Mercurial > public > ostc4
view Small_CPU/Src/uart.c @ 882:608d3e918146 Evo_2_23
Added slow exit timer function:
At the end of the dive the final ascent to surface should be done slowly. The new function provides a comparison of the current divers depth compared to a linear ascent simulated by the OSTC. The visualization is shown instead of the ascent speed with a little different appearance. The linear ascent is starting from the last stop depth and the time for the ascent may be configurated in the deco settings. The simulated and real peth is compared and the depth color changes based on the difference of the values. In case the diver is much below the timer depth then the timer will stop and wait for the diver to follow.
author | Ideenmodellierer |
---|---|
date | Sat, 31 Aug 2024 17:35:52 +0200 |
parents | ad96f99ebc78 |
children | cf3967fe6924 |
line wrap: on
line source
/** ****************************************************************************** * @file uart.c * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 27-March-2014 * @brief button control * @verbatim ============================================================================== ##### How to use ##### ============================================================================== @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2015 heinrichs weikamp</center></h2> * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "uart.h" #include "uartProtocol_O2.h" #include "uartProtocol_Co2.h" #include "uartProtocol_Sentinel.h" #include "externalInterface.h" #include "data_exchange.h" #include <string.h> /* memset */ /* Private variables ---------------------------------------------------------*/ #define CHUNK_SIZE (25u) /* the DMA will handle chunk size transfers */ #define CHUNKS_PER_BUFFER (5u) UART_HandleTypeDef huart1; DMA_HandleTypeDef hdma_usart1_rx; uint8_t rxBuffer[CHUNK_SIZE * CHUNKS_PER_BUFFER]; /* The complete buffer has a X * chunk size to allow fariations in buffer read time */ static uint8_t rxWriteIndex; /* Index of the data item which is analysed */ static uint8_t rxReadIndex; /* Index at which new data is stared */ static uint8_t lastCmdIndex; /* Index of last command which has not been completly received */ static uint8_t dmaActive; /* Indicator if DMA reception needs to be started */ /* Exported functions --------------------------------------------------------*/ void MX_USART1_UART_Init(void) { /* regular init */ huart1.Instance = USART1; huart1.Init.BaudRate = 19200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; HAL_UART_Init(&huart1); MX_USART1_DMA_Init(); memset(rxBuffer,BUFFER_NODATA,sizeof(rxBuffer)); rxReadIndex = 0; lastCmdIndex = 0; rxWriteIndex = 0; dmaActive = 0; } void MX_USART1_UART_DeInit(void) { HAL_DMA_Abort(&hdma_usart1_rx); HAL_DMA_DeInit(&hdma_usart1_rx); HAL_UART_DeInit(&huart1); dmaActive = 0; } void MX_USART1_DMA_Init() { /* DMA controller clock enable */ __DMA2_CLK_ENABLE(); /* Peripheral DMA init*/ hdma_usart1_rx.Instance = DMA2_Stream5; hdma_usart1_rx.Init.Channel = DMA_CHANNEL_4; hdma_usart1_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; //DMA_MEMORY_TO_PERIPH; hdma_usart1_rx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart1_rx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart1_rx.Init.PeriphDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart1_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart1_rx.Init.Mode = DMA_NORMAL; hdma_usart1_rx.Init.Priority = DMA_PRIORITY_LOW; hdma_usart1_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE; HAL_DMA_Init(&hdma_usart1_rx); __HAL_LINKDMA(&huart1,hdmarx,hdma_usart1_rx); /* DMA interrupt init */ HAL_NVIC_SetPriority(DMA2_Stream5_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA2_Stream5_IRQn); } void UART_MUX_SelectAddress(uint8_t muxAddress) { uint8_t indexstr[4]; if(muxAddress <= MAX_MUX_CHANNEL) { indexstr[0] = '~'; indexstr[1] = muxAddress; indexstr[2] = 0x0D; indexstr[3] = 0x0A; HAL_UART_Transmit(&huart1,indexstr,4,10); } } void UART_SendCmdString(uint8_t *cmdString) { uint8_t cmdLength = strlen((char*)cmdString); if(cmdLength < 20) /* A longer string is an indication for a missing 0 termination */ { if(dmaActive == 0) { UART_StartDMA_Receiption(); } HAL_UART_Transmit(&huart1,cmdString,cmdLength,10); } } void StringToInt(char *pstr, uint32_t *puInt32) { uint8_t index = 0; uint32_t result = 0; while((pstr[index] >= '0') && (pstr[index] <= '9')) { result *=10; result += pstr[index] - '0'; index++; } *puInt32 = result; } void StringToUInt64(char *pstr, uint64_t *puint64) { uint8_t index = 0; uint64_t result = 0; while((pstr[index] >= '0') && (pstr[index] <= '9')) { result *=10; result += pstr[index] - '0'; index++; } *puint64 = result; } void UART_StartDMA_Receiption() { if(dmaActive == 0) { if(HAL_OK == HAL_UART_Receive_DMA (&huart1, &rxBuffer[rxWriteIndex], CHUNK_SIZE)) { dmaActive = 1; } } } void UART_ChangeBaudrate(uint32_t newBaudrate) { uint8_t dmaWasActive = dmaActive; // HAL_DMA_Abort(&hdma_usart1_rx); MX_USART1_UART_DeInit(); //HAL_UART_Abort(&huart1); //HAL_DMA_DeInit(&hdma_usart1_rx); // huart1.Instance->BRR = UART_BRR_SAMPLING8(HAL_RCC_GetPCLK2Freq()/2, newBaudrate); huart1.Init.BaudRate = newBaudrate; HAL_UART_Init(&huart1); MX_USART1_DMA_Init(); if(dmaWasActive) { memset(rxBuffer,BUFFER_NODATA,sizeof(rxBuffer)); rxReadIndex = 0; rxWriteIndex = 0; dmaActive = 0; UART_StartDMA_Receiption(); } } void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { if(huart == &huart1) { dmaActive = 0; rxWriteIndex+=CHUNK_SIZE; if(rxWriteIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) { rxWriteIndex = 0; } if((rxWriteIndex / CHUNK_SIZE) != (rxReadIndex / CHUNK_SIZE) || (rxWriteIndex == rxReadIndex)) /* start next transfer if we did not catch up with read index */ { UART_StartDMA_Receiption(); } } } void UART_ReadData(uint8_t sensorType) { uint8_t localRX = rxReadIndex; while((rxBuffer[localRX]!=BUFFER_NODATA)) { switch (sensorType) { case SENSOR_MUX: case SENSOR_DIGO2: uartO2_ProcessData(rxBuffer[localRX]); break; #ifdef ENABLE_CO2_SUPPORT case SENSOR_CO2: uartCo2_ProcessData(rxBuffer[localRX]); break; #endif #ifdef ENABLE_SENTINEL_MODE case SENSOR_SENTINEL: uartSentinel_ProcessData(rxBuffer[localRX]); break; #endif default: break; } rxBuffer[localRX] = BUFFER_NODATA; localRX++; rxReadIndex++; if(rxReadIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) { localRX = 0; rxReadIndex = 0; } } } void UART_FlushRxBuffer(void) { while(rxBuffer[rxReadIndex] != BUFFER_NODATA) { rxBuffer[rxReadIndex] = BUFFER_NODATA; rxReadIndex++; if(rxReadIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER) { rxReadIndex = 0; } } } uint8_t UART_isComActive(uint8_t sensorId) { uint8_t active = 1; uint8_t ComState = externalInterface_GetSensorState(sensorId + EXT_INTERFACE_MUX_OFFSET); if((ComState == UART_COMMON_INIT) || (ComState == UART_COMMON_IDLE) || (ComState == UART_COMMON_ERROR)) { active = 0; } return active; } /************************ (C) COPYRIGHT heinrichs weikamp *****END OF FILE****/