Mercurial > public > ostc4
view Small_CPU/Src/externalInterface.c @ 876:5b325372db4b Evo_2_23
Minor: Enable CO2-Sensor as default now
also enable voltage display in addition to %-Battery
author | heinrichsweikamp |
---|---|
date | Fri, 16 Aug 2024 16:17:51 +0200 |
parents | ad96f99ebc78 |
children | 4832981f9af8 |
line wrap: on
line source
/** ****************************************************************************** * @file externalInterface.c * @author heinrichs weikamp gmbh * @version V0.0.1 * @date 07-Nov-2020 * @brief Interface functionality to proceed external analog signal via i2c connection * @verbatim ============================================================================== ##### stm32f4xx_hal_i2c.c modification ##### ============================================================================== The LTC2942 requires an repeated start condition without stop condition for data reception. @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2014 heinrichs weikamp</center></h2> * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include <math.h> #include <string.h> #include "data_central.h" #include "i2c.h" #include "externalInterface.h" #include "scheduler.h" #include "uart.h" #include "data_exchange.h" #include "pressure.h" #include "uartProtocol_O2.h" #include "uartProtocol_Co2.h" #include "uartProtocol_Sentinel.h" extern SGlobal global; extern UART_HandleTypeDef huart1; #define ADC_ANSWER_LENGTH (5u) /* 3424 will provide addr + 4 data bytes */ #define ADC_TIMEOUT (10u) /* conversion stuck for unknown reason => restart */ #define ADC_REF_VOLTAGE_MV (2048.0f) /* reference voltage of MPC3424*/ #define ADC_START_CONVERSION (0x80) #define ADC_GAIN_4 (0x02) #define ADC_GAIN_4_VALUE (4.0f) #define ADC_GAIN_8 (0x03) #define ADC_GAIN_8_VALUE (8.0f) #define ADC_RESOLUTION_16BIT (0x08) #define ADC_RESOLUTION_16BIT_VALUE (16u) #define ADC_RESOLUTION_18BIT (0x0C) #define ADC_RESOLUTION_18BIT_VALUE (18u) #define ANSWER_CONFBYTE_INDEX (4u) #define LOOKUP_CO2_CORR_TABLE_SCALE (1000u) #define LOOKUP_CO2_CORR_TABLE_MAX (30000u) #define REQUEST_INT_SENSOR_MS (1500) /* Minimum time interval for cyclic sensor data requests per sensor (UART mux) */ #define COMMAND_TX_DELAY (30u) /* The time the sensor needs to recover from a invalid command request */ #define TIMEOUT_SENSOR_ANSWER (300) /* Time till a request is repeated if no answer was received */ #define activeSensorId (activeUartChannel + EXT_INTERFACE_MUX_OFFSET) /* Used if UART channels are applied to Sensor map */ static uint8_t activeChannel = 0; /* channel which is in request */ static uint8_t recBuf[ADC_ANSWER_LENGTH]; static uint8_t timeoutCnt = 0; static uint8_t externalInterfacePresent = 0; static uint8_t delayAdcConversion = 0; float externalChannel_mV[MAX_ADC_CHANNEL]; static uint8_t externalV33_On = 0; static uint8_t externalADC_On = 0; static uint8_t externalUART_Protocol = 0; static uint16_t externalCO2Value; static uint16_t externalCO2SignalStrength; static uint16_t externalCO2Status = 0; static float externalCO2Scale = 0.0; static uint8_t lastSensorDataId = 0; static SSensorDataDiveO2 sensorDataDiveO2[EXT_INTERFACE_SENSOR_CNT]; static externalInterfaceAutoDetect_t externalAutoDetect = DETECTION_OFF; static externalInterfaceSensorType SensorMap[EXT_INTERFACE_SENSOR_CNT] ={ SENSOR_OPTIC, SENSOR_OPTIC, SENSOR_OPTIC, SENSOR_NONE, SENSOR_NONE}; static externalInterfaceSensorType tmpSensorMap[EXT_INTERFACE_SENSOR_CNT]; static externalInterfaceSensorType MasterSensorMap[EXT_INTERFACE_SENSOR_CNT]; static externalInterfaceSensorType foundSensorMap[EXT_INTERFACE_SENSOR_CNT]; static uint8_t Mux2ADCMap[MAX_ADC_CHANNEL]; static uint8_t externalInterface_SensorState[EXT_INTERFACE_SENSOR_CNT]; static float LookupCO2PressureCorrection[LOOKUP_CO2_CORR_TABLE_MAX / LOOKUP_CO2_CORR_TABLE_SCALE]; /* lookup table for pressure compensation values */ static uint16_t externalInterfaceMuxReqIntervall = 0xffff; /* delay between switching from one MUX channel to the next */ static uint8_t activeUartChannel = 0; /* Index of the sensor port which is selected by the mux or 0 if no mux is connected */ static void externalInface_MapUartToLegacyADC(uint8_t* pMap); static void externalInterface_CheckBaudrate(uint8_t sensorType); void externalInterface_Init(void) { uint16_t index; uint16_t coeff; activeChannel = 0; timeoutCnt = 0; externalInterfacePresent = 0; delayAdcConversion = 0; if(externalInterface_StartConversion(activeChannel) == HAL_OK) { externalInterfacePresent = 1; global.deviceDataSendToMaster.hw_Info.extADC = 1; } global.deviceDataSendToMaster.hw_Info.checkADC = 1; /* Create a lookup table based on GSS application note AN001: PRESSURE COMPENSATION OF A CO2 SENSOR */ /* The main purpose of the sensor in the dive application is to be a warning indicator */ /* => no exact values necessary => a lookup table with 1000ppm scaling should be sufficient */ LookupCO2PressureCorrection [0] = -0.0014; for(index = 1; index < (LOOKUP_CO2_CORR_TABLE_MAX / LOOKUP_CO2_CORR_TABLE_SCALE); index++) { coeff = index * LOOKUP_CO2_CORR_TABLE_SCALE; LookupCO2PressureCorrection[index] = 2.811*pow(10,-38)*pow(coeff,6)- 9.817*pow(10,-32)*pow(coeff,5)+1.304*pow(10,-25)*pow(coeff,4)-8.216*pow(10,-20)*pow(coeff,3)+2.311*pow(10,-14)*pow(coeff,2) - 2.195*pow(10,-9)*coeff - 1.471*pow(10,-3); } externalInterface_InitDatastruct(); } void externalInterface_InitDatastruct(void) { uint8_t index = 0; /* init data values */ externalV33_On = 0; externalADC_On = 0; externalUART_Protocol = 0; externalCO2Value = 0; externalCO2SignalStrength = 0; externalCO2Status = 0; externalCO2Scale = 0.0; externalAutoDetect = DETECTION_OFF; for(index = 0; index < MAX_ADC_CHANNEL; index++) { externalChannel_mV[index] = 0.0; } memset(externalInterface_SensorState,UART_COMMON_INIT,sizeof(externalInterface_SensorState)); externalInface_MapUartToLegacyADC(SensorMap); activeUartChannel = 0xFF; } uint8_t externalInterface_StartConversion(uint8_t channel) { uint8_t retval = 0; uint8_t confByte = 0; if(channel < MAX_ADC_CHANNEL) { confByte = ADC_START_CONVERSION | ADC_RESOLUTION_16BIT | ADC_GAIN_8; confByte |= channel << 5; retval = I2C_Master_Transmit(DEVICE_EXTERNAL_ADC, &confByte, 1); } return retval; } /* Check if conversion is done and trigger measurement of next channel */ uint8_t externalInterface_ReadAndSwitch() { uint8_t retval = EXTERNAL_ADC_NO_DATA; uint8_t nextChannel; uint8_t* psensorMap = externalInterface_GetSensorMapPointer(0); if(externalADC_On) { if(delayAdcConversion) { if(UART_isComActive(activeUartChannel) == 0) { externalInterface_StartConversion(activeChannel); delayAdcConversion = 0; } } else if(I2C_Master_Receive(DEVICE_EXTERNAL_ADC, recBuf, ADC_ANSWER_LENGTH) == HAL_OK) { if((recBuf[ANSWER_CONFBYTE_INDEX] & ADC_START_CONVERSION) == 0) /* !ready set => received data contains new value */ { retval = activeChannel; /* return channel number providing new data */ nextChannel = activeChannel + 1; if(nextChannel == MAX_ADC_CHANNEL) { nextChannel = 0; } while((psensorMap[nextChannel] != SENSOR_ANALOG) && (nextChannel != activeChannel)) { if(nextChannel == MAX_ADC_CHANNEL) { nextChannel = 0; } else { nextChannel++; } } activeChannel = nextChannel; if(UART_isComActive(activeUartChannel) == 0) { externalInterface_StartConversion(activeChannel); } else { delayAdcConversion = 1; } timeoutCnt = 0; } } if(timeoutCnt++ >= ADC_TIMEOUT) { externalInterface_StartConversion(activeChannel); delayAdcConversion = 0; timeoutCnt = 0; } } return retval; } float externalInterface_CalculateADCValue(uint8_t channel) { int32_t rawvalue = 0; float retValue = 0.0; if(channel < MAX_ADC_CHANNEL) { rawvalue = ((recBuf[0] << 16) | (recBuf[1] << 8) | (recBuf[2])); switch(recBuf[3] & 0x0C) /* confbyte => Resolution bits*/ { case ADC_RESOLUTION_16BIT: rawvalue = rawvalue >> 8; /* only 2 databytes received shift out confbyte*/ if(rawvalue & (0x1 << (ADC_RESOLUTION_16BIT_VALUE-1))) /* MSB set => negative number */ { rawvalue |= 0xFFFF0000; /* set MSB for int32 */ } else { rawvalue &= 0x0000FFFF; } externalChannel_mV[channel] = ADC_REF_VOLTAGE_MV * 2.0 / (float) pow(2,ADC_RESOLUTION_16BIT_VALUE); /* calculate bit resolution */ break; case ADC_RESOLUTION_18BIT: if(rawvalue & (0x1 << (ADC_RESOLUTION_18BIT_VALUE-1))) /* MSB set => negative number */ { rawvalue |= 0xFFFE0000; /* set MSB for int32 */ } externalChannel_mV[channel] = ADC_REF_VOLTAGE_MV * 2.0 / (float) pow(2,ADC_RESOLUTION_18BIT_VALUE); /* calculate bit resolution */ break; default: rawvalue = 0; break; } externalChannel_mV[channel] = externalChannel_mV[channel] * rawvalue / ADC_GAIN_8_VALUE; retValue = externalChannel_mV[channel]; } return retValue; } float getExternalInterfaceChannel(uint8_t channel) { float retval = 0; if(channel < MAX_ADC_CHANNEL) { retval = externalChannel_mV[channel]; } return retval; } uint8_t setExternalInterfaceChannel(uint8_t channel, float value) { uint8_t retval = 0; uint8_t localId = channel; uint8_t index = 0; if(localId >= MAX_ADC_CHANNEL) /* at the moment sensor visualization is focused on the three ADC channels => map Mux sensors */ { for(index = 0; index < MAX_ADC_CHANNEL; index++) { if(Mux2ADCMap[index] == localId) { localId = index; break; } } } if(localId < MAX_ADC_CHANNEL) { externalChannel_mV[localId] = value; retval = 1; } return retval; } void externalInterface_InitPower33(void) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Pin = GPIO_PIN_7; GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStructure.Pull = GPIO_PULLUP; GPIO_InitStructure.Speed = GPIO_SPEED_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStructure); HAL_GPIO_WritePin(GPIOC,GPIO_PIN_7,GPIO_PIN_SET); } uint8_t externalInterface_isEnabledPower33() { return externalV33_On; } uint8_t externalInterface_isEnabledADC() { return externalADC_On; } uint8_t externalInterface_GetUARTProtocol() { return externalUART_Protocol; } void externalInterface_SwitchPower33(uint8_t state) { if(state != externalV33_On) { if(state) { HAL_GPIO_WritePin(GPIOC,GPIO_PIN_7,GPIO_PIN_RESET); externalV33_On = 1; } else { if(externalAutoDetect == DETECTION_OFF) { HAL_GPIO_WritePin(GPIOC,GPIO_PIN_7,GPIO_PIN_SET); externalV33_On = 0; externalInterface_SetCO2Value(0); externalInterface_SetCO2SignalStrength(0); } } } } void externalInterface_SwitchADC(uint8_t state) { uint8_t loop = 0; if((state) && (externalInterfacePresent)) { if(externalADC_On == 0) { activeChannel = 0; externalInterface_StartConversion(activeChannel); externalADC_On = 1; } } else { if(externalAutoDetect == DETECTION_OFF) /* block deactivation requests if auto detection is active */ { externalADC_On = 0; for(loop = 0; loop < MAX_ADC_CHANNEL; loop++) { externalChannel_mV[loop] = 0; } } } } void externalInterface_SwitchUART(uint8_t protocol) { switch(protocol) { case EXT_INTERFACE_UART_OFF: case EXT_INTERFACE_UART_CO2: case EXT_INTERFACE_UART_O2: case EXT_INTERFACE_UART_SENTINEL: if((externalAutoDetect <= DETECTION_START) || ((protocol == EXT_INTERFACE_UART_O2) && (externalAutoDetect >= DETECTION_UARTMUX) && (externalAutoDetect <= DETECTION_DIGO2_3)) #ifdef ENABLE_CO2_SUPPORT || ((externalAutoDetect >= DETECTION_CO2_0) && (externalAutoDetect <= DETECTION_CO2_3)) #endif #ifdef ENABLE_SENTINEL_MODE || ((protocol == EXT_INTERFACE_UART_SENTINEL) && (externalAutoDetect == DETECTION_SENTINEL)) #endif ) { lastSensorDataId = 0; externalUART_Protocol = protocol; MX_USART1_UART_DeInit(); if( protocol != 0) { MX_USART1_UART_Init(); } } break; default: break; } } uint8_t externalInterface_GetActiveUartSensor() { return activeUartChannel; } void externalInterface_SetSensorState(uint8_t sensorIdx, uint8_t state) { if(sensorIdx < EXT_INTERFACE_SENSOR_CNT) { externalInterface_SensorState[sensorIdx] = state; } } uint8_t externalInterface_GetSensorState(uint8_t sensorIdx) { uint8_t ret = COMMON_SENSOR_STATE_INVALID; if(sensorIdx < EXT_INTERFACE_SENSOR_CNT) { ret = externalInterface_SensorState[sensorIdx]; } return ret; } /* The supported sensors from GSS have different scaling factors depending on their accuracy. The factor may be read out of the sensor */ void externalInterface_SetCO2Scale(float CO2Scale) { if((CO2Scale == 10) || (CO2Scale == 100)) { externalCO2Scale = CO2Scale; } } float externalInterface_GetCO2Scale() { return externalCO2Scale; } void externalInterface_SetCO2Value(uint16_t CO2_ppm) { float local_ppm = CO2_ppm * externalCO2Scale; #ifndef ENABLE_EXTERNAL_PRESSURE float local_corr = 0.0; if (local_ppm >= LOOKUP_CO2_CORR_TABLE_MAX) { local_corr = -0.0014; } else { local_corr = LookupCO2PressureCorrection[((uint16_t) (local_ppm / LOOKUP_CO2_CORR_TABLE_SCALE))]; } local_ppm = local_ppm / (1.0 + (local_corr * (get_surface_mbar() - get_pressure_mbar()))); #else /* The external pressure value is passed via ADC channel2 and calibration is done at firmware => just forward sensor data */ /* compensation is done at firmware side. This is for testing only. Take care the the same algorithm is taken as used for the lookup table */ #endif externalCO2Value = local_ppm / externalCO2Scale; } void externalInterface_SetCO2SignalStrength(uint16_t LED_qa) { externalCO2SignalStrength = LED_qa; } uint16_t externalInterface_GetCO2Value(void) { return externalCO2Value; } uint16_t externalInterface_GetCO2SignalStrength(void) { return externalCO2SignalStrength; } void externalInterface_SetCO2State(uint16_t state) { externalCO2Status = state; } uint16_t externalInterface_GetCO2State(void) { return externalCO2Status; } uint8_t externalInterface_GetSensorData(uint8_t sensorId, uint8_t* pDataStruct) { uint8_t index = 0; uint8_t localId = sensorId; if(localId == 0xFF) { localId = lastSensorDataId; } if((pDataStruct != NULL) && (localId <= EXT_INTERFACE_SENSOR_CNT)) { memcpy(pDataStruct, &sensorDataDiveO2[localId], sizeof(SSensorDataDiveO2)); } else { localId = 0xFF; } if(localId > MAX_ADC_CHANNEL) /* at the moment sensor visualization is focused on the three ADC channels => map Mux sensors */ { for(index = 0; index < MAX_ADC_CHANNEL; index++) { if(Mux2ADCMap[index] == localId) { localId = index; } } } return localId; } void externalInterface_SetSensorData(uint8_t sensorId, uint8_t* pDataStruct) { uint8_t index = 0; if(pDataStruct != NULL) { if((sensorId != 0xFF) && (sensorId < EXT_INTERFACE_SENSOR_CNT)) { memcpy(&sensorDataDiveO2[sensorId], pDataStruct, sizeof(SSensorDataDiveO2)); lastSensorDataId = sensorId; if(sensorId >= MAX_ADC_CHANNEL) { for(index = 0; index < MAX_ADC_CHANNEL; index++) { if(Mux2ADCMap[index] == sensorId) { memcpy(&sensorDataDiveO2[index], pDataStruct, sizeof(SSensorDataDiveO2)); lastSensorDataId = index; break; } } } } else { memset(&sensorDataDiveO2,0,sizeof(sensorDataDiveO2)); lastSensorDataId = 0xFF; } } } void externalInface_SetSensorMap(uint8_t* pMap) { if(pMap != NULL) { memcpy(MasterSensorMap, pMap, EXT_INTERFACE_SENSOR_CNT); /* the map is not directly copied. Copy is done via cmd request */ } } void externalInface_MapUartToLegacyADC(uint8_t* pMap) { uint8_t index, index2; memset(Mux2ADCMap,0xFF, sizeof(Mux2ADCMap)); for(index2 = 0; index2 < MAX_ADC_CHANNEL; index2++) /* Unmap old mirror instances */ { if((pMap[index2] == SENSOR_DIGO2M) || (pMap[index2] == SENSOR_CO2M)) { pMap[index2] = SENSOR_NONE; } } /* Map Mux O2 sensors to ADC Slot if ADC slot is not in use */ for(index = 0; index < EXT_INTERFACE_SENSOR_CNT-1; index++) { if(pMap[index] == SENSOR_DIGO2) { for(index2 = 0; index2 < MAX_ADC_CHANNEL; index2++) { if(pMap[index2] == SENSOR_NONE) { pMap[index2] = SENSOR_DIGO2M; /* store a mirror instance needed for visualization */ Mux2ADCMap[index2] = index; break; } } } } for(index = 0; index < EXT_INTERFACE_SENSOR_CNT-1; index++) { if(pMap[index] == SENSOR_CO2) { for(index2 = 0; index2 < MAX_ADC_CHANNEL; index2++) { if(pMap[index2] == SENSOR_NONE) { pMap[index2] = SENSOR_CO2M; /* store a mirror instance needed for visualization */ Mux2ADCMap[index2] = index; break; } } } } #ifdef ENABLE_SENTINEL_MODE if(pMap[EXT_INTERFACE_MUX_OFFSET] == SENSOR_SENTINEL) { for(index2 = 0; index2 < MAX_ADC_CHANNEL; index2++) { pMap[index2] = SENSOR_SENTINELM; /* store a mirror instance needed for visualization */ Mux2ADCMap[index2] = index2 + EXT_INTERFACE_MUX_OFFSET; } } #endif } uint8_t* externalInterface_GetSensorMapPointer(uint8_t finalMap) { uint8_t* pret; if((externalAutoDetect != DETECTION_OFF) && (!finalMap)) { pret = tmpSensorMap; } else { pret = SensorMap; } return pret; } void externalInterface_AutodetectSensor() { static uint8_t sensorIndex = 0; static uint8_t uartMuxChannel = 0; uint8_t index = 0; uint8_t cntSensor = 0; uint8_t cntUARTSensor = 0; #ifdef ENABLE_CO2_SUPPORT uint8_t cmdString[10]; uint8_t cmdLength = 0; #endif if(externalAutoDetect != DETECTION_OFF) { switch(externalAutoDetect) { case DETECTION_INIT: externalInterfaceMuxReqIntervall = 0; sensorIndex = 0; uartMuxChannel = 0; tmpSensorMap[0] = SENSOR_OPTIC; tmpSensorMap[1] = SENSOR_OPTIC; tmpSensorMap[2] = SENSOR_OPTIC; tmpSensorMap[3] = SENSOR_NONE; tmpSensorMap[4] = SENSOR_NONE; tmpSensorMap[5] = SENSOR_NONE; tmpSensorMap[6] = SENSOR_NONE; tmpSensorMap[7] = SENSOR_NONE; memset(foundSensorMap, SENSOR_NONE, sizeof(foundSensorMap)); memset(externalInterface_SensorState,UART_COMMON_INIT,sizeof(externalInterface_SensorState)); memset(Mux2ADCMap,0, sizeof(Mux2ADCMap)); if(externalInterfacePresent) { externalInterface_SwitchPower33(0); externalInterface_SwitchUART(EXT_INTERFACE_UART_OFF); for(index = 0; index < MAX_ADC_CHANNEL; index++) { externalChannel_mV[index] = 0; } externalAutoDetect = DETECTION_START; } else { externalAutoDetect = DETECTION_DONE; /* without external interface O2 values may only be received via optical port => return default sensor map */ } break; case DETECTION_START: tmpSensorMap[0] = SENSOR_ANALOG; tmpSensorMap[1] = SENSOR_ANALOG; tmpSensorMap[2] = SENSOR_ANALOG; externalInterface_SwitchPower33(1); externalInterface_SwitchADC(1); externalAutoDetect = DETECTION_ANALOG1; break; case DETECTION_ANALOG1: externalAutoDetect = DETECTION_ANALOG2; /* do a second loop to make sure all adc channels could be processed */ break; case DETECTION_ANALOG2: for(index = 0; index < MAX_ADC_CHANNEL; index++) { if(externalChannel_mV[index] > MIN_ADC_VOLTAGE_MV) { tmpSensorMap[sensorIndex++] = SENSOR_ANALOG; foundSensorMap[index] = SENSOR_ANALOG; } else { tmpSensorMap[sensorIndex++] = SENSOR_NONE; } } externalInterfaceMuxReqIntervall = 1100; externalAutoDetect = DETECTION_UARTMUX; externalInterface_SwitchUART(EXT_INTERFACE_UART_O2); UART_MUX_SelectAddress(MAX_MUX_CHANNEL); uartO2_SetChannel(MAX_MUX_CHANNEL); activeUartChannel = MAX_MUX_CHANNEL; tmpSensorMap[EXT_INTERFACE_SENSOR_CNT-1] = SENSOR_MUX; break; case DETECTION_UARTMUX: if(uartO2_isSensorConnected()) { uartMuxChannel = 1; tmpSensorMap[EXT_INTERFACE_SENSOR_CNT-1] = SENSOR_MUX; foundSensorMap[EXT_INTERFACE_SENSOR_CNT-1] = SENSOR_MUX; } else { tmpSensorMap[EXT_INTERFACE_SENSOR_CNT-1] = SENSOR_NONE; } externalAutoDetect = DETECTION_DIGO2_0; uartO2_SetChannel(0); activeUartChannel = 0; tmpSensorMap[EXT_INTERFACE_MUX_OFFSET] = SENSOR_DIGO2; externalInterface_SensorState[EXT_INTERFACE_MUX_OFFSET] = UART_COMMON_INIT; externalInterface_SwitchUART(EXT_INTERFACE_UART_O2); if(foundSensorMap[EXT_INTERFACE_SENSOR_CNT-1] == SENSOR_MUX) { UART_MUX_SelectAddress(0); } break; case DETECTION_DIGO2_0: case DETECTION_DIGO2_1: case DETECTION_DIGO2_2: case DETECTION_DIGO2_3: if(uartO2_isSensorConnected()) { foundSensorMap[externalAutoDetect - DETECTION_DIGO2_0 + EXT_INTERFACE_MUX_OFFSET] = SENSOR_DIGO2; } tmpSensorMap[EXT_INTERFACE_MUX_OFFSET] = SENSOR_NONE; if(uartMuxChannel) { externalInterface_SwitchUART(EXT_INTERFACE_UART_O2); UART_MUX_SelectAddress(uartMuxChannel); externalInterface_SensorState[uartMuxChannel + EXT_INTERFACE_MUX_OFFSET] = UART_COMMON_INIT; uartO2_SetChannel(uartMuxChannel); activeUartChannel = uartMuxChannel; tmpSensorMap[uartMuxChannel - 1 + EXT_INTERFACE_MUX_OFFSET] = SENSOR_NONE; tmpSensorMap[uartMuxChannel + EXT_INTERFACE_MUX_OFFSET] = SENSOR_DIGO2; if(uartMuxChannel < MAX_MUX_CHANNEL - 1) { uartMuxChannel++; } } else { externalAutoDetect = DETECTION_DIGO2_3; /* skip detection of other serial sensors */ } externalAutoDetect++; #ifdef ENABLE_CO2_SUPPORT if(externalAutoDetect == DETECTION_CO2_0) { tmpSensorMap[uartMuxChannel + EXT_INTERFACE_MUX_OFFSET] = SENSOR_NONE; if(foundSensorMap[EXT_INTERFACE_SENSOR_CNT-1] == SENSOR_MUX) { UART_MUX_SelectAddress(0); } activeUartChannel = 0; tmpSensorMap[uartMuxChannel - 1 + EXT_INTERFACE_MUX_OFFSET] = SENSOR_NONE; uartMuxChannel = 1; tmpSensorMap[EXT_INTERFACE_MUX_OFFSET] = SENSOR_CO2; externalInterface_SensorState[EXT_INTERFACE_MUX_OFFSET] = UART_COMMON_INIT; externalInterface_CheckBaudrate(SENSOR_CO2); if(foundSensorMap[EXT_INTERFACE_SENSOR_CNT-1] == SENSOR_MUX) /* switch sensor operation mode depending on HW config */ { uartCo2_SendCmd(CO2CMD_MODE_POLL, cmdString, &cmdLength); } else { uartCo2_SendCmd(CO2CMD_MODE_STREAM, cmdString, &cmdLength); } } break; case DETECTION_CO2_0: case DETECTION_CO2_1: case DETECTION_CO2_2: case DETECTION_CO2_3: if(uartCo2_isSensorConnected()) { foundSensorMap[EXT_INTERFACE_MUX_OFFSET + activeUartChannel] = SENSOR_CO2; externalAutoDetect = DETECTION_DONE; /* only one CO2 sensor supported */ } else if(foundSensorMap[EXT_INTERFACE_SENSOR_CNT-1] == SENSOR_MUX) { externalInterface_CheckBaudrate(SENSOR_DIGO2); UART_MUX_SelectAddress(uartMuxChannel); activeUartChannel = uartMuxChannel; tmpSensorMap[uartMuxChannel - 1 + EXT_INTERFACE_MUX_OFFSET] = SENSOR_NONE; tmpSensorMap[EXT_INTERFACE_MUX_OFFSET + uartMuxChannel] = SENSOR_CO2; externalInterface_SensorState[EXT_INTERFACE_MUX_OFFSET + uartMuxChannel] = UART_COMMON_INIT; externalInterface_CheckBaudrate(SENSOR_CO2); uartCo2_SendCmd(CO2CMD_MODE_POLL, cmdString, &cmdLength); externalAutoDetect++; uartMuxChannel++; } else { #ifdef ENABLE_SENTINEL_MODE externalAutoDetect = DETECTION_SENTINEL; #else externalAutoDetect = DETECTION_DONE; #endif } #endif #ifdef ENABLE_SENTINEL_MODE if(externalAutoDetect == DETECTION_SENTINEL) { externalInterface_SensorState[EXT_INTERFACE_MUX_OFFSET] = UART_COMMON_INIT; uartO2_SetChannel(0); activeUartChannel = 0; tmpSensorMap[EXT_INTERFACE_MUX_OFFSET] = SENSOR_SENTINEL; externalInterface_SwitchUART(EXT_INTERFACE_UART_SENTINEL); externalInterface_CheckBaudrate(SENSOR_SENTINEL); UART_StartDMA_Receiption(); } break; case DETECTION_SENTINEL: case DETECTION_SENTINEL2: if(uartSentinel_isSensorConnected()) { for(index = EXT_INTERFACE_MUX_OFFSET; index < EXT_INTERFACE_MUX_OFFSET+3; index++) { foundSensorMap[index] = SENSOR_SENTINEL; } } externalAutoDetect++; #endif break; case DETECTION_DONE: externalAutoDetect = DETECTION_OFF; externalInterface_SwitchUART(EXT_INTERFACE_UART_OFF); activeUartChannel = 0xFF; cntSensor = 0; cntUARTSensor = 0; for(index = 0; index < EXT_INTERFACE_SENSOR_CNT-1; index++) { if((foundSensorMap[index] >= SENSOR_ANALOG) && (foundSensorMap[index] < SENSOR_MUX)) { cntSensor++; } if((foundSensorMap[index] == SENSOR_DIGO2) || (foundSensorMap[index] == SENSOR_CO2)) { cntUARTSensor++; } #ifdef ENABLE_SENTINEL_MODE if(foundSensorMap[index] == SENSOR_SENTINEL) /* The Sentinel has a fixed setup */ { cntSensor = 3; cntUARTSensor = 1; break; } #endif } externalInface_MapUartToLegacyADC(foundSensorMap); externalInterfaceMuxReqIntervall = 0xFFFF; if(cntSensor == 0) /* return default sensor map if no sensor at all has been detected */ { foundSensorMap[0] = SENSOR_OPTIC; foundSensorMap[1] = SENSOR_OPTIC; foundSensorMap[2] = SENSOR_OPTIC; } else { if(cntUARTSensor != 0) { externalInterfaceMuxReqIntervall = REQUEST_INT_SENSOR_MS / cntUARTSensor; } } memcpy(SensorMap, foundSensorMap, sizeof(foundSensorMap)); memset(externalInterface_SensorState, UART_COMMON_INIT, sizeof(externalInterface_SensorState)); break; default: break; } } } void externalInterface_ExecuteCmd(uint16_t Cmd) { char cmdString[10]; uint8_t cmdLength = 0; uint8_t index; uint8_t cntUARTSensor = 0; switch(Cmd & 0x00FF) /* lower byte is reserved for commands */ { case EXT_INTERFACE_AUTODETECT: externalAutoDetect = DETECTION_INIT; for(index = 0; index < 3; index++) { SensorMap[index] = SENSOR_SEARCH; } break; case EXT_INTERFACE_CO2_CALIB: for(index = 0; index < EXT_INTERFACE_SENSOR_CNT; index++) { if(SensorMap[index] == SENSOR_CO2) { externalInterface_SensorState[index] = UART_CO2_CALIBRATE; break; } } break; case EXT_INTERFACE_COPY_SENSORMAP: if(externalAutoDetect == DETECTION_OFF) { memcpy(SensorMap, MasterSensorMap, sizeof(MasterSensorMap)); for(index = 0; index < EXT_INTERFACE_SENSOR_CNT; index++) { if((SensorMap[index] == SENSOR_DIGO2) || (SensorMap[index] == SENSOR_CO2)) { cntUARTSensor++; } } externalInface_MapUartToLegacyADC(SensorMap); if(cntUARTSensor > 0) { externalInterfaceMuxReqIntervall = REQUEST_INT_SENSOR_MS / cntUARTSensor; activeUartChannel = 0xFF; } else { externalInterfaceMuxReqIntervall = 0xFFFF; } } break; default: break; } if(cmdLength != 0) { HAL_UART_Transmit(&huart1,(uint8_t*)cmdString,cmdLength,10); } return; } uint8_t ExternalInterface_SelectUsedMuxChannel(uint8_t currentChannel) { uint8_t index = currentChannel; uint8_t newChannel = index; uint8_t *pmap = externalInterface_GetSensorMapPointer(0); do { index++; if(index == MAX_MUX_CHANNEL) { index = 0; } if(((pmap[index + EXT_INTERFACE_MUX_OFFSET] == SENSOR_DIGO2) || (pmap[index + EXT_INTERFACE_MUX_OFFSET] == SENSOR_CO2)) && (index != activeUartChannel)) { newChannel = index; break; } } while(index != currentChannel); return newChannel; } void externalInterface_CheckBaudrate(uint8_t sensorType) { uint32_t newBaudrate = 0; switch(sensorType) { case SENSOR_SENTINEL: case SENSOR_CO2: newBaudrate = 9600; break; case SENSOR_DIGO2: default: newBaudrate = 19200; break; } if(huart1.Init.BaudRate != newBaudrate) { UART_ChangeBaudrate(newBaudrate); } } void externalInterface_HandleUART() { static uint8_t retryRequest = 0; static uint32_t lastRequestTick = 0; static uint32_t TriggerTick = 0; uint8_t index = 0; static uint8_t timeToTrigger = 0; uint32_t tick = HAL_GetTick(); uint8_t *pmap = externalInterface_GetSensorMapPointer(0); if(externalInterfaceMuxReqIntervall != 0xFFFF) { UART_ReadData(pmap[activeSensorId]); if(activeUartChannel == 0xFF) { MX_USART1_UART_Init(); activeUartChannel = ExternalInterface_SelectUsedMuxChannel(0); uartO2_SetChannel(activeUartChannel); switch(pmap[activeUartChannel + EXT_INTERFACE_MUX_OFFSET]) { case SENSOR_SENTINEL: externalInterface_CheckBaudrate(SENSOR_SENTINEL); break; case SENSOR_CO2: externalInterface_CheckBaudrate(SENSOR_CO2); break; default: case SENSOR_DIGO2: externalInterface_CheckBaudrate(SENSOR_DIGO2); break; } if(pmap[EXT_INTERFACE_SENSOR_CNT-1] == SENSOR_MUX) { UART_MUX_SelectAddress(activeUartChannel); } } if(externalInterface_SensorState[activeSensorId] == UART_COMMON_INIT) { lastRequestTick = tick; TriggerTick = tick - 10; /* just to make sure control is triggered */ timeToTrigger = 1; retryRequest = 0; } else if(((retryRequest == 0) /* timeout or error */ && (((time_elapsed_ms(lastRequestTick,tick) > (TIMEOUT_SENSOR_ANSWER)) && (externalInterface_SensorState[activeSensorId] != UART_O2_IDLE)) /* retry if no answer after half request interval */ || (externalInterface_SensorState[activeSensorId] == UART_O2_ERROR)))) { /* The channel switch will cause the sensor to respond with an error message. */ /* The sensor needs ~30ms to recover before he is ready to receive the next command => transmission delay needed */ TriggerTick = tick; timeToTrigger = COMMAND_TX_DELAY; retryRequest = 1; } else if(time_elapsed_ms(lastRequestTick,tick) > externalInterfaceMuxReqIntervall) /* switch sensor and / or trigger next request */ { lastRequestTick = tick; TriggerTick = tick; retryRequest = 0; timeToTrigger = 1; if((externalInterface_SensorState[activeSensorId] == UART_O2_REQ_O2) /* timeout */ || (externalInterface_SensorState[activeSensorId] == UART_O2_REQ_RAW) || (externalInterface_SensorState[activeSensorId] == UART_CO2_OPERATING)) { switch(pmap[activeSensorId]) { case SENSOR_DIGO2: setExternalInterfaceChannel(activeSensorId,0.0); break; case SENSOR_CO2: externalInterface_SetCO2Value(0.0); externalInterface_SetCO2State(0); break; default: break; } } if(pmap[EXT_INTERFACE_SENSOR_CNT-1] == SENSOR_MUX) /* select next sensor if mux is connected */ { if(activeUartChannel < MAX_MUX_CHANNEL) { index = ExternalInterface_SelectUsedMuxChannel(activeUartChannel); if(index != activeUartChannel) { timeToTrigger = 100; activeUartChannel = index; if((pmap[index + EXT_INTERFACE_MUX_OFFSET] == SENSOR_DIGO2) || (pmap[index + EXT_INTERFACE_MUX_OFFSET] == SENSOR_CO2)) { uartO2_SetChannel(activeUartChannel); externalInterface_CheckBaudrate(SENSOR_MUX); UART_MUX_SelectAddress(activeUartChannel); externalInterface_CheckBaudrate(pmap[activeUartChannel + EXT_INTERFACE_MUX_OFFSET]); } } } } else { timeToTrigger = 1; } } if((timeToTrigger != 0) && (time_elapsed_ms(TriggerTick,tick) > timeToTrigger)) { timeToTrigger = 0; switch (pmap[activeSensorId]) { case SENSOR_MUX: case SENSOR_DIGO2: uartO2_Control(); break; #ifdef ENABLE_CO2_SUPPORT case SENSOR_CO2: uartCo2_Control(); break; #endif #ifdef ENABLE_SENTINEL_MODE case SENSOR_SENTINEL: uartSentinel_Control(); break; #endif default: break; } } } #if 0 #ifdef ENABLE_SENTINEL_MODE if(externalInterface_GetUARTProtocol() & (EXT_INTERFACE_UART_SENTINEL)) { UART_HandleSentinelData(); } #endif #endif }