Mercurial > public > ostc4
view Small_CPU/Src/pressure.c @ 155:4fd8bbc7d841 FlipDisplay
Do hard sync after communication timeout > 1 second
author | Ideenmodellierer |
---|---|
date | Sun, 03 Mar 2019 17:46:50 +0100 |
parents | 5f11787b4f42 |
children | f11f0bf6ef2d |
line wrap: on
line source
/** ****************************************************************************** * @file pressure.c * @author heinrichs weikamp gmbh * @date 2014 * @version V0.0.2 * @since 20-Oct-2016 * @brief * @verbatim ============================================================================== ##### How to use ##### ============================================================================== V0.0.2 18-Oct-2016 pressure_calculation_AN520_004_mod_MS5803_30BA__09_2015 @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2016 heinrichs weikamp</center></h2> * ****************************************************************************** */ /* surface time the last 30 minutes will be saved once per minute in a endless loop at the beginning of a dive the oldest value will be used */ #include "pressure.h" #include "i2c.h" #include "rtc.h" #define CMD_RESET 0x1E // ADC reset command #define CMD_ADC_READ 0x00 // ADC read command #define CMD_ADC_CONV 0x40 // ADC conversion command #define CMD_ADC_D1 0x00 // ADC D1 conversion #define CMD_ADC_D2 0x10 // ADC D2 conversion #define CMD_ADC_256 0x00 // ADC OSR=256 #define CMD_ADC_512 0x02 // ADC OSR=512 #define CMD_ADC_1024 0x04 // ADC OSR=1024 #define CMD_ADC_2048 0x06 // ADC OSR=2056 #define CMD_ADC_4096 0x08 // ADC OSR=4096 #define CMD_PROM_RD 0xA0 // Prom read command //uint16_t get_ci(uint8_t cmd); //uint8_t get_ci_crc(void); uint16_t get_ci_by_coef_num(uint8_t coef_num); void pressure_calculation_new(void); void pressure_calculation_old(void); void pressure_calculation_AN520_004_mod_MS5803_30BA__09_2015(void); uint8_t crc4(uint16_t n_prom[]); HAL_StatusTypeDef pressure_sensor_get_data(void); uint32_t get_adc(void); uint8_t pressureSensorInitSuccess = 0; //void test_calculation(void); uint16_t C[8] = { 1 }; uint32_t D1 = 1; uint32_t D2 = 1; uint8_t n_crc; int64_t C5_x_2p8 = 1; int64_t C2_x_2p16 = 1; int64_t C1_x_2p15 = 1; /* short C2plus10000 = -1; short C3plus200 = -1; short C4minus250 = -1; short UT1 = -1; short C6plus100 = -1; */ float ambient_temperature = 0; float ambient_pressure_mbar = 0; float surface_pressure_mbar = 1000; float surface_ring_mbar[31] = { 0 }; uint8_t secondCounterSurfaceRing = 0; float get_temperature(void) { return ambient_temperature; } //float test = 1000; float get_pressure_mbar(void) { // return test; return ambient_pressure_mbar; } float get_surface_mbar(void) { return surface_pressure_mbar; } void init_surface_ring(void) { surface_ring_mbar[0] = 0; for(int i=1; i<31; i++) surface_ring_mbar[i] = ambient_pressure_mbar; surface_pressure_mbar = ambient_pressure_mbar; } /* the ring has one place with 0 * after that comes the oldest value * the new pressure is written in this hole * the oldest value is read and then the new hole */ void update_surface_pressure(uint8_t call_rhythm_seconds) { secondCounterSurfaceRing += call_rhythm_seconds; if(secondCounterSurfaceRing < 60) return; secondCounterSurfaceRing = 0; int hole; for(hole=30;hole>0;hole--) if(surface_ring_mbar[hole] == 0) { break; } surface_ring_mbar[hole] = ambient_pressure_mbar; hole++; if(hole > 30) hole = 0; surface_pressure_mbar = surface_ring_mbar[hole]; surface_ring_mbar[hole] = 0; } float demo_modify_temperature_helper(float bottom_mbar_diff_to_surface) { const float temperature_surface = 31.0; const float temperature_bottom = 14.0; const float temperature_difference = temperature_bottom - temperature_surface; // range 0.0 - 1.0 float position_now = (ambient_pressure_mbar - surface_pressure_mbar) / bottom_mbar_diff_to_surface; if(position_now <= 0) return temperature_surface; if(position_now >= 1) return temperature_bottom; return temperature_surface + (temperature_difference * position_now); } uint32_t demo_modify_temperature_and_pressure(int32_t divetime_in_seconds, uint8_t subseconds, float ceiling_mbar) { const float descent_rate = 4000/60; const float ascent_rate = 1000/60; const uint32_t seconds_descend = (1 * 60) + 30; const uint32_t turbo_seconds_at_bottom_start = (0 * 60) + 0; const uint32_t seconds_descend_and_bottomtime = seconds_descend + turbo_seconds_at_bottom_start + (2 * 60) + 0; uint32_t time_elapsed_in_seconds; static float ambient_pressure_mbar_memory = 0; static uint32_t time_last_call = 0; if(divetime_in_seconds <= seconds_descend) { ambient_pressure_mbar = (divetime_in_seconds * descent_rate) + ((float)(subseconds) * descent_rate) + surface_pressure_mbar; ambient_temperature = demo_modify_temperature_helper(descent_rate * seconds_descend); time_last_call = divetime_in_seconds; return 0; } else if(divetime_in_seconds <= seconds_descend + turbo_seconds_at_bottom_start) { ambient_pressure_mbar = (seconds_descend * descent_rate) + surface_pressure_mbar; ambient_temperature = demo_modify_temperature_helper(descent_rate * seconds_descend); ambient_pressure_mbar_memory = ambient_pressure_mbar; time_last_call = divetime_in_seconds; return turbo_seconds_at_bottom_start; } else if(divetime_in_seconds <= seconds_descend_and_bottomtime) { ambient_pressure_mbar = (seconds_descend * descent_rate) + surface_pressure_mbar; ambient_temperature = demo_modify_temperature_helper(descent_rate * seconds_descend); ambient_pressure_mbar_memory = ambient_pressure_mbar; time_last_call = divetime_in_seconds; return 0; } else { time_elapsed_in_seconds = divetime_in_seconds - time_last_call; ambient_pressure_mbar = ambient_pressure_mbar_memory - time_elapsed_in_seconds * ascent_rate; if(ambient_pressure_mbar < surface_pressure_mbar) ambient_pressure_mbar = surface_pressure_mbar; else if(ambient_pressure_mbar < ceiling_mbar) ambient_pressure_mbar = ceiling_mbar; ambient_temperature = demo_modify_temperature_helper(descent_rate * seconds_descend); ambient_pressure_mbar_memory = ambient_pressure_mbar; time_last_call = divetime_in_seconds; return 0; } } /* called just once on power on */ void init_pressure_DRx(void) { uint8_t resetCommand[1] = {0x1E}; I2C_Master_Transmit( DEVICE_PRESSURE, resetCommand, 1); HAL_Delay(3); C[1] = get_ci_by_coef_num(0x02); C[2] = get_ci_by_coef_num(0x04); C[3] = get_ci_by_coef_num(0x06); C[4] = get_ci_by_coef_num(0x08); C[5] = get_ci_by_coef_num(0x0A); C[6] = get_ci_by_coef_num(0x0C); C5_x_2p8 = C[5] * 256; C2_x_2p16 = C[2] * 65536; C1_x_2p15 = C[1] * 32768; pressure_update(); } uint8_t is_init_pressure_done(void) { return pressureSensorInitSuccess; } uint8_t init_pressure(void) { uint8_t buffer[1]; buffer[0] = 0x1e; uint8_t retValue = 0xFF; retValue = I2C_Master_Transmit( DEVICE_PRESSURE, buffer, 1); if(retValue != HAL_OK) { return (HAL_StatusTypeDef)retValue; } HAL_Delay(3); for(uint8_t i=0;i<8;i++) { C[i] = get_ci_by_coef_num(i); } n_crc = crc4(C); // no evaluation at the moment hw 151026 C5_x_2p8 = C[5] * 256; C2_x_2p16 = C[2] * 65536; C1_x_2p15 = C[1] * 32768; if(I2C1_Status() == HAL_OK) { pressureSensorInitSuccess = 1; } return pressure_update(); } uint32_t get_adc(void) { uint8_t buffer[1]; uint8_t resivebuf[4]; uint32_t answer = 0; // buffer[0] = 0x00; // Get ADC I2C_Master_Transmit( DEVICE_PRESSURE, buffer, 1); I2C_Master_Receive( DEVICE_PRESSURE, resivebuf, 4); resivebuf[3] = 0; answer = 256*256 *(uint32_t)resivebuf[0] + 256 * (uint32_t)resivebuf[1] + (uint32_t)resivebuf[2]; return answer; } uint16_t get_ci_by_coef_num(uint8_t coef_num) { uint8_t resivebuf[2]; uint8_t cmd = CMD_PROM_RD+coef_num*2; I2C_Master_Transmit( DEVICE_PRESSURE, &cmd, 1); I2C_Master_Receive( DEVICE_PRESSURE, resivebuf, 2); return (256*(uint16_t)resivebuf[0]) + (uint16_t)resivebuf[1]; } uint8_t pressure_update(void) { HAL_StatusTypeDef statusReturn = HAL_TIMEOUT; statusReturn = pressure_sensor_get_data(); pressure_calculation(); return (uint8_t)statusReturn; } uint32_t pressure_sensor_get_one_value(uint8_t cmd, HAL_StatusTypeDef *statusReturn) { uint8_t command = CMD_ADC_CONV + cmd; HAL_StatusTypeDef statusReturnTemp = HAL_TIMEOUT; statusReturnTemp = I2C_Master_Transmit( DEVICE_PRESSURE, &command, 1); if(statusReturn) { *statusReturn = statusReturnTemp; } switch (cmd & 0x0f) // wait necessary conversion time { case CMD_ADC_256 : HAL_Delay(1); break; case CMD_ADC_512 : HAL_Delay(3); break; case CMD_ADC_1024: HAL_Delay(4); break; case CMD_ADC_2048: HAL_Delay(6); break; case CMD_ADC_4096: HAL_Delay(10); break; } return get_adc(); } HAL_StatusTypeDef pressure_sensor_get_data(void) { HAL_StatusTypeDef statusReturn1 = HAL_TIMEOUT; HAL_StatusTypeDef statusReturn2 = HAL_TIMEOUT; D2 = pressure_sensor_get_one_value(CMD_ADC_D2 + CMD_ADC_4096, &statusReturn1); D1 = pressure_sensor_get_one_value(CMD_ADC_D1 + CMD_ADC_4096, &statusReturn2); if(statusReturn2 > statusReturn1) // if anything is not HAL_OK (0x00) or worse return statusReturn2; else return statusReturn1; } void pressure_sensor_get_pressure_raw(void) { D1 = pressure_sensor_get_one_value(CMD_ADC_D1 + CMD_ADC_4096, 0); } void pressure_sensor_get_temperature_raw(void) { D2 = pressure_sensor_get_one_value(CMD_ADC_D2 + CMD_ADC_4096, 0); } void pressure_calculation(void) { if(I2C1_Status() != HAL_OK) return; pressure_calculation_AN520_004_mod_MS5803_30BA__09_2015(); return; // before October 2016: pressure_calculation_old(); // pressure_calculation_new(); } void pressure_calculation_AN520_004_mod_MS5803_30BA__09_2015(void) { uint32_t local_D1; // ADC value of the pressure conversion uint32_t local_D2; // ADC value of the temperature conversion int32_t local_Px10; // compensated pressure value int32_t local_Tx100; // compensated temperature value int64_t local_dT; // int32_t, difference between actual and measured temperature int64_t local_OFF; // offset at actual temperature int64_t local_SENS; // sensitivity at actual temperature int64_t T2; int64_t OFF2; int64_t SENS2; local_D1 = D1; local_D2 = D2; local_dT = ((int64_t)local_D2) - ((int64_t)C[5]) * 256; //pow(2,8); local_OFF = ((int64_t)C[2]) * 65536 + local_dT * ((int64_t)C[4]) / 128; // pow(2,16), pow(2,7) local_SENS = ((int64_t)C[1]) * 32768 + local_dT * ((int64_t)C[3]) / 256; // pow(2,15), pow(2,8) local_Tx100 = (int32_t)(2000 + (local_dT * ((int64_t)C[6])) / 8388608);// pow(2,23) if(local_Tx100 < 2000) // low temperature { T2 = 3 * local_dT; T2 *= local_dT; T2 /= 8589934592; OFF2 = ((int64_t)local_Tx100) - 2000; OFF2 *= OFF2; OFF2 *= 3; OFF2 /= 2; SENS2 = ((int64_t)local_Tx100) - 2000; SENS2 *= SENS2; SENS2 *= 5; SENS2 /= 8; local_Tx100 -= (int32_t)T2; local_OFF -= OFF2; local_SENS -= SENS2; } else { T2 = 7 * local_dT; T2 *= local_dT; T2 /= 137438953472; OFF2 = ((int64_t)local_Tx100) - 2000; OFF2 *= OFF2; OFF2 /= 16; local_Tx100 -= (int32_t)T2; local_OFF -= OFF2; } local_Px10 = (int32_t)( (((int64_t)((local_D1 * local_SENS) / 2097152)) - local_OFF) / 8192 );// )) / 10; // pow(2,21), pow(2,13) ambient_temperature = ((float)local_Tx100) / 100; ambient_pressure_mbar = ((float)local_Px10) / 10; } void pressure_calculation_new(void) { #define POW2_8 (256) #define POW2_17 (131072) #define POW2_6 (64) #define POW2_16 (65536) #define POW2_7 (128) #define POW2_23 (8388608) #define POW2_21 (2097152) #define POW2_15 (32768) #define POW2_13 (8192) #define POW2_37 (137438953472) #define POW2_4 (16) #define POW2_33 (8589934592) #define POW2_3 (8) int32_t P; // compensated pressure value int32_t T; // compensated temperature value int32_t dT; // difference between actual and measured temperature int64_t OFF; // offset at actual temperature int64_t SENS; int32_t T2; int64_t OFF2; int64_t SENS2; dT = ((int32_t)D2) - ((int32_t)C[5]) * POW2_8; OFF = ((int64_t)C[2]) * POW2_16 + ((int64_t)dT) * ((int64_t)C[4]) / POW2_7; SENS = ((int64_t)C[1]) * POW2_15 + ((int64_t)dT) * ((int64_t)C[3]) / POW2_8; T = 2000 + (dT * ((int32_t)C[6])) / POW2_23; if(T < 2000) // low temperature { T2 = 3 * dT * dT; T2 /= POW2_33; OFF2 = ((int64_t)T) - 2000; OFF2 *= OFF2; OFF2 *= 3; OFF2 /= 2; SENS2 = ((int64_t)T) - 2000; SENS2 *= SENS2; SENS2 *= 5; SENS2 /= POW2_3; } else // high temperature { T2 = 7 * dT * dT; T2 /= POW2_37; OFF2 = ((int64_t)T) - 2000; OFF2 *= OFF2; OFF2 /= POW2_4; SENS2 = 0; } T = T - T2; OFF = OFF - OFF2; SENS = SENS - SENS2; P = (int32_t)(((((int64_t)D1) * SENS) / POW2_21 - OFF) / POW2_13); ambient_temperature = ((float)T) / 100; ambient_pressure_mbar = ((float)P) / 10; } void pressure_calculation_old(void) { // double ambient_temperature_centigrad = 0; double ambient_pressure_decimbar = 0; // static for debug static int64_t dt = 0; static int64_t temp = 0; static int64_t ms_off = 0; static int64_t sens = 0; // static int64_t ms_off2 = 0; static int64_t sens2 = 0; static int64_t t2 = 0; /* info uint16_t C[8] = { 1 }; uint32_t D1 = 1; uint32_t D2 = 1; uint8_t n_crc; */ if((D2 == 0) || (D1 == 0)) return; // // dT = D2 - C[5] * POW2_8; // T = 2000 + (dT * C[6]) / POW2_23; dt = (int64_t)D2 - C5_x_2p8; //temp ; // in 10 milliGrad Celcius ambient_temperature_centigrad = 2000 + dt * C[6] / 8388608; if(ambient_temperature_centigrad < 2000) // low temperature { t2 = 3 * dt; t2 *= dt; t2 /= 8589934592; ms_off2 = ambient_temperature_centigrad - 2000; ms_off2 *= ms_off2; sens2 = ms_off2; ms_off2 *= 3; ms_off2 /= 2; sens2 *= 5; sens2 /= 8; } else // high temperature { t2 = 7 * dt; t2 *= dt; t2 /= 137438953472; ms_off2 = ambient_temperature_centigrad - 2000; ms_off2 *= ms_off2; ms_off2 /= 16; sens2 = 0; } // // pressure // OFF = C[2] * POW2_16 + dT * C[4] / POW2_7; // SENS = C[1] * POW2_15 + dT * C[3] / POW2_8; ms_off = C[4] * dt; ms_off /= 128; ms_off += C2_x_2p16; // sens = C[3] * dt; sens /= 256; sens += C1_x_2p15; // 2nd order correction ambient_temperature_centigrad -= t2; ms_off -= ms_off2; sens -= sens2; ambient_temperature = ambient_temperature_centigrad / 100; // P = (D1 * SENS / POW2_21 - OFF) / POW2_13; temp = D1 * sens; temp /= 2097152; temp -= ms_off; temp /= 8192; ambient_pressure_decimbar = temp; // to float/double ambient_pressure_mbar = ambient_pressure_decimbar / 10; } /* taken from AN520 by meas-spec.com dated 9. Aug. 2011 * short and int are both 16bit according to AVR/GCC google results */ uint8_t crc4(uint16_t n_prom[]) { uint16_t cnt; // simple counter uint16_t n_rem; // crc reminder uint16_t crc_read; // original value of the crc uint8_t n_bit; n_rem = 0x00; crc_read=n_prom[7]; //save read CRC n_prom[7]=(0xFF00 & (n_prom[7])); //CRC byte is replaced by 0 for (cnt = 0; cnt < 16; cnt++) // operation is performed on bytes { // choose LSB or MSB if (cnt%2==1) n_rem ^= (uint16_t) ((n_prom[cnt>>1]) & 0x00FF); else n_rem ^= (uint16_t) (n_prom[cnt>>1]>>8); for (n_bit = 8; n_bit > 0; n_bit--) { if (n_rem & (0x8000)) { n_rem = (n_rem << 1) ^ 0x3000; } else { n_rem = (n_rem << 1); } } } n_rem= (0x000F & (n_rem >> 12)); // // final 4-bit reminder is CRC code n_prom[7]=crc_read; // restore the crc_read to its original place return (n_rem ^ 0x00); } /* void test_calculation(void) { C1 = 29112; C2 = 26814; C3 = 19125; C4 = 17865; C5 = 32057; C6 = 31305; C2_x_2p16 = C2 * 65536; C1_x_2p15 = C1 * 32768; D1 = 4944364; D2 = 8198974; pressure_calculation() ; }; */