Mercurial > public > ostc4
view Common/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_ll_utils.c @ 725:621265ec3d23
Update CO2 sensor implementation:
Some updates were needed to get the CO2 sensor code up and running again (menu handling and UART DMA transfer).
author | Ideenmodellierer |
---|---|
date | Sat, 07 Jan 2023 18:11:52 +0100 |
parents | c78bcbd5deda |
children |
line wrap: on
line source
/** ****************************************************************************** * @file stm32f4xx_ll_utils.c * @author MCD Application Team * @brief UTILS LL module driver. ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f4xx_ll_utils.h" #include "stm32f4xx_ll_rcc.h" #include "stm32f4xx_ll_system.h" #include "stm32f4xx_ll_pwr.h" #ifdef USE_FULL_ASSERT #include "stm32_assert.h" #else #define assert_param(expr) ((void)0U) #endif /* USE_FULL_ASSERT */ /** @addtogroup STM32F4xx_LL_Driver * @{ */ /** @addtogroup UTILS_LL * @{ */ /* Private types -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private constants ---------------------------------------------------------*/ /** @addtogroup UTILS_LL_Private_Constants * @{ */ #if defined(RCC_MAX_FREQUENCY_SCALE1) #define UTILS_MAX_FREQUENCY_SCALE1 RCC_MAX_FREQUENCY /*!< Maximum frequency for system clock at power scale1, in Hz */ #endif /*RCC_MAX_FREQUENCY_SCALE1 */ #define UTILS_MAX_FREQUENCY_SCALE2 RCC_MAX_FREQUENCY_SCALE2 /*!< Maximum frequency for system clock at power scale2, in Hz */ #if defined(RCC_MAX_FREQUENCY_SCALE3) #define UTILS_MAX_FREQUENCY_SCALE3 RCC_MAX_FREQUENCY_SCALE3 /*!< Maximum frequency for system clock at power scale3, in Hz */ #endif /* MAX_FREQUENCY_SCALE3 */ /* Defines used for PLL range */ #define UTILS_PLLVCO_INPUT_MIN RCC_PLLVCO_INPUT_MIN /*!< Frequency min for PLLVCO input, in Hz */ #define UTILS_PLLVCO_INPUT_MAX RCC_PLLVCO_INPUT_MAX /*!< Frequency max for PLLVCO input, in Hz */ #define UTILS_PLLVCO_OUTPUT_MIN RCC_PLLVCO_OUTPUT_MIN /*!< Frequency min for PLLVCO output, in Hz */ #define UTILS_PLLVCO_OUTPUT_MAX RCC_PLLVCO_OUTPUT_MAX /*!< Frequency max for PLLVCO output, in Hz */ /* Defines used for HSE range */ #define UTILS_HSE_FREQUENCY_MIN 4000000U /*!< Frequency min for HSE frequency, in Hz */ #define UTILS_HSE_FREQUENCY_MAX 26000000U /*!< Frequency max for HSE frequency, in Hz */ /* Defines used for FLASH latency according to HCLK Frequency */ #if defined(FLASH_SCALE1_LATENCY1_FREQ) #define UTILS_SCALE1_LATENCY1_FREQ FLASH_SCALE1_LATENCY1_FREQ /*!< HCLK frequency to set FLASH latency 1 in power scale 1 */ #endif #if defined(FLASH_SCALE1_LATENCY2_FREQ) #define UTILS_SCALE1_LATENCY2_FREQ FLASH_SCALE1_LATENCY2_FREQ /*!< HCLK frequency to set FLASH latency 2 in power scale 1 */ #endif #if defined(FLASH_SCALE1_LATENCY3_FREQ) #define UTILS_SCALE1_LATENCY3_FREQ FLASH_SCALE1_LATENCY3_FREQ /*!< HCLK frequency to set FLASH latency 3 in power scale 1 */ #endif #if defined(FLASH_SCALE1_LATENCY4_FREQ) #define UTILS_SCALE1_LATENCY4_FREQ FLASH_SCALE1_LATENCY4_FREQ /*!< HCLK frequency to set FLASH latency 4 in power scale 1 */ #endif #if defined(FLASH_SCALE1_LATENCY5_FREQ) #define UTILS_SCALE1_LATENCY5_FREQ FLASH_SCALE1_LATENCY5_FREQ /*!< HCLK frequency to set FLASH latency 5 in power scale 1 */ #endif #define UTILS_SCALE2_LATENCY1_FREQ FLASH_SCALE2_LATENCY1_FREQ /*!< HCLK frequency to set FLASH latency 1 in power scale 2 */ #define UTILS_SCALE2_LATENCY2_FREQ FLASH_SCALE2_LATENCY2_FREQ /*!< HCLK frequency to set FLASH latency 2 in power scale 2 */ #if defined(FLASH_SCALE2_LATENCY3_FREQ) #define UTILS_SCALE2_LATENCY3_FREQ FLASH_SCALE2_LATENCY3_FREQ /*!< HCLK frequency to set FLASH latency 2 in power scale 2 */ #endif #if defined(FLASH_SCALE2_LATENCY4_FREQ) #define UTILS_SCALE2_LATENCY4_FREQ FLASH_SCALE2_LATENCY4_FREQ /*!< HCLK frequency to set FLASH latency 4 in power scale 2 */ #endif #if defined(FLASH_SCALE2_LATENCY5_FREQ) #define UTILS_SCALE2_LATENCY5_FREQ FLASH_SCALE2_LATENCY5_FREQ /*!< HCLK frequency to set FLASH latency 5 in power scale 2 */ #endif #if defined(FLASH_SCALE3_LATENCY1_FREQ) #define UTILS_SCALE3_LATENCY1_FREQ FLASH_SCALE3_LATENCY1_FREQ /*!< HCLK frequency to set FLASH latency 1 in power scale 3 */ #endif #if defined(FLASH_SCALE3_LATENCY2_FREQ) #define UTILS_SCALE3_LATENCY2_FREQ FLASH_SCALE3_LATENCY2_FREQ /*!< HCLK frequency to set FLASH latency 2 in power scale 3 */ #endif #if defined(FLASH_SCALE3_LATENCY3_FREQ) #define UTILS_SCALE3_LATENCY3_FREQ FLASH_SCALE3_LATENCY3_FREQ /*!< HCLK frequency to set FLASH latency 3 in power scale 3 */ #endif #if defined(FLASH_SCALE3_LATENCY4_FREQ) #define UTILS_SCALE3_LATENCY4_FREQ FLASH_SCALE3_LATENCY4_FREQ /*!< HCLK frequency to set FLASH latency 4 in power scale 3 */ #endif #if defined(FLASH_SCALE3_LATENCY5_FREQ) #define UTILS_SCALE3_LATENCY5_FREQ FLASH_SCALE3_LATENCY5_FREQ /*!< HCLK frequency to set FLASH latency 5 in power scale 3 */ #endif /** * @} */ /* Private macros ------------------------------------------------------------*/ /** @addtogroup UTILS_LL_Private_Macros * @{ */ #define IS_LL_UTILS_SYSCLK_DIV(__VALUE__) (((__VALUE__) == LL_RCC_SYSCLK_DIV_1) \ || ((__VALUE__) == LL_RCC_SYSCLK_DIV_2) \ || ((__VALUE__) == LL_RCC_SYSCLK_DIV_4) \ || ((__VALUE__) == LL_RCC_SYSCLK_DIV_8) \ || ((__VALUE__) == LL_RCC_SYSCLK_DIV_16) \ || ((__VALUE__) == LL_RCC_SYSCLK_DIV_64) \ || ((__VALUE__) == LL_RCC_SYSCLK_DIV_128) \ || ((__VALUE__) == LL_RCC_SYSCLK_DIV_256) \ || ((__VALUE__) == LL_RCC_SYSCLK_DIV_512)) #define IS_LL_UTILS_APB1_DIV(__VALUE__) (((__VALUE__) == LL_RCC_APB1_DIV_1) \ || ((__VALUE__) == LL_RCC_APB1_DIV_2) \ || ((__VALUE__) == LL_RCC_APB1_DIV_4) \ || ((__VALUE__) == LL_RCC_APB1_DIV_8) \ || ((__VALUE__) == LL_RCC_APB1_DIV_16)) #define IS_LL_UTILS_APB2_DIV(__VALUE__) (((__VALUE__) == LL_RCC_APB2_DIV_1) \ || ((__VALUE__) == LL_RCC_APB2_DIV_2) \ || ((__VALUE__) == LL_RCC_APB2_DIV_4) \ || ((__VALUE__) == LL_RCC_APB2_DIV_8) \ || ((__VALUE__) == LL_RCC_APB2_DIV_16)) #define IS_LL_UTILS_PLLM_VALUE(__VALUE__) (((__VALUE__) == LL_RCC_PLLM_DIV_2) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_3) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_4) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_5) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_6) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_7) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_8) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_9) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_10) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_11) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_12) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_13) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_14) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_15) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_16) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_17) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_18) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_19) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_20) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_21) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_22) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_23) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_24) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_25) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_26) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_27) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_28) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_29) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_30) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_31) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_32) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_33) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_34) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_35) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_36) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_37) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_38) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_39) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_40) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_41) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_42) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_43) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_44) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_45) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_46) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_47) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_48) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_49) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_50) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_51) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_52) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_53) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_54) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_55) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_56) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_57) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_58) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_59) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_60) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_61) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_62) \ || ((__VALUE__) == LL_RCC_PLLM_DIV_63)) #define IS_LL_UTILS_PLLN_VALUE(__VALUE__) ((RCC_PLLN_MIN_VALUE <= (__VALUE__)) && ((__VALUE__) <= RCC_PLLN_MAX_VALUE)) #define IS_LL_UTILS_PLLP_VALUE(__VALUE__) (((__VALUE__) == LL_RCC_PLLP_DIV_2) \ || ((__VALUE__) == LL_RCC_PLLP_DIV_4) \ || ((__VALUE__) == LL_RCC_PLLP_DIV_6) \ || ((__VALUE__) == LL_RCC_PLLP_DIV_8)) #define IS_LL_UTILS_PLLVCO_INPUT(__VALUE__) ((UTILS_PLLVCO_INPUT_MIN <= (__VALUE__)) && ((__VALUE__) <= UTILS_PLLVCO_INPUT_MAX)) #define IS_LL_UTILS_PLLVCO_OUTPUT(__VALUE__) ((UTILS_PLLVCO_OUTPUT_MIN <= (__VALUE__)) && ((__VALUE__) <= UTILS_PLLVCO_OUTPUT_MAX)) #if !defined(RCC_MAX_FREQUENCY_SCALE1) #define IS_LL_UTILS_PLL_FREQUENCY(__VALUE__) ((LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE2) ? ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE2) : \ ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE3)) #elif defined(RCC_MAX_FREQUENCY_SCALE3) #define IS_LL_UTILS_PLL_FREQUENCY(__VALUE__) ((LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE1) ? ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE1) : \ (LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE2) ? ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE2) : \ ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE3)) #else #define IS_LL_UTILS_PLL_FREQUENCY(__VALUE__) ((LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE1) ? ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE1) : \ ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE2)) #endif /* RCC_MAX_FREQUENCY_SCALE1*/ #define IS_LL_UTILS_HSE_BYPASS(__STATE__) (((__STATE__) == LL_UTILS_HSEBYPASS_ON) \ || ((__STATE__) == LL_UTILS_HSEBYPASS_OFF)) #define IS_LL_UTILS_HSE_FREQUENCY(__FREQUENCY__) (((__FREQUENCY__) >= UTILS_HSE_FREQUENCY_MIN) && ((__FREQUENCY__) <= UTILS_HSE_FREQUENCY_MAX)) /** * @} */ /* Private function prototypes -----------------------------------------------*/ /** @defgroup UTILS_LL_Private_Functions UTILS Private functions * @{ */ static uint32_t UTILS_GetPLLOutputFrequency(uint32_t PLL_InputFrequency, LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct); static ErrorStatus UTILS_SetFlashLatency(uint32_t HCLK_Frequency); static ErrorStatus UTILS_EnablePLLAndSwitchSystem(uint32_t SYSCLK_Frequency, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct); static ErrorStatus UTILS_PLL_IsBusy(void); /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @addtogroup UTILS_LL_Exported_Functions * @{ */ /** @addtogroup UTILS_LL_EF_DELAY * @{ */ /** * @brief This function configures the Cortex-M SysTick source to have 1ms time base. * @note When a RTOS is used, it is recommended to avoid changing the Systick * configuration by calling this function, for a delay use rather osDelay RTOS service. * @param HCLKFrequency HCLK frequency in Hz * @note HCLK frequency can be calculated thanks to RCC helper macro or function @ref LL_RCC_GetSystemClocksFreq * @retval None */ void LL_Init1msTick(uint32_t HCLKFrequency) { /* Use frequency provided in argument */ LL_InitTick(HCLKFrequency, 1000U); } /** * @brief This function provides accurate delay (in milliseconds) based * on SysTick counter flag * @note When a RTOS is used, it is recommended to avoid using blocking delay * and use rather osDelay service. * @note To respect 1ms timebase, user should call @ref LL_Init1msTick function which * will configure Systick to 1ms * @param Delay specifies the delay time length, in milliseconds. * @retval None */ void LL_mDelay(uint32_t Delay) { __IO uint32_t tmp = SysTick->CTRL; /* Clear the COUNTFLAG first */ /* Add this code to indicate that local variable is not used */ ((void)tmp); /* Add a period to guaranty minimum wait */ if(Delay < LL_MAX_DELAY) { Delay++; } while (Delay) { if((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) != 0U) { Delay--; } } } /** * @} */ /** @addtogroup UTILS_EF_SYSTEM * @brief System Configuration functions * @verbatim =============================================================================== ##### System Configuration functions ##### =============================================================================== [..] System, AHB and APB buses clocks configuration (+) The maximum frequency of the SYSCLK, HCLK, PCLK1 and PCLK2 is 180000000 Hz. @endverbatim @internal Depending on the device voltage range, the maximum frequency should be adapted accordingly to the Refenece manual. @endinternal * @{ */ /** * @brief This function sets directly SystemCoreClock CMSIS variable. * @note Variable can be calculated also through SystemCoreClockUpdate function. * @param HCLKFrequency HCLK frequency in Hz (can be calculated thanks to RCC helper macro) * @retval None */ void LL_SetSystemCoreClock(uint32_t HCLKFrequency) { /* HCLK clock frequency */ SystemCoreClock = HCLKFrequency; } /** * @brief This function configures system clock at maximum frequency with HSI as clock source of the PLL * @note The application need to ensure that PLL is disabled. * @note Function is based on the following formula: * - PLL output frequency = (((HSI frequency / PLLM) * PLLN) / PLLP) * - PLLM: ensure that the VCO input frequency ranges from @ref RCC_PLLVCO_INPUT_MIN to @ref RCC_PLLVCO_INPUT_MAX (PLLVCO_input = HSI frequency / PLLM) * - PLLN: ensure that the VCO output frequency is between @ref RCC_PLLVCO_OUTPUT_MIN and @ref RCC_PLLVCO_OUTPUT_MAX (PLLVCO_output = PLLVCO_input * PLLN) * - PLLP: ensure that max frequency at 180000000 Hz is reach (PLLVCO_output / PLLP) * @param UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains * the configuration information for the PLL. * @param UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains * the configuration information for the BUS prescalers. * @retval An ErrorStatus enumeration value: * - SUCCESS: Max frequency configuration done * - ERROR: Max frequency configuration not done */ ErrorStatus LL_PLL_ConfigSystemClock_HSI(LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct) { ErrorStatus status = SUCCESS; uint32_t pllfreq = 0U; /* Check if one of the PLL is enabled */ if(UTILS_PLL_IsBusy() == SUCCESS) { /* Calculate the new PLL output frequency */ pllfreq = UTILS_GetPLLOutputFrequency(HSI_VALUE, UTILS_PLLInitStruct); /* Enable HSI if not enabled */ if(LL_RCC_HSI_IsReady() != 1U) { LL_RCC_HSI_Enable(); while (LL_RCC_HSI_IsReady() != 1U) { /* Wait for HSI ready */ } } /* Configure PLL */ LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSI, UTILS_PLLInitStruct->PLLM, UTILS_PLLInitStruct->PLLN, UTILS_PLLInitStruct->PLLP); /* Enable PLL and switch system clock to PLL */ status = UTILS_EnablePLLAndSwitchSystem(pllfreq, UTILS_ClkInitStruct); } else { /* Current PLL configuration cannot be modified */ status = ERROR; } return status; } /** * @brief This function configures system clock with HSE as clock source of the PLL * @note The application need to ensure that PLL is disabled. * - PLL output frequency = (((HSI frequency / PLLM) * PLLN) / PLLP) * - PLLM: ensure that the VCO input frequency ranges from @ref RCC_PLLVCO_INPUT_MIN to @ref RCC_PLLVCO_INPUT_MAX (PLLVCO_input = HSI frequency / PLLM) * - PLLN: ensure that the VCO output frequency is between @ref RCC_PLLVCO_OUTPUT_MIN and @ref RCC_PLLVCO_OUTPUT_MAX (PLLVCO_output = PLLVCO_input * PLLN) * - PLLP: ensure that max frequency at 180000000 Hz is reach (PLLVCO_output / PLLP) * @param HSEFrequency Value between Min_Data = 4000000 and Max_Data = 26000000 * @param HSEBypass This parameter can be one of the following values: * @arg @ref LL_UTILS_HSEBYPASS_ON * @arg @ref LL_UTILS_HSEBYPASS_OFF * @param UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains * the configuration information for the PLL. * @param UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains * the configuration information for the BUS prescalers. * @retval An ErrorStatus enumeration value: * - SUCCESS: Max frequency configuration done * - ERROR: Max frequency configuration not done */ ErrorStatus LL_PLL_ConfigSystemClock_HSE(uint32_t HSEFrequency, uint32_t HSEBypass, LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct) { ErrorStatus status = SUCCESS; uint32_t pllfreq = 0U; /* Check the parameters */ assert_param(IS_LL_UTILS_HSE_FREQUENCY(HSEFrequency)); assert_param(IS_LL_UTILS_HSE_BYPASS(HSEBypass)); /* Check if one of the PLL is enabled */ if(UTILS_PLL_IsBusy() == SUCCESS) { /* Calculate the new PLL output frequency */ pllfreq = UTILS_GetPLLOutputFrequency(HSEFrequency, UTILS_PLLInitStruct); /* Enable HSE if not enabled */ if(LL_RCC_HSE_IsReady() != 1U) { /* Check if need to enable HSE bypass feature or not */ if(HSEBypass == LL_UTILS_HSEBYPASS_ON) { LL_RCC_HSE_EnableBypass(); } else { LL_RCC_HSE_DisableBypass(); } /* Enable HSE */ LL_RCC_HSE_Enable(); while (LL_RCC_HSE_IsReady() != 1U) { /* Wait for HSE ready */ } } /* Configure PLL */ LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE, UTILS_PLLInitStruct->PLLM, UTILS_PLLInitStruct->PLLN, UTILS_PLLInitStruct->PLLP); /* Enable PLL and switch system clock to PLL */ status = UTILS_EnablePLLAndSwitchSystem(pllfreq, UTILS_ClkInitStruct); } else { /* Current PLL configuration cannot be modified */ status = ERROR; } return status; } /** * @} */ /** * @} */ /** @addtogroup UTILS_LL_Private_Functions * @{ */ /** * @brief Update number of Flash wait states in line with new frequency and current voltage range. * @note This Function support ONLY devices with supply voltage (voltage range) between 2.7V and 3.6V * @param HCLK_Frequency HCLK frequency * @retval An ErrorStatus enumeration value: * - SUCCESS: Latency has been modified * - ERROR: Latency cannot be modified */ static ErrorStatus UTILS_SetFlashLatency(uint32_t HCLK_Frequency) { ErrorStatus status = SUCCESS; uint32_t latency = LL_FLASH_LATENCY_0; /* default value 0WS */ /* Frequency cannot be equal to 0 */ if(HCLK_Frequency == 0U) { status = ERROR; } else { if(LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE1) { #if defined (UTILS_SCALE1_LATENCY5_FREQ) if((HCLK_Frequency > UTILS_SCALE1_LATENCY5_FREQ)&&(latency == LL_FLASH_LATENCY_0)) { latency = LL_FLASH_LATENCY_5; } #endif /*UTILS_SCALE1_LATENCY5_FREQ */ #if defined (UTILS_SCALE1_LATENCY4_FREQ) if((HCLK_Frequency > UTILS_SCALE1_LATENCY4_FREQ)&&(latency == LL_FLASH_LATENCY_0)) { latency = LL_FLASH_LATENCY_4; } #endif /* UTILS_SCALE1_LATENCY4_FREQ */ #if defined (UTILS_SCALE1_LATENCY3_FREQ) if((HCLK_Frequency > UTILS_SCALE1_LATENCY3_FREQ)&&(latency == LL_FLASH_LATENCY_0)) { latency = LL_FLASH_LATENCY_3; } #endif /* UTILS_SCALE1_LATENCY3_FREQ */ #if defined (UTILS_SCALE1_LATENCY2_FREQ) if((HCLK_Frequency > UTILS_SCALE1_LATENCY2_FREQ)&&(latency == LL_FLASH_LATENCY_0)) { latency = LL_FLASH_LATENCY_2; } else { if((HCLK_Frequency > UTILS_SCALE1_LATENCY1_FREQ)&&(latency == LL_FLASH_LATENCY_0)) { latency = LL_FLASH_LATENCY_1; } } #endif /* UTILS_SCALE1_LATENCY2_FREQ */ } if(LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE2) { #if defined (UTILS_SCALE2_LATENCY5_FREQ) if((HCLK_Frequency > UTILS_SCALE2_LATENCY5_FREQ)&&(latency == LL_FLASH_LATENCY_0)) { latency = LL_FLASH_LATENCY_5; } #endif /*UTILS_SCALE1_LATENCY5_FREQ */ #if defined (UTILS_SCALE2_LATENCY4_FREQ) if((HCLK_Frequency > UTILS_SCALE2_LATENCY4_FREQ)&&(latency == LL_FLASH_LATENCY_0)) { latency = LL_FLASH_LATENCY_4; } #endif /*UTILS_SCALE1_LATENCY4_FREQ */ #if defined (UTILS_SCALE2_LATENCY3_FREQ) if((HCLK_Frequency > UTILS_SCALE2_LATENCY3_FREQ)&&(latency == LL_FLASH_LATENCY_0)) { latency = LL_FLASH_LATENCY_3; } #endif /*UTILS_SCALE1_LATENCY3_FREQ */ if((HCLK_Frequency > UTILS_SCALE2_LATENCY2_FREQ)&&(latency == LL_FLASH_LATENCY_0)) { latency = LL_FLASH_LATENCY_2; } else { if((HCLK_Frequency > UTILS_SCALE2_LATENCY1_FREQ)&&(latency == LL_FLASH_LATENCY_0)) { latency = LL_FLASH_LATENCY_1; } } } #if defined (LL_PWR_REGU_VOLTAGE_SCALE3) if(LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE3) { #if defined (UTILS_SCALE3_LATENCY3_FREQ) if((HCLK_Frequency > UTILS_SCALE3_LATENCY3_FREQ)&&(latency == LL_FLASH_LATENCY_0)) { latency = LL_FLASH_LATENCY_3; } #endif /*UTILS_SCALE1_LATENCY3_FREQ */ #if defined (UTILS_SCALE3_LATENCY2_FREQ) if((HCLK_Frequency > UTILS_SCALE3_LATENCY2_FREQ)&&(latency == LL_FLASH_LATENCY_0)) { latency = LL_FLASH_LATENCY_2; } else { if((HCLK_Frequency > UTILS_SCALE3_LATENCY1_FREQ)&&(latency == LL_FLASH_LATENCY_0)) { latency = LL_FLASH_LATENCY_1; } } } #endif /*UTILS_SCALE1_LATENCY2_FREQ */ #endif /* LL_PWR_REGU_VOLTAGE_SCALE3 */ LL_FLASH_SetLatency(latency); /* Check that the new number of wait states is taken into account to access the Flash memory by reading the FLASH_ACR register */ if(LL_FLASH_GetLatency() != latency) { status = ERROR; } } return status; } /** * @brief Function to check that PLL can be modified * @param PLL_InputFrequency PLL input frequency (in Hz) * @param UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains * the configuration information for the PLL. * @retval PLL output frequency (in Hz) */ static uint32_t UTILS_GetPLLOutputFrequency(uint32_t PLL_InputFrequency, LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct) { uint32_t pllfreq = 0U; /* Check the parameters */ assert_param(IS_LL_UTILS_PLLM_VALUE(UTILS_PLLInitStruct->PLLM)); assert_param(IS_LL_UTILS_PLLN_VALUE(UTILS_PLLInitStruct->PLLN)); assert_param(IS_LL_UTILS_PLLP_VALUE(UTILS_PLLInitStruct->PLLP)); /* Check different PLL parameters according to RM */ /* - PLLM: ensure that the VCO input frequency ranges from @ref UTILS_PLLVCO_INPUT_MIN to @ref UTILS_PLLVCO_INPUT_MAX MHz. */ pllfreq = PLL_InputFrequency / (UTILS_PLLInitStruct->PLLM & (RCC_PLLCFGR_PLLM >> RCC_PLLCFGR_PLLM_Pos)); assert_param(IS_LL_UTILS_PLLVCO_INPUT(pllfreq)); /* - PLLN: ensure that the VCO output frequency is between @ref UTILS_PLLVCO_OUTPUT_MIN and @ref UTILS_PLLVCO_OUTPUT_MAX .*/ pllfreq = pllfreq * (UTILS_PLLInitStruct->PLLN & (RCC_PLLCFGR_PLLN >> RCC_PLLCFGR_PLLN_Pos)); assert_param(IS_LL_UTILS_PLLVCO_OUTPUT(pllfreq)); /* - PLLP: ensure that max frequency at @ref RCC_MAX_FREQUENCY Hz is reached */ pllfreq = pllfreq / (((UTILS_PLLInitStruct->PLLP >> RCC_PLLCFGR_PLLP_Pos) + 1) * 2); assert_param(IS_LL_UTILS_PLL_FREQUENCY(pllfreq)); return pllfreq; } /** * @brief Function to check that PLL can be modified * @retval An ErrorStatus enumeration value: * - SUCCESS: PLL modification can be done * - ERROR: PLL is busy */ static ErrorStatus UTILS_PLL_IsBusy(void) { ErrorStatus status = SUCCESS; /* Check if PLL is busy*/ if(LL_RCC_PLL_IsReady() != 0U) { /* PLL configuration cannot be modified */ status = ERROR; } #if defined(RCC_PLLSAI_SUPPORT) /* Check if PLLSAI is busy*/ if(LL_RCC_PLLSAI_IsReady() != 0U) { /* PLLSAI1 configuration cannot be modified */ status = ERROR; } #endif /*RCC_PLLSAI_SUPPORT*/ #if defined(RCC_PLLI2S_SUPPORT) /* Check if PLLI2S is busy*/ if(LL_RCC_PLLI2S_IsReady() != 0U) { /* PLLI2S configuration cannot be modified */ status = ERROR; } #endif /*RCC_PLLI2S_SUPPORT*/ return status; } /** * @brief Function to enable PLL and switch system clock to PLL * @param SYSCLK_Frequency SYSCLK frequency * @param UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains * the configuration information for the BUS prescalers. * @retval An ErrorStatus enumeration value: * - SUCCESS: No problem to switch system to PLL * - ERROR: Problem to switch system to PLL */ static ErrorStatus UTILS_EnablePLLAndSwitchSystem(uint32_t SYSCLK_Frequency, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct) { ErrorStatus status = SUCCESS; uint32_t hclk_frequency = 0U; assert_param(IS_LL_UTILS_SYSCLK_DIV(UTILS_ClkInitStruct->AHBCLKDivider)); assert_param(IS_LL_UTILS_APB1_DIV(UTILS_ClkInitStruct->APB1CLKDivider)); assert_param(IS_LL_UTILS_APB2_DIV(UTILS_ClkInitStruct->APB2CLKDivider)); /* Calculate HCLK frequency */ hclk_frequency = __LL_RCC_CALC_HCLK_FREQ(SYSCLK_Frequency, UTILS_ClkInitStruct->AHBCLKDivider); /* Increasing the number of wait states because of higher CPU frequency */ if(SystemCoreClock < hclk_frequency) { /* Set FLASH latency to highest latency */ status = UTILS_SetFlashLatency(hclk_frequency); } /* Update system clock configuration */ if(status == SUCCESS) { /* Enable PLL */ LL_RCC_PLL_Enable(); while (LL_RCC_PLL_IsReady() != 1U) { /* Wait for PLL ready */ } /* Sysclk activation on the main PLL */ LL_RCC_SetAHBPrescaler(UTILS_ClkInitStruct->AHBCLKDivider); LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL); while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { /* Wait for system clock switch to PLL */ } /* Set APB1 & APB2 prescaler*/ LL_RCC_SetAPB1Prescaler(UTILS_ClkInitStruct->APB1CLKDivider); LL_RCC_SetAPB2Prescaler(UTILS_ClkInitStruct->APB2CLKDivider); } /* Decreasing the number of wait states because of lower CPU frequency */ if(SystemCoreClock > hclk_frequency) { /* Set FLASH latency to lowest latency */ status = UTILS_SetFlashLatency(hclk_frequency); } /* Update SystemCoreClock variable */ if(status == SUCCESS) { LL_SetSystemCoreClock(hclk_frequency); } return status; } /** * @} */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/