view Common/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dfsdm.c @ 439:5b4c78c36b04 v1.5.3 release

1.5.3 release
author heinrichsweikamp
date Thu, 27 Feb 2020 09:13:08 +0100
parents c78bcbd5deda
children
line wrap: on
line source

/**
  ******************************************************************************
  * @file    stm32f4xx_hal_dfsdm.c
  * @author  MCD Application Team
  * @brief   This file provides firmware functions to manage the following 
  *          functionalities of the Digital Filter for Sigma-Delta Modulators
  *          (DFSDM) peripherals:
  *           + Initialization and configuration of channels and filters
  *           + Regular channels configuration
  *           + Injected channels configuration
  *           + Regular/Injected Channels DMA Configuration
  *           + Interrupts and flags management
  *           + Analog watchdog feature
  *           + Short-circuit detector feature
  *           + Extremes detector feature
  *           + Clock absence detector feature
  *           + Break generation on analog watchdog or short-circuit event
  *         
  @verbatim
  ==============================================================================
                     ##### How to use this driver #####
  ==============================================================================
  [..]
    *** Channel initialization ***
    ==============================
    [..]
      (#) User has first to initialize channels (before filters initialization).
      (#) As prerequisite, fill in the HAL_DFSDM_ChannelMspInit() :
        (++) Enable DFSDMz clock interface with __HAL_RCC_DFSDMz_CLK_ENABLE().
        (++) Enable the clocks for the DFSDMz GPIOS with __HAL_RCC_GPIOx_CLK_ENABLE().
        (++) Configure these DFSDMz pins in alternate mode using HAL_GPIO_Init().
        (++) If interrupt mode is used, enable and configure DFSDMz_FLT0 global
            interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ().
      (#) Configure the output clock, input, serial interface, analog watchdog,
          offset and data right bit shift parameters for this channel using the 
          HAL_DFSDM_ChannelInit() function.

    *** Channel clock absence detector ***
    ======================================
    [..]
      (#) Start clock absence detector using HAL_DFSDM_ChannelCkabStart() or
          HAL_DFSDM_ChannelCkabStart_IT().
      (#) In polling mode, use HAL_DFSDM_ChannelPollForCkab() to detect the clock
          absence.
      (#) In interrupt mode, HAL_DFSDM_ChannelCkabCallback() will be called if
          clock absence is detected.
      (#) Stop clock absence detector using HAL_DFSDM_ChannelCkabStop() or
          HAL_DFSDM_ChannelCkabStop_IT().
      (#) Please note that the same mode (polling or interrupt) has to be used 
          for all channels because the channels are sharing the same interrupt.
      (#) Please note also that in interrupt mode, if clock absence detector is
          stopped for one channel, interrupt will be disabled for all channels.

    *** Channel short circuit detector ***
    ======================================
    [..]    
      (#) Start short circuit detector using HAL_DFSDM_ChannelScdStart() or
          or HAL_DFSDM_ChannelScdStart_IT().
      (#) In polling mode, use HAL_DFSDM_ChannelPollForScd() to detect short
          circuit.
      (#) In interrupt mode, HAL_DFSDM_ChannelScdCallback() will be called if 
          short circuit is detected.
      (#) Stop short circuit detector using HAL_DFSDM_ChannelScdStop() or
          or HAL_DFSDM_ChannelScdStop_IT().
      (#) Please note that the same mode (polling or interrupt) has to be used 
          for all channels because the channels are sharing the same interrupt.
      (#) Please note also that in interrupt mode, if short circuit detector is
          stopped for one channel, interrupt will be disabled for all channels.

    *** Channel analog watchdog value ***
    =====================================
    [..]    
      (#) Get analog watchdog filter value of a channel using
          HAL_DFSDM_ChannelGetAwdValue().

    *** Channel offset value ***
    =====================================
    [..]    
      (#) Modify offset value of a channel using HAL_DFSDM_ChannelModifyOffset().

    *** Filter initialization ***
    =============================
    [..]
      (#) After channel initialization, user has to init filters.
      (#) As prerequisite, fill in the HAL_DFSDM_FilterMspInit() :
        (++) If interrupt mode is used , enable and configure DFSDMz_FLTx global
            interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ().
            Please note that DFSDMz_FLT0 global interrupt could be already
            enabled if interrupt is used for channel.
        (++) If DMA mode is used, configure DMA with HAL_DMA_Init() and link it
            with DFSDMz filter handle using __HAL_LINKDMA().
      (#) Configure the regular conversion, injected conversion and filter
          parameters for this filter using the HAL_DFSDM_FilterInit() function.

    *** Filter regular channel conversion ***
    =========================================
    [..]    
      (#) Select regular channel and enable/disable continuous mode using
          HAL_DFSDM_FilterConfigRegChannel().
      (#) Start regular conversion using HAL_DFSDM_FilterRegularStart(),
          HAL_DFSDM_FilterRegularStart_IT(), HAL_DFSDM_FilterRegularStart_DMA() or
          HAL_DFSDM_FilterRegularMsbStart_DMA().
      (#) In polling mode, use HAL_DFSDM_FilterPollForRegConversion() to detect 
          the end of regular conversion.
      (#) In interrupt mode, HAL_DFSDM_FilterRegConvCpltCallback() will be called
          at the end of regular conversion.
      (#) Get value of regular conversion and corresponding channel using 
          HAL_DFSDM_FilterGetRegularValue().
      (#) In DMA mode, HAL_DFSDM_FilterRegConvHalfCpltCallback() and 
          HAL_DFSDM_FilterRegConvCpltCallback() will be called respectively at the
          half transfer and at the transfer complete. Please note that 
          HAL_DFSDM_FilterRegConvHalfCpltCallback() will be called only in DMA
          circular mode.
      (#) Stop regular conversion using HAL_DFSDM_FilterRegularStop(),
          HAL_DFSDM_FilterRegularStop_IT() or HAL_DFSDM_FilterRegularStop_DMA().

    *** Filter injected channels conversion ***
    ===========================================
    [..]
      (#) Select injected channels using HAL_DFSDM_FilterConfigInjChannel().
      (#) Start injected conversion using HAL_DFSDM_FilterInjectedStart(),
          HAL_DFSDM_FilterInjectedStart_IT(), HAL_DFSDM_FilterInjectedStart_DMA() or
          HAL_DFSDM_FilterInjectedMsbStart_DMA().
      (#) In polling mode, use HAL_DFSDM_FilterPollForInjConversion() to detect 
          the end of injected conversion.
      (#) In interrupt mode, HAL_DFSDM_FilterInjConvCpltCallback() will be called
          at the end of injected conversion.
      (#) Get value of injected conversion and corresponding channel using 
          HAL_DFSDM_FilterGetInjectedValue().
      (#) In DMA mode, HAL_DFSDM_FilterInjConvHalfCpltCallback() and 
          HAL_DFSDM_FilterInjConvCpltCallback() will be called respectively at the
          half transfer and at the transfer complete. Please note that 
          HAL_DFSDM_FilterInjConvCpltCallback() will be called only in DMA
          circular mode.
      (#) Stop injected conversion using HAL_DFSDM_FilterInjectedStop(),
          HAL_DFSDM_FilterInjectedStop_IT() or HAL_DFSDM_FilterInjectedStop_DMA().

    *** Filter analog watchdog ***
    ==============================
    [..]
      (#) Start filter analog watchdog using HAL_DFSDM_FilterAwdStart_IT().
      (#) HAL_DFSDM_FilterAwdCallback() will be called if analog watchdog occurs.
      (#) Stop filter analog watchdog using HAL_DFSDM_FilterAwdStop_IT().

    *** Filter extreme detector ***
    ===============================
    [..]
      (#) Start filter extreme detector using HAL_DFSDM_FilterExdStart().
      (#) Get extreme detector maximum value using HAL_DFSDM_FilterGetExdMaxValue().
      (#) Get extreme detector minimum value using HAL_DFSDM_FilterGetExdMinValue().
      (#) Start filter extreme detector using HAL_DFSDM_FilterExdStop().

    *** Filter conversion time ***
    ==============================
    [..]
      (#) Get conversion time value using HAL_DFSDM_FilterGetConvTimeValue().

    @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"

/** @addtogroup STM32F4xx_HAL_Driver
  * @{
  */
#ifdef HAL_DFSDM_MODULE_ENABLED
#if defined(STM32F412Zx) || defined(STM32F412Vx) || defined(STM32F412Rx) || defined(STM32F412Cx) || defined(STM32F413xx) || defined(STM32F423xx)
/** @defgroup DFSDM DFSDM
  * @brief DFSDM HAL driver module
  * @{
  */ 

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup DFSDM_Private_Define DFSDM Private Define
 * @{
 */

#define DFSDM_FLTCR1_MSB_RCH_OFFSET     8U

#define DFSDM_MSB_MASK                  0xFFFF0000U
#define DFSDM_LSB_MASK                  0x0000FFFFU
#define DFSDM_CKAB_TIMEOUT              5000U
#define DFSDM1_CHANNEL_NUMBER           4U
#if defined (DFSDM2_Channel0)
#define DFSDM2_CHANNEL_NUMBER           8U
#endif /* DFSDM2_Channel0 */

/**
  * @}
  */
/** @addtogroup DFSDM_Private_Macros 
* @{
*/

/**
  * @}
  */
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup DFSDM_Private_Variables DFSDM Private Variables
  * @{
  */
__IO uint32_t                v_dfsdm1ChannelCounter = 0U;
DFSDM_Channel_HandleTypeDef* a_dfsdm1ChannelHandle[DFSDM1_CHANNEL_NUMBER] = {NULL};

#if defined (DFSDM2_Channel0)
__IO uint32_t                v_dfsdm2ChannelCounter = 0U;
DFSDM_Channel_HandleTypeDef* a_dfsdm2ChannelHandle[DFSDM2_CHANNEL_NUMBER] = {NULL};
#endif   /* DFSDM2_Channel0 */
/**
  * @}
  */

/* Private function prototypes -----------------------------------------------*/
/** @defgroup DFSDM_Private_Functions DFSDM Private Functions
  * @{
  */
static uint32_t DFSDM_GetInjChannelsNbr(uint32_t Channels);
static uint32_t DFSDM_GetChannelFromInstance(DFSDM_Channel_TypeDef* Instance);
static void     DFSDM_RegConvStart(DFSDM_Filter_HandleTypeDef *hdfsdm_filter);
static void     DFSDM_RegConvStop(DFSDM_Filter_HandleTypeDef* hdfsdm_filter);
static void     DFSDM_InjConvStart(DFSDM_Filter_HandleTypeDef* hdfsdm_filter);
static void     DFSDM_InjConvStop(DFSDM_Filter_HandleTypeDef* hdfsdm_filter);
static void     DFSDM_DMARegularHalfConvCplt(DMA_HandleTypeDef *hdma);
static void     DFSDM_DMARegularConvCplt(DMA_HandleTypeDef *hdma);
static void     DFSDM_DMAInjectedHalfConvCplt(DMA_HandleTypeDef *hdma);
static void     DFSDM_DMAInjectedConvCplt(DMA_HandleTypeDef *hdma);
static void     DFSDM_DMAError(DMA_HandleTypeDef *hdma);

/**
  * @}
  */

/* Exported functions --------------------------------------------------------*/
/** @defgroup DFSDM_Exported_Functions DFSDM Exported Functions
  * @{
  */

/** @defgroup DFSDM_Exported_Functions_Group1_Channel Channel initialization and de-initialization functions
 *  @brief    Channel initialization and de-initialization functions 
 *
@verbatim
  ==============================================================================
        ##### Channel initialization and de-initialization functions #####
  ==============================================================================
    [..]  This section provides functions allowing to:
      (+) Initialize the DFSDM channel.
      (+) De-initialize the DFSDM channel.
@endverbatim
  * @{
  */

/**
  * @brief  Initialize the DFSDM channel according to the specified parameters
  *         in the DFSDM_ChannelInitTypeDef structure and initialize the associated handle.
  * @param  hdfsdm_channel DFSDM channel handle.
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_DFSDM_ChannelInit(DFSDM_Channel_HandleTypeDef *hdfsdm_channel)
{
#if defined(DFSDM2_Channel0)
  __IO uint32_t*               channelCounterPtr;
  DFSDM_Channel_HandleTypeDef  **channelHandleTable;
  DFSDM_Channel_TypeDef*       channel0Instance;
#endif /* defined(DFSDM2_Channel0) */
  
  /* Check DFSDM Channel handle */
  if(hdfsdm_channel == NULL)
  {
    return HAL_ERROR;
  }

  /* Check parameters */
  assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance));
  assert_param(IS_FUNCTIONAL_STATE(hdfsdm_channel->Init.OutputClock.Activation));
  assert_param(IS_DFSDM_CHANNEL_INPUT(hdfsdm_channel->Init.Input.Multiplexer));
  assert_param(IS_DFSDM_CHANNEL_DATA_PACKING(hdfsdm_channel->Init.Input.DataPacking));
  assert_param(IS_DFSDM_CHANNEL_INPUT_PINS(hdfsdm_channel->Init.Input.Pins));
  assert_param(IS_DFSDM_CHANNEL_SERIAL_INTERFACE_TYPE(hdfsdm_channel->Init.SerialInterface.Type));
  assert_param(IS_DFSDM_CHANNEL_SPI_CLOCK(hdfsdm_channel->Init.SerialInterface.SpiClock));
  assert_param(IS_DFSDM_CHANNEL_FILTER_ORDER(hdfsdm_channel->Init.Awd.FilterOrder));
  assert_param(IS_DFSDM_CHANNEL_FILTER_OVS_RATIO(hdfsdm_channel->Init.Awd.Oversampling));
  assert_param(IS_DFSDM_CHANNEL_OFFSET(hdfsdm_channel->Init.Offset));
  assert_param(IS_DFSDM_CHANNEL_RIGHT_BIT_SHIFT(hdfsdm_channel->Init.RightBitShift));
  
#if defined(DFSDM2_Channel0)
  /* Get channel counter, channel handle table and channel 0 instance */
  if(IS_DFSDM1_CHANNEL_INSTANCE(hdfsdm_channel->Instance))
  {
    channelCounterPtr  = &v_dfsdm1ChannelCounter;
    channelHandleTable =  a_dfsdm1ChannelHandle;
    channel0Instance   = DFSDM1_Channel0;
  }
  else
  {
    channelCounterPtr  = &v_dfsdm2ChannelCounter;
    channelHandleTable = a_dfsdm2ChannelHandle;
    channel0Instance   = DFSDM2_Channel0;
  }
  
  /* Check that channel has not been already initialized */
  if(channelHandleTable[DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance)] != NULL)
  {
    return HAL_ERROR;
  }
  
  /* Call MSP init function */
  HAL_DFSDM_ChannelMspInit(hdfsdm_channel);
  
  /* Update the channel counter */
  (*channelCounterPtr)++;
  
  /* Configure output serial clock and enable global DFSDM interface only for first channel */
  if(*channelCounterPtr == 1U)
  {
    assert_param(IS_DFSDM_CHANNEL_OUTPUT_CLOCK(hdfsdm_channel->Init.OutputClock.Selection));
    /* Set the output serial clock source */
    channel0Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_CKOUTSRC);
    channel0Instance->CHCFGR1 |= hdfsdm_channel->Init.OutputClock.Selection;
    
    /* Reset clock divider */
    channel0Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_CKOUTDIV);
    if(hdfsdm_channel->Init.OutputClock.Activation == ENABLE)
    {
      assert_param(IS_DFSDM_CHANNEL_OUTPUT_CLOCK_DIVIDER(hdfsdm_channel->Init.OutputClock.Divider));
      /* Set the output clock divider */
      channel0Instance->CHCFGR1 |= (uint32_t) ((hdfsdm_channel->Init.OutputClock.Divider - 1U) << 
                                               DFSDM_CHCFGR1_CKOUTDIV_Pos);
    }
    
    /* enable the DFSDM global interface */
    channel0Instance->CHCFGR1 |= DFSDM_CHCFGR1_DFSDMEN;
  }
  
  /* Set channel input parameters */
  hdfsdm_channel->Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_DATPACK | DFSDM_CHCFGR1_DATMPX | 
                                         DFSDM_CHCFGR1_CHINSEL);
  hdfsdm_channel->Instance->CHCFGR1 |= (hdfsdm_channel->Init.Input.Multiplexer | 
                                        hdfsdm_channel->Init.Input.DataPacking | 
                                        hdfsdm_channel->Init.Input.Pins);
  
  /* Set serial interface parameters */
  hdfsdm_channel->Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_SITP | DFSDM_CHCFGR1_SPICKSEL);
  hdfsdm_channel->Instance->CHCFGR1 |= (hdfsdm_channel->Init.SerialInterface.Type | 
                                        hdfsdm_channel->Init.SerialInterface.SpiClock);
  
  /* Set analog watchdog parameters */
  hdfsdm_channel->Instance->CHAWSCDR &= ~(DFSDM_CHAWSCDR_AWFORD | DFSDM_CHAWSCDR_AWFOSR);
  hdfsdm_channel->Instance->CHAWSCDR |= (hdfsdm_channel->Init.Awd.FilterOrder | 
                                       ((hdfsdm_channel->Init.Awd.Oversampling - 1U) << DFSDM_CHAWSCDR_AWFOSR_Pos));

  /* Set channel offset and right bit shift */
  hdfsdm_channel->Instance->CHCFGR2 &= ~(DFSDM_CHCFGR2_OFFSET | DFSDM_CHCFGR2_DTRBS);
  hdfsdm_channel->Instance->CHCFGR2 |= (((uint32_t) hdfsdm_channel->Init.Offset << DFSDM_CHCFGR2_OFFSET_Pos) | 
                                        (hdfsdm_channel->Init.RightBitShift << DFSDM_CHCFGR2_DTRBS_Pos));

  /* Enable DFSDM channel */
  hdfsdm_channel->Instance->CHCFGR1 |= DFSDM_CHCFGR1_CHEN;
  
  /* Set DFSDM Channel to ready state */
  hdfsdm_channel->State = HAL_DFSDM_CHANNEL_STATE_READY;

  /* Store channel handle in DFSDM channel handle table */
  channelHandleTable[DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance)] = hdfsdm_channel;
  
#else
  /* Check that channel has not been already initialized */
  if(a_dfsdm1ChannelHandle[DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance)] != NULL)
  {
    return HAL_ERROR;
  }
  
  /* Call MSP init function */
  HAL_DFSDM_ChannelMspInit(hdfsdm_channel);
  
  /* Update the channel counter */
  v_dfsdm1ChannelCounter++;
  
  /* Configure output serial clock and enable global DFSDM interface only for first channel */
  if(v_dfsdm1ChannelCounter == 1U)
  {
    assert_param(IS_DFSDM_CHANNEL_OUTPUT_CLOCK(hdfsdm_channel->Init.OutputClock.Selection));
    /* Set the output serial clock source */
    DFSDM1_Channel0->CHCFGR1 &= ~(DFSDM_CHCFGR1_CKOUTSRC);
    DFSDM1_Channel0->CHCFGR1 |= hdfsdm_channel->Init.OutputClock.Selection;
    
    /* Reset clock divider */
    DFSDM1_Channel0->CHCFGR1 &= ~(DFSDM_CHCFGR1_CKOUTDIV);
    if(hdfsdm_channel->Init.OutputClock.Activation == ENABLE)
    {
      assert_param(IS_DFSDM_CHANNEL_OUTPUT_CLOCK_DIVIDER(hdfsdm_channel->Init.OutputClock.Divider));
      /* Set the output clock divider */
      DFSDM1_Channel0->CHCFGR1 |= (uint32_t) ((hdfsdm_channel->Init.OutputClock.Divider - 1U) << 
                                             DFSDM_CHCFGR1_CKOUTDIV_Pos);
    }
    
    /* enable the DFSDM global interface */
    DFSDM1_Channel0->CHCFGR1 |= DFSDM_CHCFGR1_DFSDMEN;
  }
  
  /* Set channel input parameters */
  hdfsdm_channel->Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_DATPACK | DFSDM_CHCFGR1_DATMPX | 
                                         DFSDM_CHCFGR1_CHINSEL);
  hdfsdm_channel->Instance->CHCFGR1 |= (hdfsdm_channel->Init.Input.Multiplexer | 
                                        hdfsdm_channel->Init.Input.DataPacking | 
                                        hdfsdm_channel->Init.Input.Pins);
  
  /* Set serial interface parameters */
  hdfsdm_channel->Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_SITP | DFSDM_CHCFGR1_SPICKSEL);
  hdfsdm_channel->Instance->CHCFGR1 |= (hdfsdm_channel->Init.SerialInterface.Type | 
                                        hdfsdm_channel->Init.SerialInterface.SpiClock);
  
  /* Set analog watchdog parameters */
  hdfsdm_channel->Instance->CHAWSCDR &= ~(DFSDM_CHAWSCDR_AWFORD | DFSDM_CHAWSCDR_AWFOSR);
  hdfsdm_channel->Instance->CHAWSCDR |= (hdfsdm_channel->Init.Awd.FilterOrder | 
                                       ((hdfsdm_channel->Init.Awd.Oversampling - 1U) << DFSDM_CHAWSCDR_AWFOSR_Pos));

  /* Set channel offset and right bit shift */
  hdfsdm_channel->Instance->CHCFGR2 &= ~(DFSDM_CHCFGR2_OFFSET | DFSDM_CHCFGR2_DTRBS);
  hdfsdm_channel->Instance->CHCFGR2 |= (((uint32_t) hdfsdm_channel->Init.Offset << DFSDM_CHCFGR2_OFFSET_Pos) | 
                                        (hdfsdm_channel->Init.RightBitShift << DFSDM_CHCFGR2_DTRBS_Pos));

  /* Enable DFSDM channel */
  hdfsdm_channel->Instance->CHCFGR1 |= DFSDM_CHCFGR1_CHEN;
  
  /* Set DFSDM Channel to ready state */
  hdfsdm_channel->State = HAL_DFSDM_CHANNEL_STATE_READY;

  /* Store channel handle in DFSDM channel handle table */
  a_dfsdm1ChannelHandle[DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance)] = hdfsdm_channel;
#endif /* DFSDM2_Channel0 */
  
  return HAL_OK;
}

/**
  * @brief  De-initialize the DFSDM channel.
  * @param  hdfsdm_channel DFSDM channel handle.
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_DFSDM_ChannelDeInit(DFSDM_Channel_HandleTypeDef *hdfsdm_channel)
{  
#if defined(DFSDM2_Channel0)
  __IO uint32_t*                    channelCounterPtr;
  DFSDM_Channel_HandleTypeDef  **channelHandleTable;
  DFSDM_Channel_TypeDef*       channel0Instance;
#endif /* defined(DFSDM2_Channel0) */
  
  /* Check DFSDM Channel handle */
  if(hdfsdm_channel == NULL)
  {
    return HAL_ERROR;
  }

  /* Check parameters */
  assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance));
  
#if defined(DFSDM2_Channel0)
  /* Get channel counter, channel handle table and channel 0 instance */
  if(IS_DFSDM1_CHANNEL_INSTANCE(hdfsdm_channel->Instance))
  {
    channelCounterPtr  = &v_dfsdm1ChannelCounter;
    channelHandleTable =  a_dfsdm1ChannelHandle;
    channel0Instance   = DFSDM1_Channel0;
  }
  else
  {
    channelCounterPtr  = &v_dfsdm2ChannelCounter;
    channelHandleTable =  a_dfsdm2ChannelHandle;
    channel0Instance   = DFSDM2_Channel0;
  }
  
  /* Check that channel has not been already deinitialized */
  if(channelHandleTable[DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance)] == NULL)
  {
    return HAL_ERROR;
  }

  /* Disable the DFSDM channel */
  hdfsdm_channel->Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_CHEN);
  
  /* Update the channel counter */
  (*channelCounterPtr)--;
  
  /* Disable global DFSDM at deinit of last channel */
  if(*channelCounterPtr == 0U)
  {
    channel0Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_DFSDMEN);
  }

  /* Call MSP deinit function */
  HAL_DFSDM_ChannelMspDeInit(hdfsdm_channel);

  /* Set DFSDM Channel in reset state */
  hdfsdm_channel->State = HAL_DFSDM_CHANNEL_STATE_RESET;

  /* Reset channel handle in DFSDM channel handle table */
  channelHandleTable[DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance)] =  NULL;
#else
  /* Check that channel has not been already deinitialized */
  if(a_dfsdm1ChannelHandle[DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance)] == NULL)
  {
    return HAL_ERROR;
  }

  /* Disable the DFSDM channel */
  hdfsdm_channel->Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_CHEN);
  
  /* Update the channel counter */
  v_dfsdm1ChannelCounter--;
  
  /* Disable global DFSDM at deinit of last channel */
  if(v_dfsdm1ChannelCounter == 0U)
  {
    DFSDM1_Channel0->CHCFGR1 &= ~(DFSDM_CHCFGR1_DFSDMEN);
  }

  /* Call MSP deinit function */
  HAL_DFSDM_ChannelMspDeInit(hdfsdm_channel);

  /* Set DFSDM Channel in reset state */
  hdfsdm_channel->State = HAL_DFSDM_CHANNEL_STATE_RESET;

  /* Reset channel handle in DFSDM channel handle table */
  a_dfsdm1ChannelHandle[DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance)] = (DFSDM_Channel_HandleTypeDef *) NULL;
#endif /* defined(DFSDM2_Channel0) */

  return HAL_OK;
}

/**
  * @brief  Initialize the DFSDM channel MSP.
  * @param  hdfsdm_channel DFSDM channel handle.
  * @retval None
  */
__weak void HAL_DFSDM_ChannelMspInit(DFSDM_Channel_HandleTypeDef *hdfsdm_channel)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hdfsdm_channel);
  /* NOTE : This function should not be modified, when the function is needed,
            the HAL_DFSDM_ChannelMspInit could be implemented in the user file.
   */
}

/**
  * @brief  De-initialize the DFSDM channel MSP.
  * @param  hdfsdm_channel DFSDM channel handle.
  * @retval None
  */
__weak void HAL_DFSDM_ChannelMspDeInit(DFSDM_Channel_HandleTypeDef *hdfsdm_channel)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hdfsdm_channel);
  /* NOTE : This function should not be modified, when the function is needed,
            the HAL_DFSDM_ChannelMspDeInit could be implemented in the user file.
   */
}

/**
  * @}
  */

/** @defgroup DFSDM_Exported_Functions_Group2_Channel Channel operation functions
 *  @brief    Channel operation functions
 *
@verbatim
  ==============================================================================
                   ##### Channel operation functions #####
  ==============================================================================
    [..]  This section provides functions allowing to:
      (+) Manage clock absence detector feature.
      (+) Manage short circuit detector feature.
      (+) Get analog watchdog value.
      (+) Modify offset value.
@endverbatim
  * @{
  */

/**
  * @brief  This function allows to start clock absence detection in polling mode.
  * @note   Same mode has to be used for all channels.
  * @note   If clock is not available on this channel during 5 seconds,
  *         clock absence detection will not be activated and function
  *         will return HAL_TIMEOUT error.  
  * @param  hdfsdm_channel DFSDM channel handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_ChannelCkabStart(DFSDM_Channel_HandleTypeDef *hdfsdm_channel)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tickstart;
  uint32_t channel;

#if defined(DFSDM2_Channel0)
  DFSDM_Filter_TypeDef*       filter0Instance;
#endif /* defined(DFSDM2_Channel0) */

  /* Check parameters */
  assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance));
  
  /* Check DFSDM channel state */
  if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY)
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
#if defined (DFSDM2_Channel0)
    /* Get channel counter, channel handle table and channel 0 instance */
    if(IS_DFSDM1_CHANNEL_INSTANCE(hdfsdm_channel->Instance))
    {
      filter0Instance   = DFSDM1_Filter0;
    }
    else
    {
      filter0Instance   = DFSDM2_Filter0;
    }   
    /* Get channel number from channel instance */
    channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance);

    /* Get timeout */
    tickstart = HAL_GetTick();

    /* Clear clock absence flag */
    while((((filter0Instance->FLTISR & DFSDM_FLTISR_CKABF) >> (DFSDM_FLTISR_CKABF_Pos + channel)) & 1U) != 0U)
    {
      filter0Instance->FLTICR = (1U << (DFSDM_FLTICR_CLRCKABF_Pos + channel));

      /* Check the Timeout */
      if((HAL_GetTick()-tickstart) > DFSDM_CKAB_TIMEOUT)
      {
        /* Set timeout status */
        status = HAL_TIMEOUT;
        break;
      }
    }
#else
    /* Get channel number from channel instance */
    channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance);

    /* Get timeout */
    tickstart = HAL_GetTick();

    /* Clear clock absence flag */
    while((((DFSDM1_Filter0->FLTISR & DFSDM_FLTISR_CKABF) >> (DFSDM_FLTISR_CKABF_Pos + channel)) & 1U) != 0U)
    {
      DFSDM1_Filter0->FLTICR = (1U << (DFSDM_FLTICR_CLRCKABF_Pos + channel));

      /* Check the Timeout */
      if((HAL_GetTick()-tickstart) > DFSDM_CKAB_TIMEOUT)
      {
        /* Set timeout status */
        status = HAL_TIMEOUT;
        break;
      }
    }
#endif /* DFSDM2_Channel0 */    

    if(status == HAL_OK)
    {
      /* Start clock absence detection */
      hdfsdm_channel->Instance->CHCFGR1 |= DFSDM_CHCFGR1_CKABEN;
    }
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to poll for the clock absence detection.
  * @param  hdfsdm_channel DFSDM channel handle.
  * @param  Timeout Timeout value in milliseconds.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_ChannelPollForCkab(DFSDM_Channel_HandleTypeDef *hdfsdm_channel, 
                                               uint32_t Timeout)
{
  uint32_t tickstart;
  uint32_t channel;
#if defined(DFSDM2_Channel0)
  DFSDM_Filter_TypeDef*       filter0Instance;
#endif /* defined(DFSDM2_Channel0) */
  
  /* Check parameters */
  assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance));

  /* Check DFSDM channel state */
  if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY)
  {
    /* Return error status */
    return HAL_ERROR;
  }
  else
  {
#if defined(DFSDM2_Channel0)
    
    /* Get channel counter, channel handle table and channel 0 instance */
    if(IS_DFSDM1_CHANNEL_INSTANCE(hdfsdm_channel->Instance))
    {
      filter0Instance   = DFSDM1_Filter0;
    }
    else
    {
      filter0Instance   = DFSDM2_Filter0;
    }

    /* Get channel number from channel instance */
    channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance);
    
    /* Get timeout */
    tickstart = HAL_GetTick();

    /* Wait clock absence detection */
    while((((filter0Instance->FLTISR & DFSDM_FLTISR_CKABF) >> (DFSDM_FLTISR_CKABF_Pos + channel)) & 1U) == 0U)
    {
      /* Check the Timeout */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0U) || ((HAL_GetTick()-tickstart) > Timeout))
        {
          /* Return timeout status */
          return HAL_TIMEOUT;
        }
      }
    }
    
    /* Clear clock absence detection flag */
    filter0Instance->FLTICR = (1U << (DFSDM_FLTICR_CLRCKABF_Pos + channel));   
#else    
    /* Get channel number from channel instance */
    channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance);
    
    /* Get timeout */
    tickstart = HAL_GetTick();

    /* Wait clock absence detection */
    while((((DFSDM1_Filter0->FLTISR & DFSDM_FLTISR_CKABF) >> (DFSDM_FLTISR_CKABF_Pos + channel)) & 1U) == 0U)
    {
      /* Check the Timeout */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0U) || ((HAL_GetTick()-tickstart) > Timeout))
        {
          /* Return timeout status */
          return HAL_TIMEOUT;
        }
      }
    }
    
    /* Clear clock absence detection flag */
    DFSDM1_Filter0->FLTICR = (1U << (DFSDM_FLTICR_CLRCKABF_Pos + channel));
#endif /* defined(DFSDM2_Channel0) */    
    /* Return function status */
    return HAL_OK;
  }
}

/**
  * @brief  This function allows to stop clock absence detection in polling mode.
  * @param  hdfsdm_channel DFSDM channel handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_ChannelCkabStop(DFSDM_Channel_HandleTypeDef *hdfsdm_channel)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t channel;
#if defined(DFSDM2_Channel0)
  DFSDM_Filter_TypeDef*       filter0Instance;
#endif /* defined(DFSDM2_Channel0) */

  /* Check parameters */
  assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance));
  
  /* Check DFSDM channel state */
  if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY)
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
#if defined(DFSDM2_Channel0)

    /* Get channel counter, channel handle table and channel 0 instance */
    if(IS_DFSDM1_CHANNEL_INSTANCE(hdfsdm_channel->Instance))
    {
      filter0Instance   = DFSDM1_Filter0;
    }
    else
    {
      filter0Instance   = DFSDM2_Filter0;
    } 

    /* Stop clock absence detection */
    hdfsdm_channel->Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_CKABEN);

    /* Clear clock absence flag */
    channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance);
    filter0Instance->FLTICR = (1U << (DFSDM_FLTICR_CLRCKABF_Pos + channel));

#else
    /* Stop clock absence detection */
    hdfsdm_channel->Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_CKABEN);
    
    /* Clear clock absence flag */
    channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance);
    DFSDM1_Filter0->FLTICR = (1U << (DFSDM_FLTICR_CLRCKABF_Pos + channel));
#endif /* DFSDM2_Channel0 */    
  }
  /* Return function status */
  return status;
}
 
/**
  * @brief  This function allows to start clock absence detection in interrupt mode.
  * @note   Same mode has to be used for all channels.
  * @note   If clock is not available on this channel during 5 seconds,
  *         clock absence detection will not be activated and function
  *         will return HAL_TIMEOUT error.
  * @param  hdfsdm_channel DFSDM channel handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_ChannelCkabStart_IT(DFSDM_Channel_HandleTypeDef *hdfsdm_channel)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t channel;
  uint32_t tickstart;
#if defined(DFSDM2_Channel0)
  DFSDM_Filter_TypeDef*       filter0Instance;
#endif /* defined(DFSDM2_Channel0) */

  /* Check parameters */
  assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance));
  
  /* Check DFSDM channel state */
  if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY)
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
#if defined(DFSDM2_Channel0)

    /* Get channel counter, channel handle table and channel 0 instance */
    if(IS_DFSDM1_CHANNEL_INSTANCE(hdfsdm_channel->Instance))
    {
      filter0Instance   = DFSDM1_Filter0;
    }
    else
    {
      filter0Instance   = DFSDM2_Filter0;
    }

    /* Get channel number from channel instance */
    channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance);

    /* Get timeout */
    tickstart = HAL_GetTick();

    /* Clear clock absence flag */
    while((((filter0Instance->FLTISR & DFSDM_FLTISR_CKABF) >> (DFSDM_FLTISR_CKABF_Pos + channel)) & 1U) != 0U)
    {
      filter0Instance->FLTICR = (1U << (DFSDM_FLTICR_CLRCKABF_Pos + channel));

      /* Check the Timeout */
      if((HAL_GetTick()-tickstart) > DFSDM_CKAB_TIMEOUT)
      {
        /* Set timeout status */
        status = HAL_TIMEOUT;
        break;
      }
    }

    if(status == HAL_OK)
    {
      /* Activate clock absence detection interrupt */
      filter0Instance->FLTCR2 |= DFSDM_FLTCR2_CKABIE;

      /* Start clock absence detection */
      hdfsdm_channel->Instance->CHCFGR1 |= DFSDM_CHCFGR1_CKABEN;
    }
#else  
    /* Get channel number from channel instance */
    channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance);

    /* Get timeout */
    tickstart = HAL_GetTick();

    /* Clear clock absence flag */
    while((((DFSDM1_Filter0->FLTISR & DFSDM_FLTISR_CKABF) >> (DFSDM_FLTISR_CKABF_Pos + channel)) & 1U) != 0U)
    {
      DFSDM1_Filter0->FLTICR = (1U << (DFSDM_FLTICR_CLRCKABF_Pos + channel));

      /* Check the Timeout */
      if((HAL_GetTick()-tickstart) > DFSDM_CKAB_TIMEOUT)
      {
        /* Set timeout status */
        status = HAL_TIMEOUT;
        break;
      }
    }

    if(status == HAL_OK)
    {
      /* Activate clock absence detection interrupt */
      DFSDM1_Filter0->FLTCR2 |= DFSDM_FLTCR2_CKABIE;

      /* Start clock absence detection */
      hdfsdm_channel->Instance->CHCFGR1 |= DFSDM_CHCFGR1_CKABEN;
    }

#endif /* defined(DFSDM2_Channel0) */ 
  }
  /* Return function status */
  return status;
}

/**
  * @brief  Clock absence detection callback. 
  * @param  hdfsdm_channel DFSDM channel handle.
  * @retval None
  */
__weak void HAL_DFSDM_ChannelCkabCallback(DFSDM_Channel_HandleTypeDef *hdfsdm_channel)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hdfsdm_channel);
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_DFSDM_ChannelCkabCallback could be implemented in the user file
   */
}

/**
  * @brief  This function allows to stop clock absence detection in interrupt mode.
  * @note   Interrupt will be disabled for all channels
  * @param  hdfsdm_channel DFSDM channel handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_ChannelCkabStop_IT(DFSDM_Channel_HandleTypeDef *hdfsdm_channel)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t channel;
#if defined(DFSDM2_Channel0)
  DFSDM_Filter_TypeDef*       filter0Instance;
#endif /* defined(DFSDM2_Channel0) */

  /* Check parameters */
  assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance));
  
  /* Check DFSDM channel state */
  if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY)
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
#if defined(DFSDM2_Channel0)

    /* Get channel counter, channel handle table and channel 0 instance */
    if(IS_DFSDM1_CHANNEL_INSTANCE(hdfsdm_channel->Instance))
    {
      filter0Instance   = DFSDM1_Filter0;
    }
    else
    {
      filter0Instance   = DFSDM2_Filter0;
    } 

    /* Stop clock absence detection */
    hdfsdm_channel->Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_CKABEN);

    /* Clear clock absence flag */
    channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance);
    filter0Instance->FLTICR = (1U << (DFSDM_FLTICR_CLRCKABF_Pos + channel));

    /* Disable clock absence detection interrupt */
    filter0Instance->FLTCR2 &= ~(DFSDM_FLTCR2_CKABIE); 
#else

    /* Stop clock absence detection */
    hdfsdm_channel->Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_CKABEN);
    
    /* Clear clock absence flag */
    channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance);
    DFSDM1_Filter0->FLTICR = (1U << (DFSDM_FLTICR_CLRCKABF_Pos + channel));

    /* Disable clock absence detection interrupt */
    DFSDM1_Filter0->FLTCR2 &= ~(DFSDM_FLTCR2_CKABIE);
#endif /* DFSDM2_Channel0 */
  }

  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to start short circuit detection in polling mode.
  * @note   Same mode has to be used for all channels
  * @param  hdfsdm_channel DFSDM channel handle.
  * @param  Threshold Short circuit detector threshold.
  *         This parameter must be a number between Min_Data = 0 and Max_Data = 255.
  * @param  BreakSignal Break signals assigned to short circuit event.
  *         This parameter can be a values combination of @ref DFSDM_BreakSignals.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_ChannelScdStart(DFSDM_Channel_HandleTypeDef *hdfsdm_channel,
                                            uint32_t Threshold,
                                            uint32_t BreakSignal)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance));
  assert_param(IS_DFSDM_CHANNEL_SCD_THRESHOLD(Threshold));
  assert_param(IS_DFSDM_BREAK_SIGNALS(BreakSignal));
  
  /* Check DFSDM channel state */
  if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY)
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Configure threshold and break signals */
    hdfsdm_channel->Instance->CHAWSCDR &= ~(DFSDM_CHAWSCDR_BKSCD | DFSDM_CHAWSCDR_SCDT);
    hdfsdm_channel->Instance->CHAWSCDR |= ((BreakSignal << DFSDM_CHAWSCDR_BKSCD_Pos) | \
                                         Threshold);
    
    /* Start short circuit detection */
    hdfsdm_channel->Instance->CHCFGR1 |= DFSDM_CHCFGR1_SCDEN;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to poll for the short circuit detection.
  * @param  hdfsdm_channel DFSDM channel handle.
  * @param  Timeout Timeout value in milliseconds.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_ChannelPollForScd(DFSDM_Channel_HandleTypeDef *hdfsdm_channel, 
                                              uint32_t Timeout)
{
  uint32_t tickstart;
  uint32_t channel;
#if defined(DFSDM2_Channel0)
  DFSDM_Filter_TypeDef*       filter0Instance;
#endif /* defined(DFSDM2_Channel0) */
  
  /* Check parameters */
  assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance));

  /* Check DFSDM channel state */
  if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY)
  {
    /* Return error status */
    return HAL_ERROR;
  }
  else
  {
    /* Get channel number from channel instance */
    channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance);

#if defined(DFSDM2_Channel0)
    /* Get channel counter, channel handle table and channel 0 instance */
    if(IS_DFSDM1_CHANNEL_INSTANCE(hdfsdm_channel->Instance))
    {
      filter0Instance   = DFSDM1_Filter0;
    }
    else
    {
      filter0Instance   = DFSDM2_Filter0;
    }

   /* Get timeout */
    tickstart = HAL_GetTick();

    /* Wait short circuit detection */
    while(((filter0Instance->FLTISR & DFSDM_FLTISR_SCDF) >> (DFSDM_FLTISR_SCDF_Pos + channel)) == 0U)
    {
      /* Check the Timeout */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0U) || ((HAL_GetTick()-tickstart) > Timeout))
        {
          /* Return timeout status */
          return HAL_TIMEOUT;
        }
      }
    }
    
    /* Clear short circuit detection flag */
    filter0Instance->FLTICR = (1U << (DFSDM_FLTICR_CLRSCSDF_Pos + channel));

#else
    /* Get timeout */
    tickstart = HAL_GetTick();

    /* Wait short circuit detection */
    while(((DFSDM1_Filter0->FLTISR & DFSDM_FLTISR_SCDF) >> (DFSDM_FLTISR_SCDF_Pos + channel)) == 0U)
    {
      /* Check the Timeout */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0U) || ((HAL_GetTick()-tickstart) > Timeout))
        {
          /* Return timeout status */
          return HAL_TIMEOUT;
        }
      }
    }

    /* Clear short circuit detection flag */
    DFSDM1_Filter0->FLTICR = (1U << (DFSDM_FLTICR_CLRSCSDF_Pos + channel));
#endif /* DFSDM2_Channel0 */ 

    /* Return function status */
    return HAL_OK;
  }
}

/**
  * @brief  This function allows to stop short circuit detection in polling mode.
  * @param  hdfsdm_channel DFSDM channel handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_ChannelScdStop(DFSDM_Channel_HandleTypeDef *hdfsdm_channel)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t channel;
#if defined(DFSDM2_Channel0)
  DFSDM_Filter_TypeDef*       filter0Instance;
#endif /* defined(DFSDM2_Channel0) */  

  /* Check parameters */
  assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance));
  
  /* Check DFSDM channel state */
  if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY)
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Stop short circuit detection */
    hdfsdm_channel->Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_SCDEN);

    /* Clear short circuit detection flag */
    channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance);
    
#if defined(DFSDM2_Channel0)
    /* Get channel counter, channel handle table and channel 0 instance */
    if(IS_DFSDM1_CHANNEL_INSTANCE(hdfsdm_channel->Instance))
    {
      filter0Instance   = DFSDM1_Filter0;
    }
    else
    {
      filter0Instance   = DFSDM2_Filter0;
    }

    filter0Instance->FLTICR = (1U << (DFSDM_FLTICR_CLRSCSDF_Pos + channel));
#else
    DFSDM1_Filter0->FLTICR = (1U << (DFSDM_FLTICR_CLRSCSDF_Pos + channel));
#endif /* DFSDM2_Channel0*/
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to start short circuit detection in interrupt mode.
  * @note   Same mode has to be used for all channels
  * @param  hdfsdm_channel DFSDM channel handle.
  * @param  Threshold Short circuit detector threshold.
  *         This parameter must be a number between Min_Data = 0 and Max_Data = 255.
  * @param  BreakSignal Break signals assigned to short circuit event.
  *         This parameter can be a values combination of @ref DFSDM_BreakSignals.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_ChannelScdStart_IT(DFSDM_Channel_HandleTypeDef *hdfsdm_channel,
                                               uint32_t Threshold,
                                               uint32_t BreakSignal)
{
  HAL_StatusTypeDef status = HAL_OK;
#if defined(DFSDM2_Channel0)
  DFSDM_Filter_TypeDef*       filter0Instance;
#endif /* defined(DFSDM2_Channel0) */ 
  
  /* Check parameters */
  assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance));
  assert_param(IS_DFSDM_CHANNEL_SCD_THRESHOLD(Threshold));
  assert_param(IS_DFSDM_BREAK_SIGNALS(BreakSignal));
  
  /* Check DFSDM channel state */
  if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY)
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
#if defined(DFSDM2_Channel0)
    /* Get channel counter, channel handle table and channel 0 instance */
    if(IS_DFSDM1_CHANNEL_INSTANCE(hdfsdm_channel->Instance))
    {
      filter0Instance   = DFSDM1_Filter0;
    }
    else
    {
      filter0Instance   = DFSDM2_Filter0;
    }
    /* Activate short circuit detection interrupt */
    filter0Instance->FLTCR2 |= DFSDM_FLTCR2_SCDIE;
#else
    /* Activate short circuit detection interrupt */
    DFSDM1_Filter0->FLTCR2 |= DFSDM_FLTCR2_SCDIE;
#endif /* DFSDM2_Channel0 */

    /* Configure threshold and break signals */
    hdfsdm_channel->Instance->CHAWSCDR &= ~(DFSDM_CHAWSCDR_BKSCD | DFSDM_CHAWSCDR_SCDT);
    hdfsdm_channel->Instance->CHAWSCDR |= ((BreakSignal << DFSDM_CHAWSCDR_BKSCD_Pos) | \
                                         Threshold);
    
    /* Start short circuit detection */
    hdfsdm_channel->Instance->CHCFGR1 |= DFSDM_CHCFGR1_SCDEN;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  Short circuit detection callback. 
  * @param  hdfsdm_channel DFSDM channel handle.
  * @retval None
  */
__weak void HAL_DFSDM_ChannelScdCallback(DFSDM_Channel_HandleTypeDef *hdfsdm_channel)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hdfsdm_channel);
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_DFSDM_ChannelScdCallback could be implemented in the user file
   */
}

/**
  * @brief  This function allows to stop short circuit detection in interrupt mode.
  * @note   Interrupt will be disabled for all channels
  * @param  hdfsdm_channel DFSDM channel handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_ChannelScdStop_IT(DFSDM_Channel_HandleTypeDef *hdfsdm_channel)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t channel;
#if defined(DFSDM2_Channel0)
  DFSDM_Filter_TypeDef*       filter0Instance;
#endif /* defined(DFSDM2_Channel0) */

  /* Check parameters */
  assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance));
  
  /* Check DFSDM channel state */
  if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY)
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Stop short circuit detection */
    hdfsdm_channel->Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_SCDEN);
    
    /* Clear short circuit detection flag */
    channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance);
#if defined(DFSDM2_Channel0)
    /* Get channel counter, channel handle table and channel 0 instance */
    if(IS_DFSDM1_CHANNEL_INSTANCE(hdfsdm_channel->Instance))
    {
      filter0Instance   = DFSDM1_Filter0;
    }
    else
    {
      filter0Instance   = DFSDM2_Filter0;
    }

    filter0Instance->FLTICR = (1U << (DFSDM_FLTICR_CLRSCSDF_Pos + channel));

    /* Disable short circuit detection interrupt */
    filter0Instance->FLTCR2 &= ~(DFSDM_FLTCR2_SCDIE);
#else
   DFSDM1_Filter0->FLTICR = (1U << (DFSDM_FLTICR_CLRSCSDF_Pos + channel));

    /* Disable short circuit detection interrupt */
    DFSDM1_Filter0->FLTCR2 &= ~(DFSDM_FLTCR2_SCDIE);
#endif /* DFSDM2_Channel0 */
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to get channel analog watchdog value.
  * @param  hdfsdm_channel DFSDM channel handle.
  * @retval Channel analog watchdog value.
  */
int16_t HAL_DFSDM_ChannelGetAwdValue(DFSDM_Channel_HandleTypeDef *hdfsdm_channel)
{
  return (int16_t) hdfsdm_channel->Instance->CHWDATAR;
}

/**
  * @brief  This function allows to modify channel offset value.
  * @param  hdfsdm_channel DFSDM channel handle.
  * @param  Offset DFSDM channel offset.
  *         This parameter must be a number between Min_Data = -8388608 and Max_Data = 8388607.
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_DFSDM_ChannelModifyOffset(DFSDM_Channel_HandleTypeDef *hdfsdm_channel,
                                                int32_t Offset)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance));
  assert_param(IS_DFSDM_CHANNEL_OFFSET(Offset));
  
  /* Check DFSDM channel state */
  if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY)
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Modify channel offset */
    hdfsdm_channel->Instance->CHCFGR2 &= ~(DFSDM_CHCFGR2_OFFSET);
    hdfsdm_channel->Instance->CHCFGR2 |= ((uint32_t) Offset << DFSDM_CHCFGR2_OFFSET_Pos);
  }
  /* Return function status */
  return status;
}

/**
  * @}
  */

/** @defgroup DFSDM_Exported_Functions_Group3_Channel Channel state function
 *  @brief    Channel state function
 *
@verbatim
  ==============================================================================
                   ##### Channel state function #####
  ==============================================================================
    [..]  This section provides function allowing to:
      (+) Get channel handle state.
@endverbatim
  * @{
  */

/**
  * @brief  This function allows to get the current DFSDM channel handle state.
  * @param  hdfsdm_channel DFSDM channel handle.
  * @retval DFSDM channel state.
  */
HAL_DFSDM_Channel_StateTypeDef HAL_DFSDM_ChannelGetState(DFSDM_Channel_HandleTypeDef *hdfsdm_channel)
{
  /* Return DFSDM channel handle state */
  return hdfsdm_channel->State;
}

/**
  * @}
  */

/** @defgroup DFSDM_Exported_Functions_Group1_Filter Filter initialization and de-initialization functions
 *  @brief    Filter initialization and de-initialization functions 
 *
@verbatim
  ==============================================================================
        ##### Filter initialization and de-initialization functions #####
  ==============================================================================
    [..]  This section provides functions allowing to:
      (+) Initialize the DFSDM filter.
      (+) De-initialize the DFSDM filter.
@endverbatim
  * @{
  */

/**
  * @brief  Initialize the DFSDM filter according to the specified parameters
  *         in the DFSDM_FilterInitTypeDef structure and initialize the associated handle.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_DFSDM_FilterInit(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  /* Check DFSDM Channel handle */
  if(hdfsdm_filter == NULL)
  {
    return HAL_ERROR;
  }

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));
  assert_param(IS_DFSDM_FILTER_REG_TRIGGER(hdfsdm_filter->Init.RegularParam.Trigger));
  assert_param(IS_FUNCTIONAL_STATE(hdfsdm_filter->Init.RegularParam.FastMode));
  assert_param(IS_FUNCTIONAL_STATE(hdfsdm_filter->Init.RegularParam.DmaMode));
  assert_param(IS_DFSDM_FILTER_INJ_TRIGGER(hdfsdm_filter->Init.InjectedParam.Trigger));
  assert_param(IS_FUNCTIONAL_STATE(hdfsdm_filter->Init.InjectedParam.ScanMode));
  assert_param(IS_FUNCTIONAL_STATE(hdfsdm_filter->Init.InjectedParam.DmaMode));
  assert_param(IS_DFSDM_FILTER_SINC_ORDER(hdfsdm_filter->Init.FilterParam.SincOrder));
  assert_param(IS_DFSDM_FILTER_OVS_RATIO(hdfsdm_filter->Init.FilterParam.Oversampling));
  assert_param(IS_DFSDM_FILTER_INTEGRATOR_OVS_RATIO(hdfsdm_filter->Init.FilterParam.IntOversampling));

  /* Check parameters compatibility */
  if((hdfsdm_filter->Instance == DFSDM1_Filter0) && 
    ((hdfsdm_filter->Init.RegularParam.Trigger  == DFSDM_FILTER_SYNC_TRIGGER) || 
     (hdfsdm_filter->Init.InjectedParam.Trigger == DFSDM_FILTER_SYNC_TRIGGER)))
  {
    return HAL_ERROR;
  }
#if defined (DFSDM2_Channel0)  
  if((hdfsdm_filter->Instance == DFSDM2_Filter0) && 
    ((hdfsdm_filter->Init.RegularParam.Trigger  == DFSDM_FILTER_SYNC_TRIGGER) || 
     (hdfsdm_filter->Init.InjectedParam.Trigger == DFSDM_FILTER_SYNC_TRIGGER)))
  {
    return HAL_ERROR;
  }  
#endif /* DFSDM2_Channel0 */
       
  /* Initialize DFSDM filter variables with default values */
  hdfsdm_filter->RegularContMode     = DFSDM_CONTINUOUS_CONV_OFF;
  hdfsdm_filter->InjectedChannelsNbr = 1U;
  hdfsdm_filter->InjConvRemaining    = 1U;
  hdfsdm_filter->ErrorCode           = DFSDM_FILTER_ERROR_NONE;
  
  /* Call MSP init function */
  HAL_DFSDM_FilterMspInit(hdfsdm_filter);

  /* Set regular parameters */
  hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_RSYNC);
  if(hdfsdm_filter->Init.RegularParam.FastMode == ENABLE)
  {
    hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_FAST;
  }
  else
  {
    hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_FAST);
  }

  if(hdfsdm_filter->Init.RegularParam.DmaMode == ENABLE)
  {
    hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_RDMAEN;
  }
  else
  {
    hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_RDMAEN);
  }

  /* Set injected parameters */
  hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_JSYNC | DFSDM_FLTCR1_JEXTEN | DFSDM_FLTCR1_JEXTSEL);
  if(hdfsdm_filter->Init.InjectedParam.Trigger == DFSDM_FILTER_EXT_TRIGGER)
  {
    assert_param(IS_DFSDM_FILTER_EXT_TRIG(hdfsdm_filter->Init.InjectedParam.ExtTrigger));
    assert_param(IS_DFSDM_FILTER_EXT_TRIG_EDGE(hdfsdm_filter->Init.InjectedParam.ExtTriggerEdge));
    hdfsdm_filter->Instance->FLTCR1 |= (hdfsdm_filter->Init.InjectedParam.ExtTrigger);
  }

  if(hdfsdm_filter->Init.InjectedParam.ScanMode == ENABLE)
  {
    hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_JSCAN;
  }
  else
  {
    hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_JSCAN);
  }

  if(hdfsdm_filter->Init.InjectedParam.DmaMode == ENABLE)
  {
    hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_JDMAEN;
  }
  else
  {
    hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_JDMAEN);
  }
  
  /* Set filter parameters */
  hdfsdm_filter->Instance->FLTFCR &= ~(DFSDM_FLTFCR_FORD | DFSDM_FLTFCR_FOSR | DFSDM_FLTFCR_IOSR);
  hdfsdm_filter->Instance->FLTFCR |= (hdfsdm_filter->Init.FilterParam.SincOrder |
                                    ((hdfsdm_filter->Init.FilterParam.Oversampling - 1U) << DFSDM_FLTFCR_FOSR_Pos) |
                                     (hdfsdm_filter->Init.FilterParam.IntOversampling - 1U));

  /* Store regular and injected triggers and injected scan mode*/
  hdfsdm_filter->RegularTrigger   = hdfsdm_filter->Init.RegularParam.Trigger;
  hdfsdm_filter->InjectedTrigger  = hdfsdm_filter->Init.InjectedParam.Trigger;
  hdfsdm_filter->ExtTriggerEdge   = hdfsdm_filter->Init.InjectedParam.ExtTriggerEdge;
  hdfsdm_filter->InjectedScanMode = hdfsdm_filter->Init.InjectedParam.ScanMode;
  
  /* Enable DFSDM filter */
  hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_DFEN;

  /* Set DFSDM filter to ready state */
  hdfsdm_filter->State = HAL_DFSDM_FILTER_STATE_READY;
  
  return HAL_OK;
}

/**
  * @brief  De-initializes the DFSDM filter.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_DFSDM_FilterDeInit(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  /* Check DFSDM filter handle */
  if(hdfsdm_filter == NULL)
  {
    return HAL_ERROR;
  }

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));
  
  /* Disable the DFSDM filter */
  hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_DFEN);
  
  /* Call MSP deinit function */
  HAL_DFSDM_FilterMspDeInit(hdfsdm_filter);

  /* Set DFSDM filter in reset state */
  hdfsdm_filter->State = HAL_DFSDM_FILTER_STATE_RESET;

  return HAL_OK;
}

/**
  * @brief  Initializes the DFSDM filter MSP.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval None
  */
__weak void HAL_DFSDM_FilterMspInit(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hdfsdm_filter);
  /* NOTE : This function should not be modified, when the function is needed,
            the HAL_DFSDM_FilterMspInit could be implemented in the user file.
   */
}

/**
  * @brief  De-initializes the DFSDM filter MSP.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval None
  */
__weak void HAL_DFSDM_FilterMspDeInit(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hdfsdm_filter);
  /* NOTE : This function should not be modified, when the function is needed,
            the HAL_DFSDM_FilterMspDeInit could be implemented in the user file.
   */
}

/**
  * @}
  */

/** @defgroup DFSDM_Exported_Functions_Group2_Filter Filter control functions
 *  @brief    Filter control functions
 *
@verbatim
  ==============================================================================
                    ##### Filter control functions #####
  ==============================================================================
    [..]  This section provides functions allowing to:
      (+) Select channel and enable/disable continuous mode for regular conversion.
      (+) Select channels for injected conversion.
@endverbatim
  * @{
  */

/**
  * @brief  This function allows to select channel and to enable/disable
  *         continuous mode for regular conversion.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @param  Channel Channel for regular conversion.
  *         This parameter can be a value of @ref DFSDM_Channel_Selection.
  * @param  ContinuousMode Enable/disable continuous mode for regular conversion.
  *         This parameter can be a value of @ref DFSDM_ContinuousMode.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterConfigRegChannel(DFSDM_Filter_HandleTypeDef *hdfsdm_filter,
                                                   uint32_t                    Channel,
                                                   uint32_t                    ContinuousMode)
{
  HAL_StatusTypeDef status = HAL_OK;
  
  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));
  assert_param(IS_DFSDM_REGULAR_CHANNEL(Channel));
  assert_param(IS_DFSDM_CONTINUOUS_MODE(ContinuousMode));
  
  /* Check DFSDM filter state */
  if((hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_RESET) && 
     (hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_ERROR))
  {
    /* Configure channel and continuous mode for regular conversion */
    hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_RCH | DFSDM_FLTCR1_RCONT);
    if(ContinuousMode == DFSDM_CONTINUOUS_CONV_ON)
    {
      hdfsdm_filter->Instance->FLTCR1 |= (uint32_t) (((Channel & DFSDM_MSB_MASK) << DFSDM_FLTCR1_MSB_RCH_OFFSET) |
                                                     DFSDM_FLTCR1_RCONT);
    }
    else
    {
      hdfsdm_filter->Instance->FLTCR1 |= (uint32_t) ((Channel & DFSDM_MSB_MASK) << DFSDM_FLTCR1_MSB_RCH_OFFSET);
    }
    /* Store continuous mode information */
    hdfsdm_filter->RegularContMode = ContinuousMode;
  }  
  else
  {
    status = HAL_ERROR;
  }

  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to select channels for injected conversion.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @param  Channel Channels for injected conversion.
  *         This parameter can be a values combination of @ref DFSDM_Channel_Selection.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterConfigInjChannel(DFSDM_Filter_HandleTypeDef *hdfsdm_filter,
                                                   uint32_t                    Channel)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));
  assert_param(IS_DFSDM_INJECTED_CHANNEL(Channel));
  
  /* Check DFSDM filter state */
  if((hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_RESET) && 
     (hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_ERROR))
  {
    /* Configure channel for injected conversion */
    hdfsdm_filter->Instance->FLTJCHGR = (uint32_t) (Channel & DFSDM_LSB_MASK);
    /* Store number of injected channels */
    hdfsdm_filter->InjectedChannelsNbr = DFSDM_GetInjChannelsNbr(Channel);
    /* Update number of injected channels remaining */
    hdfsdm_filter->InjConvRemaining = (hdfsdm_filter->InjectedScanMode == ENABLE) ? \
                                      hdfsdm_filter->InjectedChannelsNbr : 1U;
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @}
  */

/** @defgroup DFSDM_Exported_Functions_Group3_Filter Filter operation functions
 *  @brief    Filter operation functions
 *
@verbatim
  ==============================================================================
                    ##### Filter operation functions #####
  ==============================================================================
    [..]  This section provides functions allowing to:
      (+) Start conversion of regular/injected channel.
      (+) Poll for the end of regular/injected conversion.
      (+) Stop conversion of regular/injected channel.
      (+) Start conversion of regular/injected channel and enable interrupt.
      (+) Call the callback functions at the end of regular/injected conversions.
      (+) Stop conversion of regular/injected channel and disable interrupt.
      (+) Start conversion of regular/injected channel and enable DMA transfer.
      (+) Stop conversion of regular/injected channel and disable DMA transfer.
      (+) Start analog watchdog and enable interrupt.
      (+) Call the callback function when analog watchdog occurs.
      (+) Stop analog watchdog and disable interrupt.
      (+) Start extreme detector.
      (+) Stop extreme detector.
      (+) Get result of regular channel conversion.
      (+) Get result of injected channel conversion.
      (+) Get extreme detector maximum and minimum values.
      (+) Get conversion time.
      (+) Handle DFSDM interrupt request.
@endverbatim
  * @{
  */

/**
  * @brief  This function allows to start regular conversion in polling mode.
  * @note   This function should be called only when DFSDM filter instance is 
  *         in idle state or if injected conversion is ongoing.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterRegularStart(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));

  /* Check DFSDM filter state */
  if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_READY) || \
     (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_INJ))
  {
    /* Start regular conversion */
    DFSDM_RegConvStart(hdfsdm_filter);
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to poll for the end of regular conversion.
  * @note   This function should be called only if regular conversion is ongoing.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @param  Timeout Timeout value in milliseconds.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterPollForRegConversion(DFSDM_Filter_HandleTypeDef *hdfsdm_filter,
                                                       uint32_t                    Timeout)
{
  uint32_t tickstart;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));

  /* Check DFSDM filter state */
  if((hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG) && \
     (hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG_INJ))
  {
    /* Return error status */
    return HAL_ERROR;
  }
  else
  {
    /* Get timeout */
    tickstart = HAL_GetTick();  

    /* Wait end of regular conversion */
    while((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_REOCF) != DFSDM_FLTISR_REOCF)
    {
      /* Check the Timeout */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0U) || ((HAL_GetTick()-tickstart) > Timeout))
        {
          /* Return timeout status */
          return HAL_TIMEOUT;
        }
      }
    }
    /* Check if overrun occurs */
    if((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_ROVRF) == DFSDM_FLTISR_ROVRF)
    {
      /* Update error code and call error callback */
      hdfsdm_filter->ErrorCode = DFSDM_FILTER_ERROR_REGULAR_OVERRUN;
      HAL_DFSDM_FilterErrorCallback(hdfsdm_filter);

      /* Clear regular overrun flag */
      hdfsdm_filter->Instance->FLTICR = DFSDM_FLTICR_CLRROVRF;
    }
    /* Update DFSDM filter state only if not continuous conversion and SW trigger */
    if((hdfsdm_filter->RegularContMode == DFSDM_CONTINUOUS_CONV_OFF) && \
       (hdfsdm_filter->RegularTrigger == DFSDM_FILTER_SW_TRIGGER))
    {
      hdfsdm_filter->State = (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_REG) ? \
                             HAL_DFSDM_FILTER_STATE_READY : HAL_DFSDM_FILTER_STATE_INJ;
    }
    /* Return function status */
    return HAL_OK;
  }
}

/**
  * @brief  This function allows to stop regular conversion in polling mode.
  * @note   This function should be called only if regular conversion is ongoing.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterRegularStop(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));

  /* Check DFSDM filter state */
  if((hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG) && \
     (hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG_INJ))
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Stop regular conversion */
    DFSDM_RegConvStop(hdfsdm_filter);
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to start regular conversion in interrupt mode.
  * @note   This function should be called only when DFSDM filter instance is 
  *         in idle state or if injected conversion is ongoing.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterRegularStart_IT(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));

  /* Check DFSDM filter state */
  if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_READY) || \
     (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_INJ))
  {
    /* Enable interrupts for regular conversions */
    hdfsdm_filter->Instance->FLTCR2 |= (DFSDM_FLTCR2_REOCIE | DFSDM_FLTCR2_ROVRIE);
    
    /* Start regular conversion */
    DFSDM_RegConvStart(hdfsdm_filter);
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to stop regular conversion in interrupt mode.
  * @note   This function should be called only if regular conversion is ongoing.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterRegularStop_IT(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));

  /* Check DFSDM filter state */
  if((hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG) && \
     (hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG_INJ))
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Disable interrupts for regular conversions */
    hdfsdm_filter->Instance->FLTCR2 &= ~(DFSDM_FLTCR2_REOCIE | DFSDM_FLTCR2_ROVRIE);
    
    /* Stop regular conversion */
    DFSDM_RegConvStop(hdfsdm_filter);
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to start regular conversion in DMA mode.
  * @note   This function should be called only when DFSDM filter instance is 
  *         in idle state or if injected conversion is ongoing.
  *         Please note that data on buffer will contain signed regular conversion
  *         value on 24 most significant bits and corresponding channel on 3 least
  *         significant bits.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @param  pData The destination buffer address.
  * @param  Length The length of data to be transferred from DFSDM filter to memory.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterRegularStart_DMA(DFSDM_Filter_HandleTypeDef *hdfsdm_filter,
                                                   int32_t                    *pData,
                                                   uint32_t                    Length)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));

  /* Check destination address and length */
  if((pData == NULL) || (Length == 0U))
  {
    status = HAL_ERROR;
  }
  /* Check that DMA is enabled for regular conversion */
  else if((hdfsdm_filter->Instance->FLTCR1 & DFSDM_FLTCR1_RDMAEN) != DFSDM_FLTCR1_RDMAEN)
  {
    status = HAL_ERROR;
  }
  /* Check parameters compatibility */
  else if((hdfsdm_filter->RegularTrigger == DFSDM_FILTER_SW_TRIGGER) && \
          (hdfsdm_filter->RegularContMode == DFSDM_CONTINUOUS_CONV_OFF) && \
          (hdfsdm_filter->hdmaReg->Init.Mode == DMA_NORMAL) && \
          (Length != 1U))
  {
    status = HAL_ERROR;
  }
  else if((hdfsdm_filter->RegularTrigger == DFSDM_FILTER_SW_TRIGGER) && \
          (hdfsdm_filter->RegularContMode == DFSDM_CONTINUOUS_CONV_OFF) && \
          (hdfsdm_filter->hdmaReg->Init.Mode == DMA_CIRCULAR))
  {
    status = HAL_ERROR;
  }
  /* Check DFSDM filter state */
  else if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_READY) || \
          (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_INJ))
  {
    /* Set callbacks on DMA handler */
    hdfsdm_filter->hdmaReg->XferCpltCallback = DFSDM_DMARegularConvCplt;
    hdfsdm_filter->hdmaReg->XferErrorCallback = DFSDM_DMAError;
    hdfsdm_filter->hdmaReg->XferHalfCpltCallback = (hdfsdm_filter->hdmaReg->Init.Mode == DMA_CIRCULAR) ?\
                                                   DFSDM_DMARegularHalfConvCplt : NULL;
    
    /* Start DMA in interrupt mode */
    if(HAL_DMA_Start_IT(hdfsdm_filter->hdmaReg, (uint32_t)&hdfsdm_filter->Instance->FLTRDATAR, \
                        (uint32_t) pData, Length) != HAL_OK)
    {
      /* Set DFSDM filter in error state */
      hdfsdm_filter->State = HAL_DFSDM_FILTER_STATE_ERROR;
      status = HAL_ERROR;
    }
    else
    {
      /* Start regular conversion */
      DFSDM_RegConvStart(hdfsdm_filter);
    }
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to start regular conversion in DMA mode and to get
  *         only the 16 most significant bits of conversion.
  * @note   This function should be called only when DFSDM filter instance is 
  *         in idle state or if injected conversion is ongoing.
  *         Please note that data on buffer will contain signed 16 most significant
  *         bits of regular conversion.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @param  pData The destination buffer address.
  * @param  Length The length of data to be transferred from DFSDM filter to memory.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterRegularMsbStart_DMA(DFSDM_Filter_HandleTypeDef *hdfsdm_filter,
                                                      int16_t                    *pData,
                                                      uint32_t                    Length)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));

  /* Check destination address and length */
  if((pData == NULL) || (Length == 0U))
  {
    status = HAL_ERROR;
  }
  /* Check that DMA is enabled for regular conversion */
  else if((hdfsdm_filter->Instance->FLTCR1 & DFSDM_FLTCR1_RDMAEN) != DFSDM_FLTCR1_RDMAEN)
  {
    status = HAL_ERROR;
  }
  /* Check parameters compatibility */
  else if((hdfsdm_filter->RegularTrigger == DFSDM_FILTER_SW_TRIGGER) && \
          (hdfsdm_filter->RegularContMode == DFSDM_CONTINUOUS_CONV_OFF) && \
          (hdfsdm_filter->hdmaReg->Init.Mode == DMA_NORMAL) && \
          (Length != 1U))
  {
    status = HAL_ERROR;
  }
  else if((hdfsdm_filter->RegularTrigger == DFSDM_FILTER_SW_TRIGGER) && \
          (hdfsdm_filter->RegularContMode == DFSDM_CONTINUOUS_CONV_OFF) && \
          (hdfsdm_filter->hdmaReg->Init.Mode == DMA_CIRCULAR))
  {
    status = HAL_ERROR;
  }
  /* Check DFSDM filter state */
  else if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_READY) || \
          (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_INJ))
  {
    /* Set callbacks on DMA handler */
    hdfsdm_filter->hdmaReg->XferCpltCallback = DFSDM_DMARegularConvCplt;
    hdfsdm_filter->hdmaReg->XferErrorCallback = DFSDM_DMAError;
    hdfsdm_filter->hdmaReg->XferHalfCpltCallback = (hdfsdm_filter->hdmaReg->Init.Mode == DMA_CIRCULAR) ?\
                                                   DFSDM_DMARegularHalfConvCplt : NULL;
    
    /* Start DMA in interrupt mode */
    if(HAL_DMA_Start_IT(hdfsdm_filter->hdmaReg, (uint32_t)(&hdfsdm_filter->Instance->FLTRDATAR) + 2U, \
                        (uint32_t) pData, Length) != HAL_OK)
    {
      /* Set DFSDM filter in error state */
      hdfsdm_filter->State = HAL_DFSDM_FILTER_STATE_ERROR;
      status = HAL_ERROR;
    }
    else
    {
      /* Start regular conversion */
      DFSDM_RegConvStart(hdfsdm_filter);
    }
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to stop regular conversion in DMA mode.
  * @note   This function should be called only if regular conversion is ongoing.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterRegularStop_DMA(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));

  /* Check DFSDM filter state */
  if((hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG) && \
     (hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG_INJ))
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Stop current DMA transfer */
    if(HAL_DMA_Abort(hdfsdm_filter->hdmaReg) != HAL_OK)
    {
      /* Set DFSDM filter in error state */
      hdfsdm_filter->State = HAL_DFSDM_FILTER_STATE_ERROR;
      status = HAL_ERROR;
    }
    else
    {
      /* Stop regular conversion */
      DFSDM_RegConvStop(hdfsdm_filter);
    }
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to get regular conversion value.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @param  Channel Corresponding channel of regular conversion.
  * @retval Regular conversion value
  */
int32_t HAL_DFSDM_FilterGetRegularValue(DFSDM_Filter_HandleTypeDef *hdfsdm_filter,
                                        uint32_t                   *Channel)
{
  uint32_t reg = 0U;
  int32_t  value = 0;
  
  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));
  assert_param(Channel != NULL);

  /* Get value of data register for regular channel */
  reg = hdfsdm_filter->Instance->FLTRDATAR;
  
  /* Extract channel and regular conversion value */
  *Channel = (reg & DFSDM_FLTRDATAR_RDATACH);
  value = ((int32_t)(reg & DFSDM_FLTRDATAR_RDATA) >> DFSDM_FLTRDATAR_RDATA_Pos);

  /* return regular conversion value */
  return value;
}

/**
  * @brief  This function allows to start injected conversion in polling mode.
  * @note   This function should be called only when DFSDM filter instance is 
  *         in idle state or if regular conversion is ongoing.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterInjectedStart(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));

  /* Check DFSDM filter state */
  if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_READY) || \
     (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_REG))
  {
    /* Start injected conversion */
    DFSDM_InjConvStart(hdfsdm_filter);
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to poll for the end of injected conversion.
  * @note   This function should be called only if injected conversion is ongoing.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @param  Timeout Timeout value in milliseconds.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterPollForInjConversion(DFSDM_Filter_HandleTypeDef *hdfsdm_filter,
                                                       uint32_t                    Timeout)
{
  uint32_t tickstart;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));

  /* Check DFSDM filter state */
  if((hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_INJ) && \
     (hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG_INJ))
  {
    /* Return error status */
    return HAL_ERROR;
  }
  else
  {
    /* Get timeout */
    tickstart = HAL_GetTick();  

    /* Wait end of injected conversions */
    while((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_JEOCF) != DFSDM_FLTISR_JEOCF)
    {
      /* Check the Timeout */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0U) || ((HAL_GetTick()-tickstart) > Timeout))
        {
          /* Return timeout status */
          return HAL_TIMEOUT;
        }
      }
    }
    /* Check if overrun occurs */
    if((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_JOVRF) == DFSDM_FLTISR_JOVRF)
    {
      /* Update error code and call error callback */
      hdfsdm_filter->ErrorCode = DFSDM_FILTER_ERROR_INJECTED_OVERRUN;
      HAL_DFSDM_FilterErrorCallback(hdfsdm_filter);

      /* Clear injected overrun flag */
      hdfsdm_filter->Instance->FLTICR = DFSDM_FLTICR_CLRJOVRF;
    }

    /* Update remaining injected conversions */
    hdfsdm_filter->InjConvRemaining--;
    if(hdfsdm_filter->InjConvRemaining == 0U)
    {
      /* Update DFSDM filter state only if trigger is software */
      if(hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SW_TRIGGER)
      {
        hdfsdm_filter->State = (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_INJ) ? \
                               HAL_DFSDM_FILTER_STATE_READY : HAL_DFSDM_FILTER_STATE_REG;
      }
      
      /* end of injected sequence, reset the value */
      hdfsdm_filter->InjConvRemaining = (hdfsdm_filter->InjectedScanMode == ENABLE) ? \
                                         hdfsdm_filter->InjectedChannelsNbr : 1U;
    }

    /* Return function status */
    return HAL_OK;
  }
}

/**
  * @brief  This function allows to stop injected conversion in polling mode.
  * @note   This function should be called only if injected conversion is ongoing.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterInjectedStop(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));

  /* Check DFSDM filter state */
  if((hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_INJ) && \
     (hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG_INJ))
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Stop injected conversion */
    DFSDM_InjConvStop(hdfsdm_filter);
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to start injected conversion in interrupt mode.
  * @note   This function should be called only when DFSDM filter instance is 
  *         in idle state or if regular conversion is ongoing.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterInjectedStart_IT(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));

  /* Check DFSDM filter state */
  if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_READY) || \
     (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_REG))
  {
    /* Enable interrupts for injected conversions */
    hdfsdm_filter->Instance->FLTCR2 |= (DFSDM_FLTCR2_JEOCIE | DFSDM_FLTCR2_JOVRIE);
    
    /* Start injected conversion */
    DFSDM_InjConvStart(hdfsdm_filter);
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to stop injected conversion in interrupt mode.
  * @note   This function should be called only if injected conversion is ongoing.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterInjectedStop_IT(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));

  /* Check DFSDM filter state */
  if((hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_INJ) && \
     (hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG_INJ))
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Disable interrupts for injected conversions */
    hdfsdm_filter->Instance->FLTCR2 &= ~(DFSDM_FLTCR2_JEOCIE | DFSDM_FLTCR2_JOVRIE);
    
    /* Stop injected conversion */
    DFSDM_InjConvStop(hdfsdm_filter);
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to start injected conversion in DMA mode.
  * @note   This function should be called only when DFSDM filter instance is 
  *         in idle state or if regular conversion is ongoing.
  *         Please note that data on buffer will contain signed injected conversion
  *         value on 24 most significant bits and corresponding channel on 3 least
  *         significant bits.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @param  pData The destination buffer address.
  * @param  Length The length of data to be transferred from DFSDM filter to memory.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterInjectedStart_DMA(DFSDM_Filter_HandleTypeDef *hdfsdm_filter,
                                                    int32_t                    *pData,
                                                    uint32_t                    Length)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));

  /* Check destination address and length */
  if((pData == NULL) || (Length == 0U))
  {
    status = HAL_ERROR;
  }
  /* Check that DMA is enabled for injected conversion */
  else if((hdfsdm_filter->Instance->FLTCR1 & DFSDM_FLTCR1_JDMAEN) != DFSDM_FLTCR1_JDMAEN)
  {
    status = HAL_ERROR;
  }
  /* Check parameters compatibility */
  else if((hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SW_TRIGGER) && \
          (hdfsdm_filter->hdmaInj->Init.Mode == DMA_NORMAL) && \
          (Length > hdfsdm_filter->InjConvRemaining))
  {
    status = HAL_ERROR;
  }
  else if((hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SW_TRIGGER) && \
          (hdfsdm_filter->hdmaInj->Init.Mode == DMA_CIRCULAR))
  {
    status = HAL_ERROR;
  }
  /* Check DFSDM filter state */
  else if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_READY) || \
          (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_REG))
  {
    /* Set callbacks on DMA handler */
    hdfsdm_filter->hdmaInj->XferCpltCallback = DFSDM_DMAInjectedConvCplt;
    hdfsdm_filter->hdmaInj->XferErrorCallback = DFSDM_DMAError;
    hdfsdm_filter->hdmaInj->XferHalfCpltCallback = (hdfsdm_filter->hdmaInj->Init.Mode == DMA_CIRCULAR) ?\
                                                   DFSDM_DMAInjectedHalfConvCplt : NULL;
    
    /* Start DMA in interrupt mode */
    if(HAL_DMA_Start_IT(hdfsdm_filter->hdmaInj, (uint32_t)&hdfsdm_filter->Instance->FLTJDATAR, \
                        (uint32_t) pData, Length) != HAL_OK)
    {
      /* Set DFSDM filter in error state */
      hdfsdm_filter->State = HAL_DFSDM_FILTER_STATE_ERROR;
      status = HAL_ERROR;
    }
    else
    {
      /* Start injected conversion */
      DFSDM_InjConvStart(hdfsdm_filter);
    }
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to start injected conversion in DMA mode and to get
  *         only the 16 most significant bits of conversion.
  * @note   This function should be called only when DFSDM filter instance is 
  *         in idle state or if regular conversion is ongoing.
  *         Please note that data on buffer will contain signed 16 most significant
  *         bits of injected conversion.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @param  pData The destination buffer address.
  * @param  Length The length of data to be transferred from DFSDM filter to memory.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterInjectedMsbStart_DMA(DFSDM_Filter_HandleTypeDef *hdfsdm_filter,
                                                       int16_t                    *pData,
                                                       uint32_t                    Length)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));

  /* Check destination address and length */
  if((pData == NULL) || (Length == 0U))
  {
    status = HAL_ERROR;
  }
  /* Check that DMA is enabled for injected conversion */
  else if((hdfsdm_filter->Instance->FLTCR1 & DFSDM_FLTCR1_JDMAEN) != DFSDM_FLTCR1_JDMAEN)
  {
    status = HAL_ERROR;
  }
  /* Check parameters compatibility */
  else if((hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SW_TRIGGER) && \
          (hdfsdm_filter->hdmaInj->Init.Mode == DMA_NORMAL) && \
          (Length > hdfsdm_filter->InjConvRemaining))
  {
    status = HAL_ERROR;
  }
  else if((hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SW_TRIGGER) && \
          (hdfsdm_filter->hdmaInj->Init.Mode == DMA_CIRCULAR))
  {
    status = HAL_ERROR;
  }
  /* Check DFSDM filter state */
  else if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_READY) || \
          (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_REG))
  {
    /* Set callbacks on DMA handler */
    hdfsdm_filter->hdmaInj->XferCpltCallback = DFSDM_DMAInjectedConvCplt;
    hdfsdm_filter->hdmaInj->XferErrorCallback = DFSDM_DMAError;
    hdfsdm_filter->hdmaInj->XferHalfCpltCallback = (hdfsdm_filter->hdmaInj->Init.Mode == DMA_CIRCULAR) ?\
                                                   DFSDM_DMAInjectedHalfConvCplt : NULL;
    
    /* Start DMA in interrupt mode */
    if(HAL_DMA_Start_IT(hdfsdm_filter->hdmaInj, (uint32_t)(&hdfsdm_filter->Instance->FLTJDATAR) + 2U, \
                        (uint32_t) pData, Length) != HAL_OK)
    {
      /* Set DFSDM filter in error state */
      hdfsdm_filter->State = HAL_DFSDM_FILTER_STATE_ERROR;
      status = HAL_ERROR;
    }
    else
    {
      /* Start injected conversion */
      DFSDM_InjConvStart(hdfsdm_filter);
    }
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to stop injected conversion in DMA mode.
  * @note   This function should be called only if injected conversion is ongoing.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterInjectedStop_DMA(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));

  /* Check DFSDM filter state */
  if((hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_INJ) && \
     (hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG_INJ))
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Stop current DMA transfer */
    if(HAL_DMA_Abort(hdfsdm_filter->hdmaInj) != HAL_OK)
    {
      /* Set DFSDM filter in error state */
      hdfsdm_filter->State = HAL_DFSDM_FILTER_STATE_ERROR;
      status = HAL_ERROR;
    }
    else
    {
      /* Stop regular conversion */
      DFSDM_InjConvStop(hdfsdm_filter);
    }
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to get injected conversion value.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @param  Channel Corresponding channel of injected conversion.
  * @retval Injected conversion value
  */
int32_t HAL_DFSDM_FilterGetInjectedValue(DFSDM_Filter_HandleTypeDef *hdfsdm_filter, 
                                         uint32_t                   *Channel)
{
  uint32_t reg = 0U;
  int32_t  value = 0;
  
  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));
  assert_param(Channel != NULL);

  /* Get value of data register for injected channel */
  reg = hdfsdm_filter->Instance->FLTJDATAR;
  
  /* Extract channel and injected conversion value */
  *Channel = (reg & DFSDM_FLTJDATAR_JDATACH);
  value = ((int32_t)(reg & DFSDM_FLTJDATAR_JDATA) >> DFSDM_FLTJDATAR_JDATA_Pos);

  /* return regular conversion value */
  return value;
}

/**
  * @brief  This function allows to start filter analog watchdog in interrupt mode.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @param  awdParam DFSDM filter analog watchdog parameters.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterAwdStart_IT(DFSDM_Filter_HandleTypeDef   *hdfsdm_filter,
                                              DFSDM_Filter_AwdParamTypeDef *awdParam)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));
  assert_param(IS_DFSDM_FILTER_AWD_DATA_SOURCE(awdParam->DataSource));
  assert_param(IS_DFSDM_INJECTED_CHANNEL(awdParam->Channel));
  assert_param(IS_DFSDM_FILTER_AWD_THRESHOLD(awdParam->HighThreshold));
  assert_param(IS_DFSDM_FILTER_AWD_THRESHOLD(awdParam->LowThreshold));
  assert_param(IS_DFSDM_BREAK_SIGNALS(awdParam->HighBreakSignal));
  assert_param(IS_DFSDM_BREAK_SIGNALS(awdParam->LowBreakSignal));
  
  /* Check DFSDM filter state */
  if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_RESET) || \
     (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_ERROR))
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Set analog watchdog data source */
    hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_AWFSEL);
    hdfsdm_filter->Instance->FLTCR1 |= awdParam->DataSource;

    /* Set thresholds and break signals */
    hdfsdm_filter->Instance->FLTAWHTR &= ~(DFSDM_FLTAWHTR_AWHT | DFSDM_FLTAWHTR_BKAWH);
    hdfsdm_filter->Instance->FLTAWHTR |= (((uint32_t) awdParam->HighThreshold << DFSDM_FLTAWHTR_AWHT_Pos) | \
                                           awdParam->HighBreakSignal);
    hdfsdm_filter->Instance->FLTAWLTR &= ~(DFSDM_FLTAWLTR_AWLT | DFSDM_FLTAWLTR_BKAWL);
    hdfsdm_filter->Instance->FLTAWLTR |= (((uint32_t) awdParam->LowThreshold << DFSDM_FLTAWLTR_AWLT_Pos) | \
                                           awdParam->LowBreakSignal);

    /* Set channels and interrupt for analog watchdog */
    hdfsdm_filter->Instance->FLTCR2 &= ~(DFSDM_FLTCR2_AWDCH);
    hdfsdm_filter->Instance->FLTCR2 |= (((awdParam->Channel & DFSDM_LSB_MASK) << DFSDM_FLTCR2_AWDCH_Pos) | \
                                        DFSDM_FLTCR2_AWDIE);
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to stop filter analog watchdog in interrupt mode.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterAwdStop_IT(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));
  
  /* Check DFSDM filter state */
  if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_RESET) || \
     (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_ERROR))
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Reset channels for analog watchdog and deactivate interrupt */
    hdfsdm_filter->Instance->FLTCR2 &= ~(DFSDM_FLTCR2_AWDCH | DFSDM_FLTCR2_AWDIE);

    /* Clear all analog watchdog flags */
    hdfsdm_filter->Instance->FLTAWCFR = (DFSDM_FLTAWCFR_CLRAWHTF | DFSDM_FLTAWCFR_CLRAWLTF);
    
    /* Reset thresholds and break signals */
    hdfsdm_filter->Instance->FLTAWHTR &= ~(DFSDM_FLTAWHTR_AWHT | DFSDM_FLTAWHTR_BKAWH);
    hdfsdm_filter->Instance->FLTAWLTR &= ~(DFSDM_FLTAWLTR_AWLT | DFSDM_FLTAWLTR_BKAWL);

    /* Reset analog watchdog data source */
    hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_AWFSEL);
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to start extreme detector feature.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @param  Channel Channels where extreme detector is enabled.
  *         This parameter can be a values combination of @ref DFSDM_Channel_Selection.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterExdStart(DFSDM_Filter_HandleTypeDef *hdfsdm_filter,
                                           uint32_t                    Channel)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));
  assert_param(IS_DFSDM_INJECTED_CHANNEL(Channel));
  
  /* Check DFSDM filter state */
  if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_RESET) || \
     (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_ERROR))
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Set channels for extreme detector */
    hdfsdm_filter->Instance->FLTCR2 &= ~(DFSDM_FLTCR2_EXCH);
    hdfsdm_filter->Instance->FLTCR2 |= ((Channel & DFSDM_LSB_MASK) << DFSDM_FLTCR2_EXCH_Pos);    
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to stop extreme detector feature.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DFSDM_FilterExdStop(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  HAL_StatusTypeDef status = HAL_OK;
  __IO uint32_t     reg1;
  __IO uint32_t     reg2;

  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));
  
  /* Check DFSDM filter state */
  if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_RESET) || \
     (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_ERROR))
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Reset channels for extreme detector */
    hdfsdm_filter->Instance->FLTCR2 &= ~(DFSDM_FLTCR2_EXCH);

    /* Clear extreme detector values */
    reg1 = hdfsdm_filter->Instance->FLTEXMAX;
    reg2 = hdfsdm_filter->Instance->FLTEXMIN;    
    UNUSED(reg1); /* To avoid GCC warning */
    UNUSED(reg2); /* To avoid GCC warning */
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to get extreme detector maximum value.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @param  Channel Corresponding channel.
  * @retval Extreme detector maximum value
  *         This value is between Min_Data = -8388608 and Max_Data = 8388607.
  */
int32_t HAL_DFSDM_FilterGetExdMaxValue(DFSDM_Filter_HandleTypeDef *hdfsdm_filter,
                                       uint32_t                   *Channel)
{
  uint32_t reg = 0U;
  int32_t  value = 0;
  
  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));
  assert_param(Channel != NULL);

  /* Get value of extreme detector maximum register */
  reg = hdfsdm_filter->Instance->FLTEXMAX;
  
  /* Extract channel and extreme detector maximum value */
  *Channel = (reg & DFSDM_FLTEXMAX_EXMAXCH);
  value = ((int32_t)(reg & DFSDM_FLTEXMAX_EXMAX) >> DFSDM_FLTEXMAX_EXMAX_Pos);

  /* return extreme detector maximum value */
  return value;
}

/**
  * @brief  This function allows to get extreme detector minimum value.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @param  Channel Corresponding channel.
  * @retval Extreme detector minimum value
  *         This value is between Min_Data = -8388608 and Max_Data = 8388607.
  */
int32_t HAL_DFSDM_FilterGetExdMinValue(DFSDM_Filter_HandleTypeDef *hdfsdm_filter,
                                       uint32_t                   *Channel)
{
  uint32_t reg = 0U;
  int32_t  value = 0;
  
  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));
  assert_param(Channel != NULL);

  /* Get value of extreme detector minimum register */
  reg = hdfsdm_filter->Instance->FLTEXMIN;
  
  /* Extract channel and extreme detector minimum value */
  *Channel = (reg & DFSDM_FLTEXMIN_EXMINCH);
  value = ((int32_t)(reg & DFSDM_FLTEXMIN_EXMIN) >> DFSDM_FLTEXMIN_EXMIN_Pos);

  /* return extreme detector minimum value */
  return value;
}

/**
  * @brief  This function allows to get conversion time value.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval Conversion time value
  * @note   To get time in second, this value has to be divided by DFSDM clock frequency.
  */
uint32_t HAL_DFSDM_FilterGetConvTimeValue(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  uint32_t reg = 0U;
  uint32_t value = 0U;
  
  /* Check parameters */
  assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance));

  /* Get value of conversion timer register */
  reg = hdfsdm_filter->Instance->FLTCNVTIMR;
  
  /* Extract conversion time value */
  value = ((reg & DFSDM_FLTCNVTIMR_CNVCNT) >> DFSDM_FLTCNVTIMR_CNVCNT_Pos);

  /* return extreme detector minimum value */
  return value;
}

/**
  * @brief  This function handles the DFSDM interrupts.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval None
  */
void HAL_DFSDM_IRQHandler(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  /* Check if overrun occurs during regular conversion */
  if(((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_ROVRF) != 0U) && \
     ((hdfsdm_filter->Instance->FLTCR2 & DFSDM_FLTCR2_ROVRIE) != 0U))
  {
    /* Clear regular overrun flag */
    hdfsdm_filter->Instance->FLTICR = DFSDM_FLTICR_CLRROVRF;

    /* Update error code */
    hdfsdm_filter->ErrorCode = DFSDM_FILTER_ERROR_REGULAR_OVERRUN;

    /* Call error callback */
    HAL_DFSDM_FilterErrorCallback(hdfsdm_filter);
  }
  /* Check if overrun occurs during injected conversion */
  else if(((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_JOVRF) != 0U) && \
          ((hdfsdm_filter->Instance->FLTCR2 & DFSDM_FLTCR2_JOVRIE) != 0U))
  {
    /* Clear injected overrun flag */
    hdfsdm_filter->Instance->FLTICR = DFSDM_FLTICR_CLRJOVRF;

    /* Update error code */
    hdfsdm_filter->ErrorCode = DFSDM_FILTER_ERROR_INJECTED_OVERRUN;

    /* Call error callback */
    HAL_DFSDM_FilterErrorCallback(hdfsdm_filter);
  }
  /* Check if end of regular conversion */
  else if(((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_REOCF) != 0U) && \
          ((hdfsdm_filter->Instance->FLTCR2 & DFSDM_FLTCR2_REOCIE) != 0U))
  {
    /* Call regular conversion complete callback */
    HAL_DFSDM_FilterRegConvCpltCallback(hdfsdm_filter);

    /* End of conversion if mode is not continuous and software trigger */
    if((hdfsdm_filter->RegularContMode == DFSDM_CONTINUOUS_CONV_OFF) && \
       (hdfsdm_filter->RegularTrigger == DFSDM_FILTER_SW_TRIGGER))
    {
      /* Disable interrupts for regular conversions */
      hdfsdm_filter->Instance->FLTCR2 &= ~(DFSDM_FLTCR2_REOCIE);

      /* Update DFSDM filter state */
      hdfsdm_filter->State = (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_REG) ? \
                             HAL_DFSDM_FILTER_STATE_READY : HAL_DFSDM_FILTER_STATE_INJ;
    }
  }
  /* Check if end of injected conversion */
  else if(((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_JEOCF) != 0U) && \
          ((hdfsdm_filter->Instance->FLTCR2 & DFSDM_FLTCR2_JEOCIE) != 0U))
  {
    /* Call injected conversion complete callback */
    HAL_DFSDM_FilterInjConvCpltCallback(hdfsdm_filter);

    /* Update remaining injected conversions */
    hdfsdm_filter->InjConvRemaining--;
    if(hdfsdm_filter->InjConvRemaining == 0U)
    {
      /* End of conversion if trigger is software */
      if(hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SW_TRIGGER)
      {
        /* Disable interrupts for injected conversions */
        hdfsdm_filter->Instance->FLTCR2 &= ~(DFSDM_FLTCR2_JEOCIE);

        /* Update DFSDM filter state */
        hdfsdm_filter->State = (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_INJ) ? \
                               HAL_DFSDM_FILTER_STATE_READY : HAL_DFSDM_FILTER_STATE_REG;
      }
      /* end of injected sequence, reset the value */
      hdfsdm_filter->InjConvRemaining = (hdfsdm_filter->InjectedScanMode == ENABLE) ? \
                                         hdfsdm_filter->InjectedChannelsNbr : 1U;
    }
  }
  /* Check if analog watchdog occurs */
  else if(((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_AWDF) != 0U) && \
          ((hdfsdm_filter->Instance->FLTCR2 & DFSDM_FLTCR2_AWDIE) != 0U))
  {
    uint32_t reg = 0U;
    uint32_t threshold = 0U;
    uint32_t channel = 0U;
    
    /* Get channel and threshold */
    reg = hdfsdm_filter->Instance->FLTAWSR;
    threshold = ((reg & DFSDM_FLTAWSR_AWLTF) != 0U) ? DFSDM_AWD_LOW_THRESHOLD : DFSDM_AWD_HIGH_THRESHOLD;
    if(threshold == DFSDM_AWD_HIGH_THRESHOLD)
    {
      reg = reg >> DFSDM_FLTAWSR_AWHTF_Pos;
    }
    while((reg & 1U) == 0U)
    {
      channel++;
      reg = reg >> 1U;
    }
    /* Clear analog watchdog flag */
    hdfsdm_filter->Instance->FLTAWCFR = (threshold == DFSDM_AWD_HIGH_THRESHOLD) ? \
                                        (1U << (DFSDM_FLTAWSR_AWHTF_Pos + channel)) : \
                                        (1U << channel);

    /* Call analog watchdog callback */
    HAL_DFSDM_FilterAwdCallback(hdfsdm_filter, channel, threshold);
  }
  /* Check if clock absence occurs */
  else if((hdfsdm_filter->Instance == DFSDM1_Filter0) && \
         ((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_CKABF) != 0U) && \
         ((hdfsdm_filter->Instance->FLTCR2 & DFSDM_FLTCR2_CKABIE) != 0U))
  {
    uint32_t reg = 0U;
    uint32_t channel = 0U;
    
    reg = ((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_CKABF) >> DFSDM_FLTISR_CKABF_Pos);

    while(channel < DFSDM1_CHANNEL_NUMBER)
    {
      /* Check if flag is set and corresponding channel is enabled */
      if(((reg & 1U) != 0U) && (a_dfsdm1ChannelHandle[channel] != NULL))
      {
        /* Check clock absence has been enabled for this channel */
        if((a_dfsdm1ChannelHandle[channel]->Instance->CHCFGR1 & DFSDM_CHCFGR1_CKABEN) != 0U)
        {
          /* Clear clock absence flag */
          hdfsdm_filter->Instance->FLTICR = (1U << (DFSDM_FLTICR_CLRCKABF_Pos + channel));

          /* Call clock absence callback */
          HAL_DFSDM_ChannelCkabCallback(a_dfsdm1ChannelHandle[channel]);
        }
      }
      channel++;
      reg = reg >> 1U;
    }
  }
#if defined (DFSDM2_Channel0)     
  /* Check if clock absence occurs */
  else if((hdfsdm_filter->Instance == DFSDM2_Filter0) && \
         ((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_CKABF) != 0U) && \
         ((hdfsdm_filter->Instance->FLTCR2 & DFSDM_FLTCR2_CKABIE) != 0U))
  {
    uint32_t reg = 0U;
    uint32_t channel = 0U;
    
    reg = ((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_CKABF) >> DFSDM_FLTISR_CKABF_Pos);

    while(channel < DFSDM2_CHANNEL_NUMBER)
    {
      /* Check if flag is set and corresponding channel is enabled */
      if(((reg & 1U) != 0U) && (a_dfsdm2ChannelHandle[channel] != NULL))
      {
        /* Check clock absence has been enabled for this channel */
        if((a_dfsdm2ChannelHandle[channel]->Instance->CHCFGR1 & DFSDM_CHCFGR1_CKABEN) != 0U)
        {
          /* Clear clock absence flag */
          hdfsdm_filter->Instance->FLTICR = (1U << (DFSDM_FLTICR_CLRCKABF_Pos + channel));

          /* Call clock absence callback */
          HAL_DFSDM_ChannelCkabCallback(a_dfsdm2ChannelHandle[channel]);
        }
      }
      channel++;
      reg = reg >> 1U;
    }
  }
#endif /* DFSDM2_Channel0 */  
  /* Check if short circuit detection occurs */
  else if((hdfsdm_filter->Instance == DFSDM1_Filter0) && \
         ((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_SCDF) != 0U) && \
         ((hdfsdm_filter->Instance->FLTCR2 & DFSDM_FLTCR2_SCDIE) != 0U))
  {
    uint32_t reg = 0U;
    uint32_t channel = 0U;
    
    /* Get channel */
    reg = ((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_SCDF) >> DFSDM_FLTISR_SCDF_Pos);
    while((reg & 1U) == 0U)
    {
      channel++;
      reg = reg >> 1U;
    }
    
    /* Clear short circuit detection flag */
    hdfsdm_filter->Instance->FLTICR = (1U << (DFSDM_FLTICR_CLRSCSDF_Pos + channel));

    /* Call short circuit detection callback */
    HAL_DFSDM_ChannelScdCallback(a_dfsdm1ChannelHandle[channel]);
  }
#if defined (DFSDM2_Channel0)   
  /* Check if short circuit detection occurs */
  else if((hdfsdm_filter->Instance == DFSDM2_Filter0) && \
         ((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_SCDF) != 0U) && \
         ((hdfsdm_filter->Instance->FLTCR2 & DFSDM_FLTCR2_SCDIE) != 0U))
  {
    uint32_t reg = 0U;
    uint32_t channel = 0U;
    
    /* Get channel */
    reg = ((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_SCDF) >> DFSDM_FLTISR_SCDF_Pos);
    while((reg & 1U) == 0U)
    {
      channel++;
      reg = reg >> 1U;
    }
    
    /* Clear short circuit detection flag */
    hdfsdm_filter->Instance->FLTICR = (1U << (DFSDM_FLTICR_CLRSCSDF_Pos + channel));

    /* Call short circuit detection callback */
    HAL_DFSDM_ChannelScdCallback(a_dfsdm2ChannelHandle[channel]);
  }
#endif /* DFSDM2_Channel0 */  
}

/**
  * @brief  Regular conversion complete callback. 
  * @note   In interrupt mode, user has to read conversion value in this function
  *         using HAL_DFSDM_FilterGetRegularValue.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval None
  */
__weak void HAL_DFSDM_FilterRegConvCpltCallback(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hdfsdm_filter);
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_DFSDM_FilterRegConvCpltCallback could be implemented in the user file.
   */
}

/**
  * @brief  Half regular conversion complete callback. 
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval None
  */
__weak void HAL_DFSDM_FilterRegConvHalfCpltCallback(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hdfsdm_filter);
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_DFSDM_FilterRegConvHalfCpltCallback could be implemented in the user file.
   */
}

/**
  * @brief  Injected conversion complete callback. 
  * @note   In interrupt mode, user has to read conversion value in this function
  *         using HAL_DFSDM_FilterGetInjectedValue.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval None
  */
__weak void HAL_DFSDM_FilterInjConvCpltCallback(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hdfsdm_filter);
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_DFSDM_FilterInjConvCpltCallback could be implemented in the user file.
   */
}

/**
  * @brief  Half injected conversion complete callback. 
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval None
  */
__weak void HAL_DFSDM_FilterInjConvHalfCpltCallback(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hdfsdm_filter);
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_DFSDM_FilterInjConvHalfCpltCallback could be implemented in the user file.
   */
}

/**
  * @brief  Filter analog watchdog callback. 
  * @param  hdfsdm_filter DFSDM filter handle.
  * @param  Channel Corresponding channel.
  * @param  Threshold Low or high threshold has been reached.
  * @retval None
  */
__weak void HAL_DFSDM_FilterAwdCallback(DFSDM_Filter_HandleTypeDef *hdfsdm_filter,
                                        uint32_t Channel, uint32_t Threshold)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hdfsdm_filter);
  UNUSED(Channel);
  UNUSED(Threshold);
  
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_DFSDM_FilterAwdCallback could be implemented in the user file.
   */
}

/**
  * @brief  Error callback. 
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval None
  */
__weak void HAL_DFSDM_FilterErrorCallback(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hdfsdm_filter);
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_DFSDM_FilterErrorCallback could be implemented in the user file.
   */
}

/**
  * @}
  */

/** @defgroup DFSDM_Exported_Functions_Group4_Filter Filter state functions
 *  @brief    Filter state functions
 *
@verbatim
  ==============================================================================
                     ##### Filter state functions #####
  ==============================================================================
    [..]  This section provides functions allowing to:
      (+) Get the DFSDM filter state.
      (+) Get the DFSDM filter error.
@endverbatim
  * @{
  */

/**
  * @brief  This function allows to get the current DFSDM filter handle state.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval DFSDM filter state.
  */
HAL_DFSDM_Filter_StateTypeDef HAL_DFSDM_FilterGetState(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  /* Return DFSDM filter handle state */
  return hdfsdm_filter->State;
}

/**
  * @brief  This function allows to get the current DFSDM filter error.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval DFSDM filter error code.
  */
uint32_t HAL_DFSDM_FilterGetError(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)
{
  return hdfsdm_filter->ErrorCode;
}

/**
  * @}
  */

/** @defgroup DFSDM_Exported_Functions_Group5_Filter MultiChannel operation functions
 *  @brief    Filter state functions
 *
@verbatim
  ==============================================================================
                     ##### Filter MultiChannel operation functions #####
  ==============================================================================
    [..]  This section provides functions allowing to:
      (+) Control the DFSDM Multi channel delay block
@endverbatim
  * @{
  */
#if defined(SYSCFG_MCHDLYCR_BSCKSEL)
/**
  * @brief  Select the DFSDM2 as clock source for the bitstream clock.
  * @note   The SYSCFG clock marco __HAL_RCC_SYSCFG_CLK_ENABLE() must be called 
  *         before HAL_DFSDM_BitstreamClock_Start()  
  */
void HAL_DFSDM_BitstreamClock_Start(void)
{
  uint32_t tmp = 0; 
  
  tmp = SYSCFG->MCHDLYCR;
  tmp = (tmp &(~SYSCFG_MCHDLYCR_BSCKSEL));

  SYSCFG->MCHDLYCR  = (tmp|SYSCFG_MCHDLYCR_BSCKSEL);
}

/**
  * @brief Stop the DFSDM2 as clock source for the bitstream clock.
  * @note   The SYSCFG clock marco __HAL_RCC_SYSCFG_CLK_ENABLE() must be called 
  *         before HAL_DFSDM_BitstreamClock_Stop()     
  * @retval None
  */
void HAL_DFSDM_BitstreamClock_Stop(void)
{
  uint32_t tmp = 0U; 
  
  tmp = SYSCFG->MCHDLYCR;
  tmp = (tmp &(~SYSCFG_MCHDLYCR_BSCKSEL));

  SYSCFG->MCHDLYCR  = tmp;
}

/**
  * @brief  Disable Delay Clock for DFSDM1/2.
  * @param MCHDLY HAL_MCHDLY_CLOCK_DFSDM2.
  *               HAL_MCHDLY_CLOCK_DFSDM1.
  * @note   The SYSCFG clock marco __HAL_RCC_SYSCFG_CLK_ENABLE() must be called 
  *         before HAL_DFSDM_DisableDelayClock()     
  * @retval None
  */
void HAL_DFSDM_DisableDelayClock(uint32_t MCHDLY)
{
  uint32_t tmp = 0U; 
  
  assert_param(IS_DFSDM_DELAY_CLOCK(MCHDLY));
  
  tmp = SYSCFG->MCHDLYCR;
  if(MCHDLY == HAL_MCHDLY_CLOCK_DFSDM2)
  {
    tmp = tmp &(~SYSCFG_MCHDLYCR_MCHDLY2EN);
  }
  else
  {
    tmp = tmp &(~SYSCFG_MCHDLYCR_MCHDLY1EN);
  }

  SYSCFG->MCHDLYCR  = tmp;
}

/**
  * @brief  Enable Delay Clock for DFSDM1/2.
  * @param MCHDLY HAL_MCHDLY_CLOCK_DFSDM2.
  *               HAL_MCHDLY_CLOCK_DFSDM1.
  * @note   The SYSCFG clock marco __HAL_RCC_SYSCFG_CLK_ENABLE() must be called 
  *         before HAL_DFSDM_EnableDelayClock()       
  * @retval None
  */
void HAL_DFSDM_EnableDelayClock(uint32_t MCHDLY)
{
  uint32_t tmp = 0U; 

  assert_param(IS_DFSDM_DELAY_CLOCK(MCHDLY));

  tmp = SYSCFG->MCHDLYCR;
  tmp = tmp & ~MCHDLY;

  SYSCFG->MCHDLYCR  = (tmp|MCHDLY);
}

/**
  * @brief  Select the source for CKin signals for DFSDM1/2.
  * @param source DFSDM2_CKIN_PAD.
  *               DFSDM2_CKIN_DM.
  *               DFSDM1_CKIN_PAD.
  *               DFSDM1_CKIN_DM.
  * @retval None
  */
void HAL_DFSDM_ClockIn_SourceSelection(uint32_t source)
{
  uint32_t tmp = 0U; 
  
  assert_param(IS_DFSDM_CLOCKIN_SELECTION(source));

  tmp = SYSCFG->MCHDLYCR;
  
  if((source == HAL_DFSDM2_CKIN_PAD) || (source == HAL_DFSDM2_CKIN_DM))
  {
    tmp =  (tmp & ~SYSCFG_MCHDLYCR_DFSDM2CFG);
    
    if(source == HAL_DFSDM2_CKIN_PAD) 
    {
      source = 0x000000U;
    }
  }
  else
  {
    tmp =  (tmp & ~SYSCFG_MCHDLYCR_DFSDM1CFG);
  }

  SYSCFG->MCHDLYCR = (source|tmp);
}

/**
  * @brief  Select the source for CKOut signals for DFSDM1/2.
  * @param source: DFSDM2_CKOUT_DFSDM2.
  *                DFSDM2_CKOUT_M27. 
  *                DFSDM1_CKOUT_DFSDM1.
  *                DFSDM1_CKOUT_M27.
  * @retval None
  */
void HAL_DFSDM_ClockOut_SourceSelection(uint32_t source)
{
  uint32_t tmp = 0U; 
  
  assert_param(IS_DFSDM_CLOCKOUT_SELECTION(source));
  
  tmp = SYSCFG->MCHDLYCR;

  if((source == HAL_DFSDM2_CKOUT_DFSDM2) || (source == HAL_DFSDM2_CKOUT_M27))
  {
    tmp =  (tmp & ~SYSCFG_MCHDLYCR_DFSDM2CKOSEL);
    
    if(source == HAL_DFSDM2_CKOUT_DFSDM2)
    {
      source = 0x000U;
    }
  }
  else
  {
    tmp =  (tmp & ~SYSCFG_MCHDLYCR_DFSDM1CKOSEL);
  }

  SYSCFG->MCHDLYCR = (source|tmp);
}

/**
  * @brief  Select the source for DataIn0 signals for DFSDM1/2.
  * @param source DATAIN0_DFSDM2_PAD.
  *               DATAIN0_DFSDM2_DATAIN1. 
  *               DATAIN0_DFSDM1_PAD.
  *               DATAIN0_DFSDM1_DATAIN1.                  
  * @retval None
  */
void HAL_DFSDM_DataIn0_SourceSelection(uint32_t source)
{
  uint32_t tmp = 0U; 

  assert_param(IS_DFSDM_DATAIN0_SRC_SELECTION(source));

  tmp = SYSCFG->MCHDLYCR;
  
  if((source == HAL_DATAIN0_DFSDM2_PAD)|| (source == HAL_DATAIN0_DFSDM2_DATAIN1))
  {
    tmp =  (tmp & ~SYSCFG_MCHDLYCR_DFSDM2D0SEL);
    if(source == HAL_DATAIN0_DFSDM2_PAD)
    {
      source = 0x00000U;
    }
  }
  else
  {
    tmp =  (tmp & ~SYSCFG_MCHDLYCR_DFSDM1D0SEL);
  }
  SYSCFG->MCHDLYCR = (source|tmp);
}

/**
  * @brief  Select the source for DataIn2 signals for DFSDM1/2.
  * @param source DATAIN2_DFSDM2_PAD.
  *               DATAIN2_DFSDM2_DATAIN3. 
  *               DATAIN2_DFSDM1_PAD.
  *               DATAIN2_DFSDM1_DATAIN3.
  * @retval None
  */
void HAL_DFSDM_DataIn2_SourceSelection(uint32_t source)
{
  uint32_t tmp = 0U; 

  assert_param(IS_DFSDM_DATAIN2_SRC_SELECTION(source));

  tmp = SYSCFG->MCHDLYCR;
  
  if((source == HAL_DATAIN2_DFSDM2_PAD)|| (source == HAL_DATAIN2_DFSDM2_DATAIN3))
  {
    tmp =  (tmp & ~SYSCFG_MCHDLYCR_DFSDM2D2SEL);
    if (source == HAL_DATAIN2_DFSDM2_PAD)
    {
      source = 0x0000U;
    }     
  }
  else
  {
    tmp =  (tmp & ~SYSCFG_MCHDLYCR_DFSDM1D2SEL);
  }
  SYSCFG->MCHDLYCR = (source|tmp);
}

/**
  * @brief  Select the source for DataIn4 signals for DFSDM2.
  * @param source DATAIN4_DFSDM2_PAD.
  *               DATAIN4_DFSDM2_DATAIN5
  * @retval None
  */
void HAL_DFSDM_DataIn4_SourceSelection(uint32_t source)
{
  uint32_t tmp = 0U; 

  assert_param(IS_DFSDM_DATAIN4_SRC_SELECTION(source));

  tmp = SYSCFG->MCHDLYCR;
  tmp =  (tmp & ~SYSCFG_MCHDLYCR_DFSDM2D4SEL);

  SYSCFG->MCHDLYCR = (source|tmp);
}

/**
  * @brief  Select the source for DataIn6 signals for DFSDM2.
  * @param source DATAIN6_DFSDM2_PAD.
  *               DATAIN6_DFSDM2_DATAIN7.
  * @retval None
  */
void HAL_DFSDM_DataIn6_SourceSelection(uint32_t source)
{
  uint32_t tmp = 0U; 

  assert_param(IS_DFSDM_DATAIN6_SRC_SELECTION(source));

  tmp = SYSCFG->MCHDLYCR;
  
  tmp =  (tmp & ~SYSCFG_MCHDLYCR_DFSDM2D6SEL);

  SYSCFG->MCHDLYCR = (source|tmp);
}

/**
  * @brief  Configure the distribution of the bitstream clock gated from TIM4_OC 
  *         for DFSDM1 or TIM3_OC for DFSDM2 
  * @param source DFSDM1_CLKIN0_TIM4OC2
  *               DFSDM1_CLKIN2_TIM4OC2
  *               DFSDM1_CLKIN1_TIM4OC1
  *               DFSDM1_CLKIN3_TIM4OC1
  *               DFSDM2_CLKIN0_TIM3OC4
  *               DFSDM2_CLKIN4_TIM3OC4
  *               DFSDM2_CLKIN1_TIM3OC3
  *               DFSDM2_CLKIN5_TIM3OC3
  *               DFSDM2_CLKIN2_TIM3OC2
  *               DFSDM2_CLKIN6_TIM3OC2
  *               DFSDM2_CLKIN3_TIM3OC1
  *               DFSDM2_CLKIN7_TIM3OC1
  * @retval None
  */
void HAL_DFSDM_BitStreamClkDistribution_Config(uint32_t source)
{
  uint32_t tmp = 0U; 

  assert_param(IS_DFSDM_BITSTREM_CLK_DISTRIBUTION(source));

  tmp = SYSCFG->MCHDLYCR;

  if ((source == HAL_DFSDM1_CLKIN0_TIM4OC2) || (source == HAL_DFSDM1_CLKIN2_TIM4OC2))
  {
    tmp =  (tmp & ~SYSCFG_MCHDLYCR_DFSDM1CK02SEL);
  }
  else if ((source == HAL_DFSDM1_CLKIN1_TIM4OC1) || (source == HAL_DFSDM1_CLKIN3_TIM4OC1))
  {
    tmp =  (tmp & ~SYSCFG_MCHDLYCR_DFSDM1CK13SEL);
  }
  else   if ((source == HAL_DFSDM2_CLKIN0_TIM3OC4) || (source == HAL_DFSDM2_CLKIN4_TIM3OC4))
  {
    tmp =  (tmp & ~SYSCFG_MCHDLYCR_DFSDM2CK04SEL);
  }
  else if ((source == HAL_DFSDM2_CLKIN1_TIM3OC3) || (source == HAL_DFSDM2_CLKIN5_TIM3OC3))
  {
    tmp =  (tmp & ~SYSCFG_MCHDLYCR_DFSDM2CK15SEL);
    
  }else  if ((source == HAL_DFSDM2_CLKIN2_TIM3OC2) || (source == HAL_DFSDM2_CLKIN6_TIM3OC2))
  {
    tmp =  (tmp & ~SYSCFG_MCHDLYCR_DFSDM2CK26SEL);
  }
  else
  {
    tmp =  (tmp & ~SYSCFG_MCHDLYCR_DFSDM2CK37SEL);
  }
  
  if((source == HAL_DFSDM1_CLKIN0_TIM4OC2) ||(source == HAL_DFSDM1_CLKIN1_TIM4OC1)||
     (source == HAL_DFSDM2_CLKIN0_TIM3OC4) ||(source == HAL_DFSDM2_CLKIN1_TIM3OC3)||
     (source == HAL_DFSDM2_CLKIN2_TIM3OC2) ||(source == HAL_DFSDM2_CLKIN3_TIM3OC1))
  {
    source = 0x0000U;
  }
  
  SYSCFG->MCHDLYCR = (source|tmp);
}

/**
  * @brief  Configure multi channel delay block: Use DFSDM2 audio clock source as input 
  *         clock for DFSDM1 and DFSDM2 filters to Synchronize DFSDMx filters.
  *         Set the path of the DFSDM2 clock output (dfsdm2_ckout) to the
  *         DFSDM1/2 CkInx and data inputs channels by configuring following MCHDLY muxes
  *         or demuxes: M1, M2, M3, M4, M5, M6, M7, M8, DM1, DM2, DM3, DM4, DM5, DM6,
  *         M9, M10, M11, M12, M13, M14, M15, M16, M17, M18, M19, M20 based on the
  *         contains of the DFSDM_MultiChannelConfigTypeDef structure  
  * @param  mchdlystruct Structure of multi channel configuration
  * @retval None
  * @note   The SYSCFG clock marco __HAL_RCC_SYSCFG_CLK_ENABLE() must be called 
  *         before HAL_DFSDM_ConfigMultiChannelDelay()
  * @note   The HAL_DFSDM_ConfigMultiChannelDelay() function clears the SYSCFG-MCHDLYCR
  *         register before setting the new configuration.           
  */
void HAL_DFSDM_ConfigMultiChannelDelay(DFSDM_MultiChannelConfigTypeDef* mchdlystruct)
{ 
  uint32_t mchdlyreg = 0U; 
  
  assert_param(IS_DFSDM_DFSDM1_CLKOUT(mchdlystruct->DFSDM1ClockOut));
  assert_param(IS_DFSDM_DFSDM2_CLKOUT(mchdlystruct->DFSDM2ClockOut));
  assert_param(IS_DFSDM_DFSDM1_CLKIN(mchdlystruct->DFSDM1ClockIn));
  assert_param(IS_DFSDM_DFSDM2_CLKIN(mchdlystruct->DFSDM2ClockIn));
  assert_param(IS_DFSDM_DFSDM1_BIT_CLK((mchdlystruct->DFSDM1BitClkDistribution)));
  assert_param(IS_DFSDM_DFSDM2_BIT_CLK(mchdlystruct->DFSDM2BitClkDistribution));
  assert_param(IS_DFSDM_DFSDM1_DATA_DISTRIBUTION(mchdlystruct->DFSDM1DataDistribution));
  assert_param(IS_DFSDM_DFSDM2_DATA_DISTRIBUTION(mchdlystruct->DFSDM2DataDistribution));
  
  mchdlyreg = (SYSCFG->MCHDLYCR & 0x80103U);

  SYSCFG->MCHDLYCR = (mchdlyreg |(mchdlystruct->DFSDM1ClockOut)|(mchdlystruct->DFSDM2ClockOut)|
                     (mchdlystruct->DFSDM1ClockIn)|(mchdlystruct->DFSDM2ClockIn)|
                     (mchdlystruct->DFSDM1BitClkDistribution)| (mchdlystruct->DFSDM2BitClkDistribution)|
                     (mchdlystruct->DFSDM1DataDistribution)| (mchdlystruct->DFSDM2DataDistribution));

}
#endif /* SYSCFG_MCHDLYCR_BSCKSEL */
/**
  * @}
  */
/**
  * @}
  */
/* End of exported functions -------------------------------------------------*/

/* Private functions ---------------------------------------------------------*/
/** @addtogroup DFSDM_Private_Functions DFSDM Private Functions
  * @{
  */

/**
  * @brief  DMA half transfer complete callback for regular conversion. 
  * @param  hdma DMA handle.
  * @retval None
  */
static void DFSDM_DMARegularHalfConvCplt(DMA_HandleTypeDef *hdma)   
{
  /* Get DFSDM filter handle */
  DFSDM_Filter_HandleTypeDef* hdfsdm_filter = (DFSDM_Filter_HandleTypeDef*) ((DMA_HandleTypeDef*)hdma)->Parent;

  /* Call regular half conversion complete callback */
  HAL_DFSDM_FilterRegConvHalfCpltCallback(hdfsdm_filter);
}

/**
  * @brief  DMA transfer complete callback for regular conversion. 
  * @param  hdma DMA handle.
  * @retval None
  */
static void DFSDM_DMARegularConvCplt(DMA_HandleTypeDef *hdma)   
{
  /* Get DFSDM filter handle */
  DFSDM_Filter_HandleTypeDef* hdfsdm_filter = (DFSDM_Filter_HandleTypeDef*) ((DMA_HandleTypeDef*)hdma)->Parent;

  /* Call regular conversion complete callback */
  HAL_DFSDM_FilterRegConvCpltCallback(hdfsdm_filter);
}

/**
  * @brief  DMA half transfer complete callback for injected conversion. 
  * @param  hdma DMA handle.
  * @retval None
  */
static void DFSDM_DMAInjectedHalfConvCplt(DMA_HandleTypeDef *hdma)   
{
  /* Get DFSDM filter handle */
  DFSDM_Filter_HandleTypeDef* hdfsdm_filter = (DFSDM_Filter_HandleTypeDef*) ((DMA_HandleTypeDef*)hdma)->Parent;

  /* Call injected half conversion complete callback */
  HAL_DFSDM_FilterInjConvHalfCpltCallback(hdfsdm_filter);
}

/**
  * @brief  DMA transfer complete callback for injected conversion. 
  * @param  hdma DMA handle.
  * @retval None
  */
static void DFSDM_DMAInjectedConvCplt(DMA_HandleTypeDef *hdma)   
{
  /* Get DFSDM filter handle */
  DFSDM_Filter_HandleTypeDef* hdfsdm_filter = (DFSDM_Filter_HandleTypeDef*) ((DMA_HandleTypeDef*)hdma)->Parent;

  /* Call injected conversion complete callback */
  HAL_DFSDM_FilterInjConvCpltCallback(hdfsdm_filter);
}

/**
  * @brief  DMA error callback. 
  * @param  hdma DMA handle.
  * @retval None
  */
static void DFSDM_DMAError(DMA_HandleTypeDef *hdma)   
{
  /* Get DFSDM filter handle */
  DFSDM_Filter_HandleTypeDef* hdfsdm_filter = (DFSDM_Filter_HandleTypeDef*) ((DMA_HandleTypeDef*)hdma)->Parent;

  /* Update error code */
  hdfsdm_filter->ErrorCode = DFSDM_FILTER_ERROR_DMA;

  /* Call error callback */
  HAL_DFSDM_FilterErrorCallback(hdfsdm_filter);
}

/**
  * @brief  This function allows to get the number of injected channels.
  * @param  Channels bitfield of injected channels.
  * @retval Number of injected channels.
  */
static uint32_t DFSDM_GetInjChannelsNbr(uint32_t Channels)
{
  uint32_t nbChannels = 0U;
  uint32_t tmp;
  
  /* Get the number of channels from bitfield */
  tmp = (uint32_t) (Channels & DFSDM_LSB_MASK);
  while(tmp != 0U)
  {
    if((tmp & 1U) != 0U)
    {
      nbChannels++;
    }
    tmp = (uint32_t) (tmp >> 1U);
  }
  return nbChannels;
}

/**
  * @brief  This function allows to get the channel number from channel instance.
  * @param  Instance DFSDM channel instance.
  * @retval Channel number.
  */
static uint32_t DFSDM_GetChannelFromInstance(DFSDM_Channel_TypeDef* Instance)
{
  uint32_t channel = 0xFFU;
  
  /* Get channel from instance */
#if defined(DFSDM2_Channel0)
  if((Instance == DFSDM1_Channel0) || (Instance == DFSDM2_Channel0))
  {
    channel = 0U;
  }
  else if((Instance == DFSDM1_Channel1) ||  (Instance == DFSDM2_Channel1))
  {
    channel = 1U;
  }
  else if((Instance == DFSDM1_Channel2) ||  (Instance == DFSDM2_Channel2))
  {
    channel = 2U;
  }
  else if((Instance == DFSDM1_Channel3) ||  (Instance == DFSDM2_Channel3))
  {
    channel = 3U;
  }
  else if(Instance == DFSDM2_Channel4)
  {
    channel = 4U;
  }
  else if(Instance == DFSDM2_Channel5)
  {
    channel = 5U;
  }
  else if(Instance == DFSDM2_Channel6)
  {
    channel = 6U;
  }
  else if(Instance == DFSDM2_Channel7)
  {
    channel = 7U;
  }
#else
  if(Instance == DFSDM1_Channel0)
  {
    channel = 0U;
  }
  else if(Instance == DFSDM1_Channel1)
  {
    channel = 1U;
  }
  else if(Instance == DFSDM1_Channel2)
  {
    channel = 2U;
  }
  else if(Instance == DFSDM1_Channel3)
  {
    channel = 3U;
  }
#endif /* defined(DFSDM2_Channel0) */

  return channel;
}

/**
  * @brief  This function allows to really start regular conversion.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval None
  */
static void DFSDM_RegConvStart(DFSDM_Filter_HandleTypeDef* hdfsdm_filter)
{
  /* Check regular trigger */
  if(hdfsdm_filter->RegularTrigger == DFSDM_FILTER_SW_TRIGGER)
  {
    /* Software start of regular conversion */
    hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_RSWSTART;
  }
  else /* synchronous trigger */
  {
    /* Disable DFSDM filter */
    hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_DFEN);
    
    /* Set RSYNC bit in DFSDM_FLTCR1 register */
    hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_RSYNC;

    /* Enable DFSDM  filter */
    hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_DFEN;
    
    /* If injected conversion was in progress, restart it */
    if(hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_INJ)
    {
      if(hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SW_TRIGGER)
      {
        hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_JSWSTART;
      }
      /* Update remaining injected conversions */
      hdfsdm_filter->InjConvRemaining = (hdfsdm_filter->InjectedScanMode == ENABLE) ? \
                                         hdfsdm_filter->InjectedChannelsNbr : 1U;
    }
  }
  /* Update DFSDM filter state */
  hdfsdm_filter->State = (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_READY) ? \
                          HAL_DFSDM_FILTER_STATE_REG : HAL_DFSDM_FILTER_STATE_REG_INJ;
}

/**
  * @brief  This function allows to really stop regular conversion.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval None
  */
static void DFSDM_RegConvStop(DFSDM_Filter_HandleTypeDef* hdfsdm_filter)
{
  /* Disable DFSDM filter */
  hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_DFEN);

  /* If regular trigger was synchronous, reset RSYNC bit in DFSDM_FLTCR1 register */
  if(hdfsdm_filter->RegularTrigger == DFSDM_FILTER_SYNC_TRIGGER)
  {
    hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_RSYNC);
  }

  /* Enable DFSDM filter */
  hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_DFEN;
  
  /* If injected conversion was in progress, restart it */
  if(hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_REG_INJ)
  {
    if(hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SW_TRIGGER)
    {
      hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_JSWSTART;
    }
    /* Update remaining injected conversions */
    hdfsdm_filter->InjConvRemaining = (hdfsdm_filter->InjectedScanMode == ENABLE) ? \
                                       hdfsdm_filter->InjectedChannelsNbr : 1U;
  }
  
  /* Update DFSDM filter state */
  hdfsdm_filter->State = (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_REG) ? \
                          HAL_DFSDM_FILTER_STATE_READY : HAL_DFSDM_FILTER_STATE_INJ;
}

/**
  * @brief  This function allows to really start injected conversion.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval None
  */
static void DFSDM_InjConvStart(DFSDM_Filter_HandleTypeDef* hdfsdm_filter)
{
  /* Check injected trigger */
  if(hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SW_TRIGGER)
  {
    /* Software start of injected conversion */
    hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_JSWSTART;
  }
  else /* external or synchronous trigger */
  {
    /* Disable DFSDM filter */
    hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_DFEN);
      
    if(hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SYNC_TRIGGER)
    {
      /* Set JSYNC bit in DFSDM_FLTCR1 register */
      hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_JSYNC;
    }
    else /* external trigger */
    {
      /* Set JEXTEN[1:0] bits in DFSDM_FLTCR1 register */
      hdfsdm_filter->Instance->FLTCR1 |= hdfsdm_filter->ExtTriggerEdge;
    }
    
    /* Enable DFSDM filter */
    hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_DFEN;

    /* If regular conversion was in progress, restart it */
    if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_REG) && \
       (hdfsdm_filter->RegularTrigger == DFSDM_FILTER_SW_TRIGGER))
    {
      hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_RSWSTART;
    }
  }
  /* Update DFSDM filter state */
  hdfsdm_filter->State = (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_READY) ? \
                         HAL_DFSDM_FILTER_STATE_INJ : HAL_DFSDM_FILTER_STATE_REG_INJ;
}

/**
  * @brief  This function allows to really stop injected conversion.
  * @param  hdfsdm_filter DFSDM filter handle.
  * @retval None
  */
static void DFSDM_InjConvStop(DFSDM_Filter_HandleTypeDef* hdfsdm_filter)
{
  /* Disable DFSDM filter */
  hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_DFEN);

  /* If injected trigger was synchronous, reset JSYNC bit in DFSDM_FLTCR1 register */
  if(hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SYNC_TRIGGER)
  {
    hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_JSYNC);
  }
  else if(hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_EXT_TRIGGER)
  {
    /* Reset JEXTEN[1:0] bits in DFSDM_FLTCR1 register */
    hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_JEXTEN);
  }

  /* Enable DFSDM filter */
  hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_DFEN;
  
  /* If regular conversion was in progress, restart it */
  if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_REG_INJ) && \
     (hdfsdm_filter->RegularTrigger == DFSDM_FILTER_SW_TRIGGER))
  {
    hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_RSWSTART;
  }

  /* Update remaining injected conversions */
  hdfsdm_filter->InjConvRemaining = (hdfsdm_filter->InjectedScanMode == ENABLE) ? \
                                     hdfsdm_filter->InjectedChannelsNbr : 1U;

  /* Update DFSDM filter state */
  hdfsdm_filter->State = (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_INJ) ? \
                          HAL_DFSDM_FILTER_STATE_READY : HAL_DFSDM_FILTER_STATE_REG;
}
/**
  * @}
  */
/* End of private functions --------------------------------------------------*/

/**
  * @}
  */
#endif /* STM32F412Zx || STM32F412Vx || STM32F412Rx || STM32F412Cx || STM32F413xx || STM32F423xx */
#endif /* HAL_DFSDM_MODULE_ENABLED */
/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/