Mercurial > public > ostc4
view Discovery/Src/externCPU2bootloader.c @ 240:625d20070261 div-fixes-5
Improvement SPI stability/recoverability
The core part of this commit comes from careful code reading. The core is the
swap of Scheduler_Request_sync_with_SPI(SPI_SYNC_METHOD_SOFT) and
SPI_Start_single_TxRx_with_Master(). This code is sitting in an if-clause
that is triggered on SPI comms failure. Instead of blindly trying to
communicate again (which will very likely fail again), first try to reset
the comms link, and then try to communicate again. That simply makes
more sense in this case.
This is heavily tested, on 2 simple dives, and 5 very long deco schedules
from the simulator (10+ hour deco's), and a lot of small simulated dives
(upto 2h runtime). Of all these tests, only one long session failed after
9 out of 11h runtime. Analyzing that one failure, suggests that the
RTE is looping in some error handler, which (obviously) results in
a SPI comms failure as a result. I consider this not part of this change.
Additionally, some more cleanup is done in this code.
Signed-off-by: Jan Mulder <jlmulder@xs4all.nl>
author | Jan Mulder <jlmulder@xs4all.nl> |
---|---|
date | Mon, 08 Apr 2019 11:49:13 +0200 |
parents | f64cf099a7f5 |
children | 5ca177d2df5d |
line wrap: on
line source
/** ****************************************************************************** * @file externCPU2bootloader.c Template * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 23-Oct-2014 * @version V0.0.1 * @since 23-Oct-2014 * @brief Main Template to communicate with the second CPU in bootloader mode * bootloader ROM build by ST and defined in AN4286 * @verbatim ============================================================================== ##### How to use ##### ============================================================================== @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2016 heinrichs weikamp</center></h2> * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f4xx_hal.h" #include "stdio.h" #include "ostc.h" #include "settings.h" #include "externCPU2bootloader.h" #include "externLogbookFlash.h" #include "tComm.h" /* Exported variables --------------------------------------------------------*/ /* Private types -------------------------------------------------------------*/ #define BOOTLOADSPITIMEOUT 5000 /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ uint8_t boot_sync_frame(void); uint8_t boot_ack(void); uint8_t boot_get(uint8_t *RxBuffer); uint8_t boot_get_id(uint8_t *RxBuffer); uint8_t boot_get_version(uint8_t *RxBuffer); //uint8_t boot_go(uint32_t address); uint8_t boot_write_memory(uint32_t address, uint8_t length_minus_1, uint8_t *data); //uint8_t boot_erase_memory(uint16_t data_frame, uint16_t *page_numbers); uint8_t boot_erase_memory(void); uint8_t boot_write_protect(uint8_t number_of_sectors_minus_one, uint8_t *sector_codes); /* uint8_t boot_write_unprotect(void); uint8_t boot_readout_protect(void); uint8_t boot_readout_unprotect(void); */ void Bootoader_send_command(uint8_t command); void Bootloader_spi_single(uint8_t TxByte); void Bootloader_spi(uint16_t lengthData, uint8_t *aTxBuffer, uint8_t *aRxBuffer); void Bootloader_Error_Handler(void); /* Exported functions --------------------------------------------------------*/ uint8_t extCPU2bootloader_start(uint8_t *version, uint16_t *chipID) { // uint8_t aTxBuffer[256] = { 0 }; uint8_t aRxBuffer[256] = { 0 }; HAL_GPIO_WritePin(SMALLCPU_CSB_GPIO_PORT,SMALLCPU_CSB_PIN,GPIO_PIN_RESET); boot_sync_frame(); boot_get_version(aRxBuffer); *version = aRxBuffer[1]; HAL_Delay(10); boot_get_id(aRxBuffer); *chipID = ((uint16_t)aRxBuffer[2]) << 8; *chipID += (uint16_t)aRxBuffer[3]; HAL_Delay(10); if((*chipID == 0x431) && (*version > 10) && (*version < 32)) return 1; else return 0; } uint8_t extCPU2bootloader_internal(uint8_t* buffer, uint32_t length, char* display_text) { uint8_t version = 0; uint16_t chipID = 0; // uint8_t ret; if(!extCPU2bootloader_start(&version,&chipID)) return 0; if(!boot_erase_memory()) return 0; HAL_Delay(100); uint16_t i=0; uint32_t lengthsave = length; uint8_t percent = 0; while(length) { percent = (100 * (i * 256)) /lengthsave; tComm_verlauf(percent); if(length > 256) { if( !boot_write_memory(0x08000000 + (i * 256), 255, &buffer[i * 256]) ) return 0;; length -= 256; } else { if(!boot_write_memory(0x08000000 + (i * 256), length - 1, &buffer[i * 256])) return 0; length = 0; } i++; } return 2; } uint8_t extCPU2bootloader(uint8_t* buffer, uint32_t length, char* display_text) { uint8_t result = 0; MX_SmallCPU_Reset_To_Boot(); result = extCPU2bootloader_internal(buffer,length,display_text); MX_SmallCPU_Reset_To_Standard(); return result; } /* Private functions --------------------------------------------------------*/ uint8_t boot_sync_frame(void) { Bootloader_spi_single(0x5a); return boot_ack(); } uint8_t boot_get(uint8_t *RxBuffer) { Bootloader_spi_single(0x5a); Bootoader_send_command(0x00); if(!boot_ack()) return 0; Bootloader_spi(14, NULL, RxBuffer); return boot_ack(); } uint8_t boot_get_version(uint8_t *RxBuffer) { Bootloader_spi_single(0x5a); Bootoader_send_command(0x01); if(!boot_ack()) return 0; Bootloader_spi(3, NULL, RxBuffer); return boot_ack(); } uint8_t boot_get_id(uint8_t *RxBuffer) { Bootloader_spi_single(0x5a); Bootoader_send_command(0x02); if(!boot_ack()) return 0; Bootloader_spi(5, NULL, RxBuffer); return boot_ack(); } /* uint8_t boot_go(uint32_t address) { } */ uint8_t boot_write_memory(uint32_t address, uint8_t length_minus_1, uint8_t *data) { uint8_t addressNew[4]; uint8_t checksum = 0; uint16_t length; Bootloader_spi_single(0x5a); Bootoader_send_command(0x31); if(!boot_ack()) return 1; HAL_Delay(5); addressNew[0] = (uint8_t)((address >> 24) & 0xFF); addressNew[1] = (uint8_t)((address >> 16) & 0xFF); addressNew[2] = (uint8_t)((address >> 8) & 0xFF); addressNew[3] = (uint8_t)((address >> 0) & 0xFF); Bootloader_spi(4, addressNew, NULL); checksum = 0; checksum ^= addressNew[0]; checksum ^= addressNew[1]; checksum ^= addressNew[2]; checksum ^= addressNew[3]; Bootloader_spi_single(checksum); if(!boot_ack()) return 0; HAL_Delay(1); Bootloader_spi_single(length_minus_1); length = ((uint16_t)length_minus_1) + 1; Bootloader_spi(length, data, NULL); HAL_Delay(26); checksum = 0; checksum ^= length_minus_1; for(int i=0;i<length;i++) checksum ^= data[i]; Bootloader_spi_single(checksum); if(!boot_ack()) return 0; HAL_Delay(1); return 1; } //uint8_t boot_erase_memory(uint16_t data_frame, uint16_t *page_numbers) uint8_t boot_erase_memory(void) { uint8_t special_erase_with_checksum[3] = {0xFF, 0xFF, 0x00}; Bootloader_spi_single(0x5a); Bootoader_send_command(0x44); if(!boot_ack()) return 0; Bootloader_spi(3, special_erase_with_checksum, NULL); HAL_Delay(11000); /* 5.5 to 11 seconds */ if(!boot_ack()) return 0; return 1; } /* write unprotect does reset the system !! */ uint8_t boot_write_unprotect(void) { Bootloader_spi_single(0x5a); Bootoader_send_command(0x73); if(!boot_ack()) return 0; return boot_ack(); } /* uint8_t boot_write_protect(uint8_t number_of_sectors_minus_one, uint8_t *sector_codes) { } uint8_t boot_readout_protect(void) { } uint8_t boot_readout_unprotect(void) { } */ uint8_t boot_ack(void) { uint8_t answer = 0; Bootloader_spi_single(0x00); for(int i=0; i< 1000; i++) { Bootloader_spi(1, NULL, &answer); if((answer == 0x79) || (answer == 0x1F)) { Bootloader_spi_single(0x79); break; } HAL_Delay(10); } if(answer == 0x79) return 1; else return 0; } void Bootoader_send_command(uint8_t command) { uint8_t send[2]; uint8_t receive[2]; send[0] = command; send[1] = 0xFF ^ command; Bootloader_spi(2, send, receive); } void Bootloader_spi_single(uint8_t TxByte) { Bootloader_spi(1,&TxByte, 0); } void Bootloader_spi(uint16_t lengthData, uint8_t *aTxBuffer, uint8_t *aRxBuffer) { uint8_t dummy[256] = { 0 }; uint8_t *tx_data; uint8_t *rx_data; tx_data = aTxBuffer; rx_data = aRxBuffer; if(aTxBuffer == NULL) tx_data = dummy; if(aRxBuffer == NULL) rx_data = dummy; //HAL_GPIO_WritePin(OSCILLOSCOPE_GPIO_PORT,OSCILLOSCOPE_PIN,GPIO_PIN_RESET); // only for testing with Oscilloscope HAL_SPI_TransmitReceive(&cpu2DmaSpi, (uint8_t *)tx_data, (uint8_t *)rx_data, (uint16_t)lengthData,1000); /* if(HAL_SPI_TransmitReceive_DMA(&cpu2DmaSpi, (uint8_t *)tx_data, (uint8_t *)rx_data, (uint16_t)lengthData) != HAL_OK) if(HAL_SPI_TransmitReceive_DMA(&cpu2DmaSpi, (uint8_t *)tx_data, (uint8_t *)rx_data, (uint16_t)lengthData) != HAL_OK) Bootloader_Error_Handler(); while (HAL_SPI_GetState(&cpu2DmaSpi) != HAL_SPI_STATE_READY)// only for testing with Oscilloscope { } HAL_GPIO_WritePin(OSCILLOSCOPE_GPIO_PORT,OSCILLOSCOPE_PIN,GPIO_PIN_SET); // only for testing with Oscilloscope */ } void Bootloader_Error_Handler(void) { while(1); }