_percentage; } } else { if(lifeData->actualGas.GasIdInSettings != gasId) { stateUsedWrite->events.gasChange = 1; stateUsedWrite->events.info_GasChange = gasId; } if( lifeData->actualGas.setPoint_cbar != setpoint_cbar) { // setPoint_cbar = 255 -> change to sensor mode stateUsedWrite->events.setpointChange = 1; stateUsedWrite->events.info_SetpointChange = setpoint_cbar; } } setActualGas(lifeData, gasId, setpoint_cbar); } void setActualGas_ExtraGas(SLifeData *lifeData, uint8_t oxygen, uint8_t helium, uint8_t setpoint_cbar) { uint8_t nitrogen; nitrogen = 100; nitrogen -= oxygen; nitrogen -= helium; if((lifeData->actualGas.nitrogen_percentage != nitrogen) || (lifeData->actualGas.helium_percentage != helium)) { stateUsedWrite->events.manualGasSet = 1; stateUsedWrite->events.info_manualGasSetHe = helium; stateUsedWrite->events.info_manualGasSetO2 = oxygen; } if( lifeData->actualGas.setPoint_cbar != setpoint_cbar) { stateUsedWrite->events.setpointChange = 1; stateUsedWrite->events.info_SetpointChange = setpoint_cbar; } lifeData->actualGas.GasIdInSettings = 0; lifeData->actualGas.nitrogen_percentage = nitrogen; lifeData->actualGas.helium_percentage = helium; lifeData->actualGas.setPoint_cbar = setpoint_cbar; lifeData->actualGas.change_during_ascent_depth_meter_otherwise_zero = 0; } void setButtonResponsiveness(uint8_t *ButtonSensitivyList) { SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); for(int i=0; i<4; i++) { pDataOut->data.buttonResponsiveness[i] = settingsHelperButtonSens_translate_percentage_to_hwOS_values(ButtonSensitivyList[i]); } pDataOut->setButtonSensitivityNow = 1; } void setDate(RTC_DateTypeDef Sdate) { SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); pDataOut->data.newDate = Sdate; pDataOut->setDateNow = 1; } void setTime(RTC_TimeTypeDef Stime) { SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); pDataOut->data.newTime = Stime; pDataOut->setTimeNow = 1; } void setBatteryPercentage(uint8_t newChargePercentage) { SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); pDataOut->data.newBatteryGaugePercentageFloat = settingsGetPointer()->lastKnownBatteryPercentage; pDataOut->setBatteryGaugeNow = 1; } void calibrateCompass(void) { SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); pDataOut->calibrateCompassNow = 1; } void clearDeco(void) { SDataReceiveFromMaster *pDataOut = dataOutGetPointer(); pDataOut->clearDecoNow = 1; stateRealGetPointerWrite()->cnsHigh_at_the_end_of_dive = 0; stateRealGetPointerWrite()->decoMissed_at_the_end_of_dive = 0; } static int32_t helper_days_from_civil(int32_t y, uint32_t m, uint32_t d) { y += 2000; y -= m <= 2; int32_t era = (y >= 0 ? y : y-399) / 400; uint32_t yoe = (uint32_t)(y - era * 400); // [0, 399] uint32_t doy = (153*(m + (m > 2 ? -3 : 9)) + 2)/5 + d-1; // [0, 365] uint32_t doe = yoe * 365 + yoe/4 - yoe/100 + doy; // [0, 146096] return era * 146097 + (int32_t)(doe) - 719468; } static uint8_t helper_weekday_from_days(int32_t z) { return (uint8_t)(z >= -4 ? (z+4) % 7 : (z+5) % 7 + 6); } void setWeekday(RTC_DateTypeDef *sDate) { uint8_t day; // [0, 6] -> [Sun, Sat] day = helper_weekday_from_days(helper_days_from_civil(sDate->Year, sDate->Month, sDate->Date)); // [1, 7] -> [Mon, Sun] if(day == 0) day = 7; sDate->WeekDay = day; } void translateDate(uint32_t datetmpreg, RTC_DateTypeDef *sDate) { datetmpreg = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK); /* Fill the structure fields with the read parameters */ sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> 16); sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> 8); sDate->Date = (uint8_t)(datetmpreg & (RTC_DR_DT | RTC_DR_DU)); sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> 13); /* Convert the date structure parameters to Binary format */ sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year); sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month); sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date); } void translateTime(uint32_t tmpreg, RTC_TimeTypeDef *sTime) { tmpreg = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK); /* Fill the structure fields with the read parameters */ sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> 16); sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >>8); sTime->Seconds = (uint8_t)(tmpreg & (RTC_TR_ST | RTC_TR_SU)); sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> 16); /* Convert the time structure parameters to Binary format */ sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours); sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes); sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds); sTime->SubSeconds = 0; } void resetEvents(const SDiveState *pStateUsed) { memset((void *)&pStateUsed->events, 0, sizeof(SEvents)); } uint32_t CRC_CalcBlockCRC_moreThan768000(uint32_t *buffer1, uint32_t *buffer2, uint32_t words) { cm_t crc_model; uint32_t word_to_do; uint8_t byte_to_do; int i; // Values for the STM32F generator. crc_model.cm_width = 32; // 32-bit CRC crc_model.cm_poly = 0x04C11DB7; // CRC-32 polynomial crc_model.cm_init = 0xFFFFFFFF; // CRC initialized to 1's crc_model.cm_refin = FALSE; // CRC calculated MSB first crc_model.cm_refot = FALSE; // Final result is not bit-reversed crc_model.cm_xorot = 0x00000000; // Final result XOR'ed with this cm_ini(&crc_model); while (words--) { // The STM32F10x hardware does 32-bit words at a time!!! if(words > (768000/4)) word_to_do = *buffer2++; else word_to_do = *buffer1++; // Do all bytes in the 32-bit word. for (i = 0; i < sizeof(word_to_do); i++) { // We calculate a *byte* at a time. If the CRC is MSB first we // do the next MS byte and vica-versa. if (crc_model.cm_refin == FALSE) { // MSB first. Do the next MS byte. byte_to_do = (uint8_t) ((word_to_do & 0xFF000000) >> 24); word_to_do <<= 8; } else { // LSB first. Do the next LS byte. byte_to_do = (uint8_t) (word_to_do & 0x000000FF); word_to_do >>= 8; } cm_nxt(&crc_model, byte_to_do); } } // Return the final result. return (cm_crc(&crc_model)); } uint32_t CRC_CalcBlockCRC(uint32_t *buffer, uint32_t words) { cm_t crc_model; uint32_t word_to_do; uint8_t byte_to_do; int i; // Values for the STM32F generator. crc_model.cm_width = 32; // 32-bit CRC crc_model.cm_poly = 0x04C11DB7; // CRC-32 polynomial crc_model.cm_init = 0xFFFFFFFF; // CRC initialized to 1's crc_model.cm_refin = FALSE; // CRC calculated MSB first crc_model.cm_refot = FALSE; // Final result is not bit-reversed crc_model.cm_xorot = 0x00000000; // Final result XOR'ed with this cm_ini(&crc_model); while (words--) { // The STM32F10x hardware does 32-bit words at a time!!! word_to_do = *buffer++; // Do all bytes in the 32-bit word. for (i = 0; i < sizeof(word_to_do); i++) { // We calculate a *byte* at a time. If the CRC is MSB first we // do the next MS byte and vica-versa. if (crc_model.cm_refin == FALSE) { // MSB first. Do the next MS byte. byte_to_do = (uint8_t) ((word_to_do & 0xFF000000) >> 24); word_to_do <<= 8; } else { // LSB first. Do the next LS byte. byte_to_do = (uint8_t) (word_to_do & 0x000000FF); word_to_do >>= 8; } cm_nxt(&crc_model, byte_to_do); } } // Return the final result. return (cm_crc(&crc_model)); } // This code is also in RTE. Keep it in sync when editing _Bool is_ambient_pressure_close_to_surface(SLifeData *lifeData) { if (lifeData->pressure_ambient_bar > 1.16) return false; else if(lifeData->pressure_ambient_bar < (lifeData->pressure_surface_bar + 0.1f)) return true; else return false; } void compass_Inertia(float newHeading) { float newTarget = newHeading; if(settingsGetPointer()->compassInertia == 0) { compass_compensated = newHeading; } else { if((compass_compensated > 270.0) && (newHeading < 90.0)) /* transition passing 0 clockwise */ { newTarget = newHeading + 360.0; } if((compass_compensated < 90.0) && (newHeading > 270.0)) /* transition passing 0 counter clockwise */ { newTarget = newHeading - 360.0; } compass_compensated = compass_compensated + ((newTarget - compass_compensated) / (COMPASS_FRACTION * (settingsGetPointer()->compassInertia))); if(compass_compensated < 0.0) { compass_compensated += 360.0; } if(compass_compensated >= 360.0) { compass_compensated -= 360.0; } } } float compass_getCompensated() { return compass_compensated; }