Mercurial > public > ostc4
view Common/Drivers/CMSIS/Include/arm_math.h @ 284:4eb3a96da6ca
Merged in janlmulder/ostc4/ndl-in-logbook (pull request #22)
Bugfix: write NDL in logbook correctly
author | heinrichsweikamp <bitbucket@heinrichsweikamp.com> |
---|---|
date | Thu, 02 May 2019 11:12:25 +0000 |
parents | c78bcbd5deda |
children |
line wrap: on
line source
/* ---------------------------------------------------------------------- * Copyright (C) 2010-2015 ARM Limited. All rights reserved. * * $Date: 20. October 2015 * $Revision: V1.4.5 b * * Project: CMSIS DSP Library * Title: arm_math.h * * Description: Public header file for CMSIS DSP Library * * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ /** \mainpage CMSIS DSP Software Library * * Introduction * ------------ * * This user manual describes the CMSIS DSP software library, * a suite of common signal processing functions for use on Cortex-M processor based devices. * * The library is divided into a number of functions each covering a specific category: * - Basic math functions * - Fast math functions * - Complex math functions * - Filters * - Matrix functions * - Transforms * - Motor control functions * - Statistical functions * - Support functions * - Interpolation functions * * The library has separate functions for operating on 8-bit integers, 16-bit integers, * 32-bit integer and 32-bit floating-point values. * * Using the Library * ------------ * * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder. * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7) * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7) * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7) * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7) * - arm_cortexM7l_math.lib (Little endian on Cortex-M7) * - arm_cortexM7b_math.lib (Big endian on Cortex-M7) * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4) * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4) * - arm_cortexM4l_math.lib (Little endian on Cortex-M4) * - arm_cortexM4b_math.lib (Big endian on Cortex-M4) * - arm_cortexM3l_math.lib (Little endian on Cortex-M3) * - arm_cortexM3b_math.lib (Big endian on Cortex-M3) * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+) * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+) * * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder. * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application. * * Examples * -------- * * The library ships with a number of examples which demonstrate how to use the library functions. * * Toolchain Support * ------------ * * The library has been developed and tested with MDK-ARM version 5.14.0.0 * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly. * * Building the Library * ------------ * * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder. * - arm_cortexM_math.uvprojx * * * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above. * * Pre-processor Macros * ------------ * * Each library project have differant pre-processor macros. * * - UNALIGNED_SUPPORT_DISABLE: * * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access * * - ARM_MATH_BIG_ENDIAN: * * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. * * - ARM_MATH_MATRIX_CHECK: * * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices * * - ARM_MATH_ROUNDING: * * Define macro ARM_MATH_ROUNDING for rounding on support functions * * - ARM_MATH_CMx: * * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and * ARM_MATH_CM7 for building the library on cortex-M7. * * - __FPU_PRESENT: * * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries * * <hr> * CMSIS-DSP in ARM::CMSIS Pack * ----------------------------- * * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories: * |File/Folder |Content | * |------------------------------|------------------------------------------------------------------------| * |\b CMSIS\\Documentation\\DSP | This documentation | * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) | * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions | * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library | * * <hr> * Revision History of CMSIS-DSP * ------------ * Please refer to \ref ChangeLog_pg. * * Copyright Notice * ------------ * * Copyright (C) 2010-2015 ARM Limited. All rights reserved. */ /** * @defgroup groupMath Basic Math Functions */ /** * @defgroup groupFastMath Fast Math Functions * This set of functions provides a fast approximation to sine, cosine, and square root. * As compared to most of the other functions in the CMSIS math library, the fast math functions * operate on individual values and not arrays. * There are separate functions for Q15, Q31, and floating-point data. * */ /** * @defgroup groupCmplxMath Complex Math Functions * This set of functions operates on complex data vectors. * The data in the complex arrays is stored in an interleaved fashion * (real, imag, real, imag, ...). * In the API functions, the number of samples in a complex array refers * to the number of complex values; the array contains twice this number of * real values. */ /** * @defgroup groupFilters Filtering Functions */ /** * @defgroup groupMatrix Matrix Functions * * This set of functions provides basic matrix math operations. * The functions operate on matrix data structures. For example, * the type * definition for the floating-point matrix structure is shown * below: * <pre> * typedef struct * { * uint16_t numRows; // number of rows of the matrix. * uint16_t numCols; // number of columns of the matrix. * float32_t *pData; // points to the data of the matrix. * } arm_matrix_instance_f32; * </pre> * There are similar definitions for Q15 and Q31 data types. * * The structure specifies the size of the matrix and then points to * an array of data. The array is of size <code>numRows X numCols</code> * and the values are arranged in row order. That is, the * matrix element (i, j) is stored at: * <pre> * pData[i*numCols + j] * </pre> * * \par Init Functions * There is an associated initialization function for each type of matrix * data structure. * The initialization function sets the values of the internal structure fields. * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code> * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively. * * \par * Use of the initialization function is optional. However, if initialization function is used * then the instance structure cannot be placed into a const data section. * To place the instance structure in a const data * section, manually initialize the data structure. For example: * <pre> * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code> * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code> * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code> * </pre> * where <code>nRows</code> specifies the number of rows, <code>nColumns</code> * specifies the number of columns, and <code>pData</code> points to the * data array. * * \par Size Checking * By default all of the matrix functions perform size checking on the input and * output matrices. For example, the matrix addition function verifies that the * two input matrices and the output matrix all have the same number of rows and * columns. If the size check fails the functions return: * <pre> * ARM_MATH_SIZE_MISMATCH * </pre> * Otherwise the functions return * <pre> * ARM_MATH_SUCCESS * </pre> * There is some overhead associated with this matrix size checking. * The matrix size checking is enabled via the \#define * <pre> * ARM_MATH_MATRIX_CHECK * </pre> * within the library project settings. By default this macro is defined * and size checking is enabled. By changing the project settings and * undefining this macro size checking is eliminated and the functions * run a bit faster. With size checking disabled the functions always * return <code>ARM_MATH_SUCCESS</code>. */ /** * @defgroup groupTransforms Transform Functions */ /** * @defgroup groupController Controller Functions */ /** * @defgroup groupStats Statistics Functions */ /** * @defgroup groupSupport Support Functions */ /** * @defgroup groupInterpolation Interpolation Functions * These functions perform 1- and 2-dimensional interpolation of data. * Linear interpolation is used for 1-dimensional data and * bilinear interpolation is used for 2-dimensional data. */ /** * @defgroup groupExamples Examples */ #ifndef _ARM_MATH_H #define _ARM_MATH_H /* ignore some GCC warnings */ #if defined ( __GNUC__ ) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wsign-conversion" #pragma GCC diagnostic ignored "-Wconversion" #pragma GCC diagnostic ignored "-Wunused-parameter" #endif #define __CMSIS_GENERIC /* disable NVIC and Systick functions */ #if defined(ARM_MATH_CM7) #include "core_cm7.h" #elif defined (ARM_MATH_CM4) #include "core_cm4.h" #elif defined (ARM_MATH_CM3) #include "core_cm3.h" #elif defined (ARM_MATH_CM0) #include "core_cm0.h" #define ARM_MATH_CM0_FAMILY #elif defined (ARM_MATH_CM0PLUS) #include "core_cm0plus.h" #define ARM_MATH_CM0_FAMILY #else #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0" #endif #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */ #include "string.h" #include "math.h" #ifdef __cplusplus extern "C" { #endif /** * @brief Macros required for reciprocal calculation in Normalized LMS */ #define DELTA_Q31 (0x100) #define DELTA_Q15 0x5 #define INDEX_MASK 0x0000003F #ifndef PI #define PI 3.14159265358979f #endif /** * @brief Macros required for SINE and COSINE Fast math approximations */ #define FAST_MATH_TABLE_SIZE 512 #define FAST_MATH_Q31_SHIFT (32 - 10) #define FAST_MATH_Q15_SHIFT (16 - 10) #define CONTROLLER_Q31_SHIFT (32 - 9) #define TABLE_SIZE 256 #define TABLE_SPACING_Q31 0x400000 #define TABLE_SPACING_Q15 0x80 /** * @brief Macros required for SINE and COSINE Controller functions */ /* 1.31(q31) Fixed value of 2/360 */ /* -1 to +1 is divided into 360 values so total spacing is (2/360) */ #define INPUT_SPACING 0xB60B61 /** * @brief Macro for Unaligned Support */ #ifndef UNALIGNED_SUPPORT_DISABLE #define ALIGN4 #else #if defined (__GNUC__) #define ALIGN4 __attribute__((aligned(4))) #else #define ALIGN4 __align(4) #endif #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ /** * @brief Error status returned by some functions in the library. */ typedef enum { ARM_MATH_SUCCESS = 0, /**< No error */ ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */ ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */ ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */ ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */ ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */ ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */ } arm_status; /** * @brief 8-bit fractional data type in 1.7 format. */ typedef int8_t q7_t; /** * @brief 16-bit fractional data type in 1.15 format. */ typedef int16_t q15_t; /** * @brief 32-bit fractional data type in 1.31 format. */ typedef int32_t q31_t; /** * @brief 64-bit fractional data type in 1.63 format. */ typedef int64_t q63_t; /** * @brief 32-bit floating-point type definition. */ typedef float float32_t; /** * @brief 64-bit floating-point type definition. */ typedef double float64_t; /** * @brief definition to read/write two 16 bit values. */ #if defined __CC_ARM #define __SIMD32_TYPE int32_t __packed #define CMSIS_UNUSED __attribute__((unused)) #elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) #define __SIMD32_TYPE int32_t #define CMSIS_UNUSED __attribute__((unused)) #elif defined __GNUC__ #define __SIMD32_TYPE int32_t #define CMSIS_UNUSED __attribute__((unused)) #elif defined __ICCARM__ #define __SIMD32_TYPE int32_t __packed #define CMSIS_UNUSED #elif defined __CSMC__ #define __SIMD32_TYPE int32_t #define CMSIS_UNUSED #elif defined __TASKING__ #define __SIMD32_TYPE __unaligned int32_t #define CMSIS_UNUSED #else #error Unknown compiler #endif #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr)) #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr)) #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr)) #define __SIMD64(addr) (*(int64_t **) & (addr)) #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) /** * @brief definition to pack two 16 bit values. */ #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \ (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) ) #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \ (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) ) #endif /** * @brief definition to pack four 8 bit values. */ #ifndef ARM_MATH_BIG_ENDIAN #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ (((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) #else #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \ (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \ (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \ (((int32_t)(v0) << 24) & (int32_t)0xFF000000) ) #endif /** * @brief Clips Q63 to Q31 values. */ static __INLINE q31_t clip_q63_to_q31( q63_t x) { return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x; } /** * @brief Clips Q63 to Q15 values. */ static __INLINE q15_t clip_q63_to_q15( q63_t x) { return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15); } /** * @brief Clips Q31 to Q7 values. */ static __INLINE q7_t clip_q31_to_q7( q31_t x) { return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ? ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x; } /** * @brief Clips Q31 to Q15 values. */ static __INLINE q15_t clip_q31_to_q15( q31_t x) { return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ? ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x; } /** * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format. */ static __INLINE q63_t mult32x64( q63_t x, q31_t y) { return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) + (((q63_t) (x >> 32) * y))); } /* #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM ) #define __CLZ __clz #endif */ /* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */ #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) ) static __INLINE uint32_t __CLZ( q31_t data); static __INLINE uint32_t __CLZ( q31_t data) { uint32_t count = 0; uint32_t mask = 0x80000000; while((data & mask) == 0) { count += 1u; mask = mask >> 1u; } return (count); } #endif /** * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type. */ static __INLINE uint32_t arm_recip_q31( q31_t in, q31_t * dst, q31_t * pRecipTable) { q31_t out; uint32_t tempVal; uint32_t index, i; uint32_t signBits; if(in > 0) { signBits = ((uint32_t) (__CLZ( in) - 1)); } else { signBits = ((uint32_t) (__CLZ(-in) - 1)); } /* Convert input sample to 1.31 format */ in = (in << signBits); /* calculation of index for initial approximated Val */ index = (uint32_t)(in >> 24); index = (index & INDEX_MASK); /* 1.31 with exp 1 */ out = pRecipTable[index]; /* calculation of reciprocal value */ /* running approximation for two iterations */ for (i = 0u; i < 2u; i++) { tempVal = (uint32_t) (((q63_t) in * out) >> 31); tempVal = 0x7FFFFFFFu - tempVal; /* 1.31 with exp 1 */ /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */ out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30); } /* write output */ *dst = out; /* return num of signbits of out = 1/in value */ return (signBits + 1u); } /** * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type. */ static __INLINE uint32_t arm_recip_q15( q15_t in, q15_t * dst, q15_t * pRecipTable) { q15_t out = 0; uint32_t tempVal = 0; uint32_t index = 0, i = 0; uint32_t signBits = 0; if(in > 0) { signBits = ((uint32_t)(__CLZ( in) - 17)); } else { signBits = ((uint32_t)(__CLZ(-in) - 17)); } /* Convert input sample to 1.15 format */ in = (in << signBits); /* calculation of index for initial approximated Val */ index = (uint32_t)(in >> 8); index = (index & INDEX_MASK); /* 1.15 with exp 1 */ out = pRecipTable[index]; /* calculation of reciprocal value */ /* running approximation for two iterations */ for (i = 0u; i < 2u; i++) { tempVal = (uint32_t) (((q31_t) in * out) >> 15); tempVal = 0x7FFFu - tempVal; /* 1.15 with exp 1 */ out = (q15_t) (((q31_t) out * tempVal) >> 14); /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */ } /* write output */ *dst = out; /* return num of signbits of out = 1/in value */ return (signBits + 1); } /* * @brief C custom defined intrinisic function for only M0 processors */ #if defined(ARM_MATH_CM0_FAMILY) static __INLINE q31_t __SSAT( q31_t x, uint32_t y) { int32_t posMax, negMin; uint32_t i; posMax = 1; for (i = 0; i < (y - 1); i++) { posMax = posMax * 2; } if(x > 0) { posMax = (posMax - 1); if(x > posMax) { x = posMax; } } else { negMin = -posMax; if(x < negMin) { x = negMin; } } return (x); } #endif /* end of ARM_MATH_CM0_FAMILY */ /* * @brief C custom defined intrinsic function for M3 and M0 processors */ #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) /* * @brief C custom defined QADD8 for M3 and M0 processors */ static __INLINE uint32_t __QADD8( uint32_t x, uint32_t y) { q31_t r, s, t, u; r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); } /* * @brief C custom defined QSUB8 for M3 and M0 processors */ static __INLINE uint32_t __QSUB8( uint32_t x, uint32_t y) { q31_t r, s, t, u; r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); } /* * @brief C custom defined QADD16 for M3 and M0 processors */ static __INLINE uint32_t __QADD16( uint32_t x, uint32_t y) { /* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */ q31_t r = 0, s = 0; r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; return ((uint32_t)((s << 16) | (r ))); } /* * @brief C custom defined SHADD16 for M3 and M0 processors */ static __INLINE uint32_t __SHADD16( uint32_t x, uint32_t y) { q31_t r, s; r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; return ((uint32_t)((s << 16) | (r ))); } /* * @brief C custom defined QSUB16 for M3 and M0 processors */ static __INLINE uint32_t __QSUB16( uint32_t x, uint32_t y) { q31_t r, s; r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; return ((uint32_t)((s << 16) | (r ))); } /* * @brief C custom defined SHSUB16 for M3 and M0 processors */ static __INLINE uint32_t __SHSUB16( uint32_t x, uint32_t y) { q31_t r, s; r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; return ((uint32_t)((s << 16) | (r ))); } /* * @brief C custom defined QASX for M3 and M0 processors */ static __INLINE uint32_t __QASX( uint32_t x, uint32_t y) { q31_t r, s; r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; return ((uint32_t)((s << 16) | (r ))); } /* * @brief C custom defined SHASX for M3 and M0 processors */ static __INLINE uint32_t __SHASX( uint32_t x, uint32_t y) { q31_t r, s; r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; return ((uint32_t)((s << 16) | (r ))); } /* * @brief C custom defined QSAX for M3 and M0 processors */ static __INLINE uint32_t __QSAX( uint32_t x, uint32_t y) { q31_t r, s; r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; return ((uint32_t)((s << 16) | (r ))); } /* * @brief C custom defined SHSAX for M3 and M0 processors */ static __INLINE uint32_t __SHSAX( uint32_t x, uint32_t y) { q31_t r, s; r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; return ((uint32_t)((s << 16) | (r ))); } /* * @brief C custom defined SMUSDX for M3 and M0 processors */ static __INLINE uint32_t __SMUSDX( uint32_t x, uint32_t y) { return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); } /* * @brief C custom defined SMUADX for M3 and M0 processors */ static __INLINE uint32_t __SMUADX( uint32_t x, uint32_t y) { return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); } /* * @brief C custom defined QADD for M3 and M0 processors */ static __INLINE int32_t __QADD( int32_t x, int32_t y) { return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y))); } /* * @brief C custom defined QSUB for M3 and M0 processors */ static __INLINE int32_t __QSUB( int32_t x, int32_t y) { return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y))); } /* * @brief C custom defined SMLAD for M3 and M0 processors */ static __INLINE uint32_t __SMLAD( uint32_t x, uint32_t y, uint32_t sum) { return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + ( ((q31_t)sum ) ) )); } /* * @brief C custom defined SMLADX for M3 and M0 processors */ static __INLINE uint32_t __SMLADX( uint32_t x, uint32_t y, uint32_t sum) { return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + ( ((q31_t)sum ) ) )); } /* * @brief C custom defined SMLSDX for M3 and M0 processors */ static __INLINE uint32_t __SMLSDX( uint32_t x, uint32_t y, uint32_t sum) { return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + ( ((q31_t)sum ) ) )); } /* * @brief C custom defined SMLALD for M3 and M0 processors */ static __INLINE uint64_t __SMLALD( uint32_t x, uint32_t y, uint64_t sum) { /* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */ return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + ( ((q63_t)sum ) ) )); } /* * @brief C custom defined SMLALDX for M3 and M0 processors */ static __INLINE uint64_t __SMLALDX( uint32_t x, uint32_t y, uint64_t sum) { /* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */ return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + ( ((q63_t)sum ) ) )); } /* * @brief C custom defined SMUAD for M3 and M0 processors */ static __INLINE uint32_t __SMUAD( uint32_t x, uint32_t y) { return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); } /* * @brief C custom defined SMUSD for M3 and M0 processors */ static __INLINE uint32_t __SMUSD( uint32_t x, uint32_t y) { return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) - ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); } /* * @brief C custom defined SXTB16 for M3 and M0 processors */ static __INLINE uint32_t __SXTB16( uint32_t x) { return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) | ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) )); } #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */ /** * @brief Instance structure for the Q7 FIR filter. */ typedef struct { uint16_t numTaps; /**< number of filter coefficients in the filter. */ q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ } arm_fir_instance_q7; /** * @brief Instance structure for the Q15 FIR filter. */ typedef struct { uint16_t numTaps; /**< number of filter coefficients in the filter. */ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ } arm_fir_instance_q15; /** * @brief Instance structure for the Q31 FIR filter. */ typedef struct { uint16_t numTaps; /**< number of filter coefficients in the filter. */ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ } arm_fir_instance_q31; /** * @brief Instance structure for the floating-point FIR filter. */ typedef struct { uint16_t numTaps; /**< number of filter coefficients in the filter. */ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ } arm_fir_instance_f32; /** * @brief Processing function for the Q7 FIR filter. * @param[in] S points to an instance of the Q7 FIR filter structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. */ void arm_fir_q7( const arm_fir_instance_q7 * S, q7_t * pSrc, q7_t * pDst, uint32_t blockSize); /** * @brief Initialization function for the Q7 FIR filter. * @param[in,out] S points to an instance of the Q7 FIR structure. * @param[in] numTaps Number of filter coefficients in the filter. * @param[in] pCoeffs points to the filter coefficients. * @param[in] pState points to the state buffer. * @param[in] blockSize number of samples that are processed. */ void arm_fir_init_q7( arm_fir_instance_q7 * S, uint16_t numTaps, q7_t * pCoeffs, q7_t * pState, uint32_t blockSize); /** * @brief Processing function for the Q15 FIR filter. * @param[in] S points to an instance of the Q15 FIR structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. */ void arm_fir_q15( const arm_fir_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); /** * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4. * @param[in] S points to an instance of the Q15 FIR filter structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. */ void arm_fir_fast_q15( const arm_fir_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); /** * @brief Initialization function for the Q15 FIR filter. * @param[in,out] S points to an instance of the Q15 FIR filter structure. * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4. * @param[in] pCoeffs points to the filter coefficients. * @param[in] pState points to the state buffer. * @param[in] blockSize number of samples that are processed at a time. * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if * <code>numTaps</code> is not a supported value. */ arm_status arm_fir_init_q15( arm_fir_instance_q15 * S, uint16_t numTaps, q15_t * pCoeffs, q15_t * pState, uint32_t blockSize); /** * @brief Processing function for the Q31 FIR filter. * @param[in] S points to an instance of the Q31 FIR filter structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. */ void arm_fir_q31( const arm_fir_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); /** * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4. * @param[in] S points to an instance of the Q31 FIR structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. */ void arm_fir_fast_q31( const arm_fir_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); /** * @brief Initialization function for the Q31 FIR filter. * @param[in,out] S points to an instance of the Q31 FIR structure. * @param[in] numTaps Number of filter coefficients in the filter. * @param[in] pCoeffs points to the filter coefficients. * @param[in] pState points to the state buffer. * @param[in] blockSize number of samples that are processed at a time. */ void arm_fir_init_q31( arm_fir_instance_q31 * S, uint16_t numTaps, q31_t * pCoeffs, q31_t * pState, uint32_t blockSize); /** * @brief Processing function for the floating-point FIR filter. * @param[in] S points to an instance of the floating-point FIR structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. */ void arm_fir_f32( const arm_fir_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); /** * @brief Initialization function for the floating-point FIR filter. * @param[in,out] S points to an instance of the floating-point FIR filter structure. * @param[in] numTaps Number of filter coefficients in the filter. * @param[in] pCoeffs points to the filter coefficients. * @param[in] pState points to the state buffer. * @param[in] blockSize number of samples that are processed at a time. */ void arm_fir_init_f32( arm_fir_instance_f32 * S, uint16_t numTaps, float32_t * pCoeffs, float32_t * pState, uint32_t blockSize); /** * @brief Instance structure for the Q15 Biquad cascade filter. */ typedef struct { int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ } arm_biquad_casd_df1_inst_q15; /** * @brief Instance structure for the Q31 Biquad cascade filter. */ typedef struct { uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ } arm_biquad_casd_df1_inst_q31; /** * @brief Instance structure for the floating-point Biquad cascade filter. */ typedef struct { uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ } arm_biquad_casd_df1_inst_f32; /** * @brief Processing function for the Q15 Biquad cascade filter. * @param[in] S points to an instance of the Q15 Biquad cascade structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. */ void arm_biquad_cascade_df1_q15( const arm_biquad_casd_df1_inst_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); /** * @brief Initialization function for the Q15 Biquad cascade filter. * @param[in,out] S points to an instance of the Q15 Biquad cascade structure. * @param[in] numStages number of 2nd order stages in the filter. * @param[in] pCoeffs points to the filter coefficients. * @param[in] pState points to the state buffer. * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format */ void arm_biquad_cascade_df1_init_q15( arm_biquad_casd_df1_inst_q15 * S, uint8_t numStages, q15_t * pCoeffs, q15_t * pState, int8_t postShift); /** * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4. * @param[in] S points to an instance of the Q15 Biquad cascade structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. */ void arm_biquad_cascade_df1_fast_q15( const arm_biquad_casd_df1_inst_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); /** * @brief Processing function for the Q31 Biquad cascade filter * @param[in] S points to an instance of the Q31 Biquad cascade structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. */ void arm_biquad_cascade_df1_q31( const arm_biquad_casd_df1_inst_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); /** * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4. * @param[in] S points to an instance of the Q31 Biquad cascade structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. */ void arm_biquad_cascade_df1_fast_q31( const arm_biquad_casd_df1_inst_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); /** * @brief Initialization function for the Q31 Biquad cascade filter. * @param[in,out] S points to an instance of the Q31 Biquad cascade structure. * @param[in] numStages number of 2nd order stages in the filter. * @param[in] pCoeffs points to the filter coefficients. * @param[in] pState points to the state buffer. * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format */ void arm_biquad_cascade_df1_init_q31( arm_biquad_casd_df1_inst_q31 * S, uint8_t numStages, q31_t * pCoeffs, q31_t * pState, int8_t postShift); /** * @brief Processing function for the floating-point Biquad cascade filter. * @param[in] S points to an instance of the floating-point Biquad cascade structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. */ void arm_biquad_cascade_df1_f32( const arm_biquad_casd_df1_inst_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); /** * @brief Initialization function for the floating-point Biquad cascade filter. * @param[in,out] S points to an instance of the floating-point Biquad cascade structure. * @param[in] numStages number of 2nd order stages in the filter. * @param[in] pCoeffs points to the filter coefficients. * @param[in] pState points to the state buffer. */ void arm_biquad_cascade_df1_init_f32( arm_biquad_casd_df1_inst_f32 * S, uint8_t numStages, float32_t * pCoeffs, float32_t * pState); /** * @brief Instance structure for the floating-point matrix structure. */ typedef struct { uint16_t numRows; /**< number of rows of the matrix. */ uint16_t numCols; /**< number of columns of the matrix. */ float32_t *pData; /**< points to the data of the matrix. */ } arm_matrix_instance_f32; /** * @brief Instance structure for the floating-point matrix structure. */ typedef struct { uint16_t numRows; /**< number of rows of the matrix. */ uint16_t numCols; /**< number of columns of the matrix. */ float64_t *pData; /**< points to the data of the matrix. */ } arm_matrix_instance_f64; /** * @brief Instance structure for the Q15 matrix structure. */ typedef struct { uint16_t numRows; /**< number of rows of the matrix. */ uint16_t numCols; /**< number of columns of the matrix. */ q15_t *pData; /**< points to the data of the matrix. */ } arm_matrix_instance_q15; /** * @brief Instance structure for the Q31 matrix structure. */ typedef struct { uint16_t numRows; /**< number of rows of the matrix. */ uint16_t numCols; /**< number of columns of the matrix. */ q31_t *pData; /**< points to the data of the matrix. */ } arm_matrix_instance_q31; /** * @brief Floating-point matrix addition. * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_add_f32( const arm_matrix_instance_f32 * pSrcA, const arm_matrix_instance_f32 * pSrcB, arm_matrix_instance_f32 * pDst); /** * @brief Q15 matrix addition. * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_add_q15( const arm_matrix_instance_q15 * pSrcA, const arm_matrix_instance_q15 * pSrcB, arm_matrix_instance_q15 * pDst); /** * @brief Q31 matrix addition. * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_add_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, arm_matrix_instance_q31 * pDst); /** * @brief Floating-point, complex, matrix multiplication. * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_cmplx_mult_f32( const arm_matrix_instance_f32 * pSrcA, const arm_matrix_instance_f32 * pSrcB, arm_matrix_instance_f32 * pDst); /** * @brief Q15, complex, matrix multiplication. * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_cmplx_mult_q15( const arm_matrix_instance_q15 * pSrcA, const arm_matrix_instance_q15 * pSrcB, arm_matrix_instance_q15 * pDst, q15_t * pScratch); /** * @brief Q31, complex, matrix multiplication. * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_cmplx_mult_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, arm_matrix_instance_q31 * pDst); /** * @brief Floating-point matrix transpose. * @param[in] pSrc points to the input matrix * @param[out] pDst points to the output matrix * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_trans_f32( const arm_matrix_instance_f32 * pSrc, arm_matrix_instance_f32 * pDst); /** * @brief Q15 matrix transpose. * @param[in] pSrc points to the input matrix * @param[out] pDst points to the output matrix * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_trans_q15( const arm_matrix_instance_q15 * pSrc, arm_matrix_instance_q15 * pDst); /** * @brief Q31 matrix transpose. * @param[in] pSrc points to the input matrix * @param[out] pDst points to the output matrix * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_trans_q31( const arm_matrix_instance_q31 * pSrc, arm_matrix_instance_q31 * pDst); /** * @brief Floating-point matrix multiplication * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_mult_f32( const arm_matrix_instance_f32 * pSrcA, const arm_matrix_instance_f32 * pSrcB, arm_matrix_instance_f32 * pDst); /** * @brief Q15 matrix multiplication * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @param[in] pState points to the array for storing intermediate results * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_mult_q15( const arm_matrix_instance_q15 * pSrcA, const arm_matrix_instance_q15 * pSrcB, arm_matrix_instance_q15 * pDst, q15_t * pState); /** * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @param[in] pState points to the array for storing intermediate results * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_mult_fast_q15( const arm_matrix_instance_q15 * pSrcA, const arm_matrix_instance_q15 * pSrcB, arm_matrix_instance_q15 * pDst, q15_t * pState); /** * @brief Q31 matrix multiplication * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_mult_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, arm_matrix_instance_q31 * pDst); /** * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_mult_fast_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, arm_matrix_instance_q31 * pDst); /** * @brief Floating-point matrix subtraction * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_sub_f32( const arm_matrix_instance_f32 * pSrcA, const arm_matrix_instance_f32 * pSrcB, arm_matrix_instance_f32 * pDst); /** * @brief Q15 matrix subtraction * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_sub_q15( const arm_matrix_instance_q15 * pSrcA, const arm_matrix_instance_q15 * pSrcB, arm_matrix_instance_q15 * pDst); /** * @brief Q31 matrix subtraction * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_sub_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, arm_matrix_instance_q31 * pDst); /** * @brief Floating-point matrix scaling. * @param[in] pSrc points to the input matrix * @param[in] scale scale factor * @param[out] pDst points to the output matrix * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_scale_f32( const arm_matrix_instance_f32 * pSrc, float32_t scale, arm_matrix_instance_f32 * pDst); /** * @brief Q15 matrix scaling. * @param[in] pSrc points to input matrix * @param[in] scaleFract fractional portion of the scale factor * @param[in] shift number of bits to shift the result by * @param[out] pDst points to output matrix * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_scale_q15( const arm_matrix_instance_q15 * pSrc, q15_t scaleFract, int32_t shift, arm_matrix_instance_q15 * pDst); /** * @brief Q31 matrix scaling. * @param[in] pSrc points to input matrix * @param[in] scaleFract fractional portion of the scale factor * @param[in] shift number of bits to shift the result by * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_scale_q31( const arm_matrix_instance_q31 * pSrc, q31_t scaleFract, int32_t shift, arm_matrix_instance_q31 * pDst); /** * @brief Q31 matrix initialization. * @param[in,out] S points to an instance of the floating-point matrix structure. * @param[in] nRows number of rows in the matrix. * @param[in] nColumns number of columns in the matrix. * @param[in] pData points to the matrix data array. */ void arm_mat_init_q31( arm_matrix_instance_q31 * S, uint16_t nRows, uint16_t nColumns, q31_t * pData); /** * @brief Q15 matrix initialization. * @param[in,out] S points to an instance of the floating-point matrix structure. * @param[in] nRows number of rows in the matrix. * @param[in] nColumns number of columns in the matrix. * @param[in] pData points to the matrix data array. */ void arm_mat_init_q15( arm_matrix_instance_q15 * S, uint16_t nRows, uint16_t nColumns, q15_t * pData); /** * @brief Floating-point matrix initialization. * @param[in,out] S points to an instance of the floating-point matrix structure. * @param[in] nRows number of rows in the matrix. * @param[in] nColumns number of columns in the matrix. * @param[in] pData points to the matrix data array. */ void arm_mat_init_f32( arm_matrix_instance_f32 * S, uint16_t nRows, uint16_t nColumns, float32_t * pData); /** * @brief Instance structure for the Q15 PID Control. */ typedef struct { q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ #ifdef ARM_MATH_CM0_FAMILY q15_t A1; q15_t A2; #else q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/ #endif q15_t state[3]; /**< The state array of length 3. */ q15_t Kp; /**< The proportional gain. */ q15_t Ki; /**< The integral gain. */ q15_t Kd; /**< The derivative gain. */ } arm_pid_instance_q15; /** * @brief Instance structure for the Q31 PID Control. */ typedef struct { q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ q31_t A2; /**< The derived gain, A2 = Kd . */ q31_t state[3]; /**< The state array of length 3. */ q31_t Kp; /**< The proportional gain. */ q31_t Ki; /**< The integral gain. */ q31_t Kd; /**< The derivative gain. */ } arm_pid_instance_q31; /** * @brief Instance structure for the floating-point PID Control. */ typedef struct { float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ float32_t A2; /**< The derived gain, A2 = Kd . */ float32_t state[3]; /**< The state array of length 3. */ float32_t Kp; /**< The proportional gain. */ float32_t Ki; /**< The integral gain. */ float32_t Kd; /**< The derivative gain. */ } arm_pid_instance_f32; /** * @brief Initialization function for the floating-point PID Control. * @param[in,out] S points to an instance of the PID structure. * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. */ void arm_pid_init_f32( arm_pid_instance_f32 * S, int32_t resetStateFlag); /** * @brief Reset function for the floating-point PID Control. * @param[in,out] S is an instance of the floating-point PID Control structure */ void arm_pid_reset_f32( arm_pid_instance_f32 * S); /** * @brief Initialization function for the Q31 PID Control. * @param[in,out] S points to an instance of the Q15 PID structure. * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. */ void arm_pid_init_q31( arm_pid_instance_q31 * S, int32_t resetStateFlag); /** * @brief Reset function for the Q31 PID Control. * @param[in,out] S points to an instance of the Q31 PID Control structure */ void arm_pid_reset_q31( arm_pid_instance_q31 * S); /** * @brief Initialization function for the Q15 PID Control. * @param[in,out] S points to an instance of the Q15 PID structure. * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. */ void arm_pid_init_q15( arm_pid_instance_q15 * S, int32_t resetStateFlag); /** * @brief Reset function for the Q15 PID Control. * @param[in,out] S points to an instance of the q15 PID Control structure */ void arm_pid_reset_q15( arm_pid_instance_q15 * S); /** * @brief Instance structure for the floating-point Linear Interpolate function. */ typedef struct { uint32_t nValues; /**< nValues */ float32_t x1; /**< x1 */ float32_t xSpacing; /**< xSpacing */ float32_t *pYData; /**< pointer to the table of Y values */ } arm_linear_interp_instance_f32; /** * @brief Instance structure for the floating-point bilinear interpolation function. */ typedef struct { uint16_t numRows; /**< number of rows in the data table. */ uint16_t numCols; /**< number of columns in the data table. */ float32_t *pData; /**< points to the data table. */ } arm_bilinear_interp_instance_f32; /** * @brief Instance structure for the Q31 bilinear interpolation function. */ typedef struct { uint16_t numRows; /**< number of rows in the data table. */ uint16_t numCols; /**< number of columns in the data table. */ q31_t *pData; /**< points to the data table. */ } arm_bilinear_interp_instance_q31; /** * @brief Instance structure for the Q15 bilinear interpolation function. */ typedef struct { uint16_t numRows; /**< number of rows in the data table. */ uint16_t numCols; /**< number of columns in the data table. */ q15_t *pData; /**< points to the data table. */ } arm_bilinear_interp_instance_q15; /** * @brief Instance structure for the Q15 bilinear interpolation function. */ typedef struct { uint16_t numRows; /**< number of rows in the data table. */ uint16_t numCols; /**< number of columns in the data table. */ q7_t *pData; /**< points to the data table. */ } arm_bilinear_interp_instance_q7; /** * @brief Q7 vector multiplication. * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in each vector */ void arm_mult_q7( q7_t * pSrcA, q7_t * pSrcB, q7_t * pDst, uint32_t blockSize); /** * @brief Q15 vector multiplication. * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in each vector */ void arm_mult_q15( q15_t * pSrcA, q15_t * pSrcB, q15_t * pDst, uint32_t blockSize); /** * @brief Q31 vector multiplication. * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in each vector */ void arm_mult_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t blockSize); /** * @brief Floating-point vector multiplication. * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in each vector */ void arm_mult_f32( float32_t * pSrcA, float32_t * pSrcB, float32_t * pDst, uint32_t blockSize); /** * @brief Instance structure for the Q15 CFFT/CIFFT function. */ typedef struct { uint16_t fftLen; /**< length of the FFT. */ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */ uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ } arm_cfft_radix2_instance_q15; /* Deprecated */ arm_status arm_cfft_radix2_init_q15( arm_cfft_radix2_instance_q15 * S, uint16_t fftLen, uint8_t ifftFlag, uint8_t bitReverseFlag); /* Deprecated */ void arm_cfft_radix2_q15( const arm_cfft_radix2_instance_q15 * S, q15_t * pSrc); /** * @brief Instance structure for the Q15 CFFT/CIFFT function. */ typedef struct { uint16_t fftLen; /**< length of the FFT. */ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ q15_t *pTwiddle; /**< points to the twiddle factor table. */ uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ } arm_cfft_radix4_instance_q15; /* Deprecated */ arm_status arm_cfft_radix4_init_q15( arm_cfft_radix4_instance_q15 * S, uint16_t fftLen, uint8_t ifftFlag, uint8_t bitReverseFlag); /* Deprecated */ void arm_cfft_radix4_q15( const arm_cfft_radix4_instance_q15 * S, q15_t * pSrc); /** * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function. */ typedef struct { uint16_t fftLen; /**< length of the FFT. */ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ q31_t *pTwiddle; /**< points to the Twiddle factor table. */ uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ } arm_cfft_radix2_instance_q31; /* Deprecated */ arm_status arm_cfft_radix2_init_q31( arm_cfft_radix2_instance_q31 * S, uint16_t fftLen, uint8_t ifftFlag, uint8_t bitReverseFlag); /* Deprecated */ void arm_cfft_radix2_q31( const arm_cfft_radix2_instance_q31 * S, q31_t * pSrc); /** * @brief Instance structure for the Q31 CFFT/CIFFT function. */ typedef struct { uint16_t fftLen; /**< length of the FFT. */ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ q31_t *pTwiddle; /**< points to the twiddle factor table. */ uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ } arm_cfft_radix4_instance_q31; /* Deprecated */ void arm_cfft_radix4_q31( const arm_cfft_radix4_instance_q31 * S, q31_t * pSrc); /* Deprecated */ arm_status arm_cfft_radix4_init_q31( arm_cfft_radix4_instance_q31 * S, uint16_t fftLen, uint8_t ifftFlag, uint8_t bitReverseFlag); /** * @brief Instance structure for the floating-point CFFT/CIFFT function. */ typedef struct { uint16_t fftLen; /**< length of the FFT. */ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ float32_t *pTwiddle; /**< points to the Twiddle factor table. */ uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ float32_t onebyfftLen; /**< value of 1/fftLen. */ } arm_cfft_radix2_instance_f32; /* Deprecated */ arm_status arm_cfft_radix2_init_f32( arm_cfft_radix2_instance_f32 * S, uint16_t fftLen, uint8_t ifftFlag, uint8_t bitReverseFlag); /* Deprecated */ void arm_cfft_radix2_f32( const arm_cfft_radix2_instance_f32 * S, float32_t * pSrc); /** * @brief Instance structure for the floating-point CFFT/CIFFT function. */ typedef struct { uint16_t fftLen; /**< length of the FFT. */ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ float32_t *pTwiddle; /**< points to the Twiddle factor table. */ uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ float32_t onebyfftLen; /**< value of 1/fftLen. */ } arm_cfft_radix4_instance_f32; /* Deprecated */ arm_status arm_cfft_radix4_init_f32( arm_cfft_radix4_instance_f32 * S, uint16_t fftLen, uint8_t ifftFlag, uint8_t bitReverseFlag); /* Deprecated */ void arm_cfft_radix4_f32( const arm_cfft_radix4_instance_f32 * S, float32_t * pSrc); /** * @brief Instance structure for the fixed-point CFFT/CIFFT function. */ typedef struct { uint16_t fftLen; /**< length of the FFT. */ const q15_t *pTwiddle; /**< points to the Twiddle factor table. */ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t bitRevLength; /**< bit reversal table length. */ } arm_cfft_instance_q15; void arm_cfft_q15( const arm_cfft_instance_q15 * S, q15_t * p1, uint8_t ifftFlag, uint8_t bitReverseFlag); /** * @brief Instance structure for the fixed-point CFFT/CIFFT function. */ typedef struct { uint16_t fftLen; /**< length of the FFT. */ const q31_t *pTwiddle; /**< points to the Twiddle factor table. */ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t bitRevLength; /**< bit reversal table length. */ } arm_cfft_instance_q31; void arm_cfft_q31( const arm_cfft_instance_q31 * S, q31_t * p1, uint8_t ifftFlag, uint8_t bitReverseFlag); /** * @brief Instance structure for the floating-point CFFT/CIFFT function. */ typedef struct { uint16_t fftLen; /**< length of the FFT. */ const float32_t *pTwiddle; /**< points to the Twiddle factor table. */ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t bitRevLength; /**< bit reversal table length. */ } arm_cfft_instance_f32; void arm_cfft_f32( const arm_cfft_instance_f32 * S, float32_t * p1, uint8_t ifftFlag, uint8_t bitReverseFlag); /** * @brief Instance structure for the Q15 RFFT/RIFFT function. */ typedef struct { uint32_t fftLenReal; /**< length of the real FFT. */ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */ } arm_rfft_instance_q15; arm_status arm_rfft_init_q15( arm_rfft_instance_q15 * S, uint32_t fftLenReal, uint32_t ifftFlagR, uint32_t bitReverseFlag); void arm_rfft_q15( const arm_rfft_instance_q15 * S, q15_t * pSrc, q15_t * pDst); /** * @brief Instance structure for the Q31 RFFT/RIFFT function. */ typedef struct { uint32_t fftLenReal; /**< length of the real FFT. */ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */ } arm_rfft_instance_q31; arm_status arm_rfft_init_q31( arm_rfft_instance_q31 * S, uint32_t fftLenReal, uint32_t ifftFlagR, uint32_t bitReverseFlag); void arm_rfft_q31( const arm_rfft_instance_q31 * S, q31_t * pSrc, q31_t * pDst); /** * @brief Instance structure for the floating-point RFFT/RIFFT function. */ typedef struct { uint32_t fftLenReal; /**< length of the real FFT. */ uint16_t fftLenBy2; /**< length of the complex FFT. */ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ } arm_rfft_instance_f32; arm_status arm_rfft_init_f32( arm_rfft_instance_f32 * S, arm_cfft_radix4_instance_f32 * S_CFFT, uint32_t fftLenReal, uint32_t ifftFlagR, uint32_t bitReverseFlag); void arm_rfft_f32( const arm_rfft_instance_f32 * S, float32_t * pSrc, float32_t * pDst); /** * @brief Instance structure for the floating-point RFFT/RIFFT function. */ typedef struct { arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */ uint16_t fftLenRFFT; /**< length of the real sequence */ float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */ } arm_rfft_fast_instance_f32 ; arm_status arm_rfft_fast_init_f32 ( arm_rfft_fast_instance_f32 * S, uint16_t fftLen); void arm_rfft_fast_f32( arm_rfft_fast_instance_f32 * S, float32_t * p, float32_t * pOut, uint8_t ifftFlag); /** * @brief Instance structure for the floating-point DCT4/IDCT4 function. */ typedef struct { uint16_t N; /**< length of the DCT4. */ uint16_t Nby2; /**< half of the length of the DCT4. */ float32_t normalize; /**< normalizing factor. */ float32_t *pTwiddle; /**< points to the twiddle factor table. */ float32_t *pCosFactor; /**< points to the cosFactor table. */ arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */ arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ } arm_dct4_instance_f32; /** * @brief Initialization function for the floating-point DCT4/IDCT4. * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure. * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure. * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure. * @param[in] N length of the DCT4. * @param[in] Nby2 half of the length of the DCT4. * @param[in] normalize normalizing factor. * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length. */ arm_status arm_dct4_init_f32( arm_dct4_instance_f32 * S, arm_rfft_instance_f32 * S_RFFT, arm_cfft_radix4_instance_f32 * S_CFFT, uint16_t N, uint16_t Nby2, float32_t normalize); /** * @brief Processing function for the floating-point DCT4/IDCT4. * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure. * @param[in] pState points to state buffer. * @param[in,out] pInlineBuffer points to the in-place input and output buffer. */ void arm_dct4_f32( const arm_dct4_instance_f32 * S, float32_t * pState, float32_t * pInlineBuffer); /** * @brief Instance structure for the Q31 DCT4/IDCT4 function. */ typedef struct { uint16_t N; /**< length of the DCT4. */ uint16_t Nby2; /**< half of the length of the DCT4. */ q31_t normalize; /**< normalizing factor. */ q31_t *pTwiddle; /**< points to the twiddle factor table. */ q31_t *pCosFactor; /**< points to the cosFactor table. */ arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */ arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ } arm_dct4_instance_q31; /** * @brief Initialization function for the Q31 DCT4/IDCT4. * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure. * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure * @param[in] N length of the DCT4. * @param[in] Nby2 half of the length of the DCT4. * @param[in] normalize normalizing factor. * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. */ arm_status arm_dct4_init_q31( arm_dct4_instance_q31 * S, arm_rfft_instance_q31 * S_RFFT, arm_cfft_radix4_instance_q31 * S_CFFT, uint16_t N, uint16_t Nby2, q31_t normalize); /** * @brief Processing function for the Q31 DCT4/IDCT4. * @param[in] S points to an instance of the Q31 DCT4 structure. * @param[in] pState points to state buffer. * @param[in,out] pInlineBuffer points to the in-place input and output buffer. */ void arm_dct4_q31( const arm_dct4_instance_q31 * S, q31_t * pState, q31_t * pInlineBuffer); /** * @brief Instance structure for the Q15 DCT4/IDCT4 function. */ typedef struct { uint16_t N; /**< length of the DCT4. */ uint16_t Nby2; /**< half of the length of the DCT4. */ q15_t normalize; /**< normalizing factor. */ q15_t *pTwiddle; /**< points to the twiddle factor table. */ q15_t *pCosFactor; /**< points to the cosFactor table. */ arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */ arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ } arm_dct4_instance_q15; /** * @brief Initialization function for the Q15 DCT4/IDCT4. * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure. * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure. * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure. * @param[in] N length of the DCT4. * @param[in] Nby2 half of the length of the DCT4. * @param[in] normalize normalizing factor. * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. */ arm_status arm_dct4_init_q15( arm_dct4_instance_q15 * S, arm_rfft_instance_q15 * S_RFFT, arm_cfft_radix4_instance_q15 * S_CFFT, uint16_t N, uint16_t Nby2, q15_t normalize); /** * @brief Processing function for the Q15 DCT4/IDCT4. * @param[in] S points to an instance of the Q15 DCT4 structure. * @param[in] pState points to state buffer. * @param[in,out] pInlineBuffer points to the in-place input and output buffer. */ void arm_dct4_q15( const arm_dct4_instance_q15 * S, q15_t * pState, q15_t * pInlineBuffer); /** * @brief Floating-point vector addition. * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in each vector */ void arm_add_f32( float32_t * pSrcA, float32_t * pSrcB, float32_t * pDst, uint32_t blockSize); /** * @brief Q7 vector addition. * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in each vector */ void arm_add_q7( q7_t * pSrcA, q7_t * pSrcB, q7_t * pDst, uint32_t blockSize); /** * @brief Q15 vector addition. * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in each vector */ void arm_add_q15( q15_t * pSrcA, q15_t * pSrcB, q15_t * pDst, uint32_t blockSize); /** * @brief Q31 vector addition. * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in each vector */ void arm_add_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t blockSize); /** * @brief Floating-point vector subtraction. * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in each vector */ void arm_sub_f32( float32_t * pSrcA, float32_t * pSrcB, float32_t * pDst, uint32_t blockSize); /** * @brief Q7 vector subtraction. * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in each vector */ void arm_sub_q7( q7_t * pSrcA, q7_t * pSrcB, q7_t * pDst, uint32_t blockSize); /** * @brief Q15 vector subtraction. * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in each vector */ void arm_sub_q15( q15_t * pSrcA, q15_t * pSrcB, q15_t * pDst, uint32_t blockSize); /** * @brief Q31 vector subtraction. * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in each vector */ void arm_sub_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t blockSize); /** * @brief Multiplies a floating-point vector by a scalar. * @param[in] pSrc points to the input vector * @param[in] scale scale factor to be applied * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in the vector */ void arm_scale_f32( float32_t * pSrc, float32_t scale, float32_t * pDst, uint32_t blockSize); /** * @brief Multiplies a Q7 vector by a scalar. * @param[in] pSrc points to the input vector * @param[in] scaleFract fractional portion of the scale value * @param[in] shift number of bits to shift the result by * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in the vector */ void arm_scale_q7( q7_t * pSrc, q7_t scaleFract, int8_t shift, q7_t * pDst, uint32_t blockSize); /** * @brief Multiplies a Q15 vector by a scalar. * @param[in] pSrc points to the input vector * @param[in] scaleFract fractional portion of the scale value * @param[in] shift number of bits to shift the result by * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in the vector */ void arm_scale_q15( q15_t * pSrc, q15_t scaleFract, int8_t shift, q15_t * pDst, uint32_t blockSize); /** * @brief Multiplies a Q31 vector by a scalar. * @param[in] pSrc points to the input vector * @param[in] scaleFract fractional portion of the scale value * @param[in] shift number of bits to shift the result by * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in the vector */ void arm_scale_q31( q31_t * pSrc, q31_t scaleFract, int8_t shift, q31_t * pDst, uint32_t blockSize); /** * @brief Q7 vector absolute value. * @param[in] pSrc points to the input buffer * @param[out] pDst points to the output buffer * @param[in] blockSize number of samples in each vector */ void arm_abs_q7( q7_t * pSrc, q7_t * pDst, uint32_t blockSize); /** * @brief Floating-point vector absolute value. * @param[in] pSrc points to the input buffer * @param[out] pDst points to the output buffer * @param[in] blockSize number of samples in each vector */ void arm_abs_f32( float32_t * pSrc, float32_t * pDst, uint32_t blockSize); /** * @brief Q15 vector absolute value. * @param[in] pSrc points to the input buffer * @param[out] pDst points to the output buffer * @param[in] blockSize number of samples in each vector */ void arm_abs_q15( q15_t * pSrc, q15_t * pDst, uint32_t blockSize); /** * @brief Q31 vector absolute value. * @param[in] pSrc points to the input buffer * @param[out] pDst points to the output buffer * @param[in] blockSize number of samples in each vector */ void arm_abs_q31( q31_t * pSrc, q31_t * pDst, uint32_t blockSize); /** * @brief Dot product of floating-point vectors. * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[in] blockSize number of samples in each vector * @param[out] result output result returned here */ void arm_dot_prod_f32( float32_t * pSrcA, float32_t * pSrcB, uint32_t blockSize, float32_t * result); /** * @brief Dot product of Q7 vectors. * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[in] blockSize number of samples in each vector * @param[out] result output result returned here */ void arm_dot_prod_q7( q7_t * pSrcA, q7_t * pSrcB, uint32_t blockSize, q31_t * result); /** * @brief Dot product of Q15 vectors. * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[in] blockSize number of samples in each vector * @param[out] result output result returned here */ void arm_dot_prod_q15( q15_t * pSrcA, q15_t * pSrcB, uint32_t blockSize, q63_t * result); /** * @brief Dot product of Q31 vectors. * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[in] blockSize number of samples in each vector * @param[out] result output result returned here */ void arm_dot_prod_q31( q31_t * pSrcA, q31_t * pSrcB, uint32_t blockSize, q63_t * result); /** * @brief Shifts the elements of a Q7 vector a specified number of bits. * @param[in] pSrc points to the input vector * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in the vector */ void arm_shift_q7( q7_t * pSrc, int8_t shiftBits, q7_t * pDst, uint32_t blockSize); /** * @brief Shifts the elements of a Q15 vector a specified number of bits. * @param[in] pSrc points to the input vector * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in the vector */ void arm_shift_q15( q15_t * pSrc, int8_t shiftBits, q15_t * pDst, uint32_t blockSize); /** * @brief Shifts the elements of a Q31 vector a specified number of bits. * @param[in] pSrc points to the input vector * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in the vector */ void arm_shift_q31( q31_t * pSrc, int8_t shiftBits, q31_t * pDst, uint32_t blockSize); /** * @brief Adds a constant offset to a floating-point vector. * @param[in] pSrc points to the input vector * @param[in] offset is the offset to be added * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in the vector */ void arm_offset_f32( float32_t * pSrc, float32_t offset, float32_t * pDst, uint32_t blockSize); /** * @brief Adds a constant offset to a Q7 vector. * @param[in] pSrc points to the input vector * @param[in] offset is the offset to be added * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in the vector */ void arm_offset_q7( q7_t * pSrc, q7_t offset, q7_t * pDst, uint32_t blockSize); /** * @brief Adds a constant offset to a Q15 vector. * @param[in] pSrc points to the input vector * @param[in] offset is the offset to be added * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in the vector */ void arm_offset_q15( q15_t * pSrc, q15_t offset, q15_t * pDst, uint32_t blockSize); /** * @brief Adds a constant offset to a Q31 vector. * @param[in] pSrc points to the input vector * @param[in] offset is the offset to be added * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in the vector */ void arm_offset_q31( q31_t * pSrc, q31_t offset, q31_t * pDst, uint32_t blockSize); /** * @brief Negates the elements of a floating-point vector. * @param[in] pSrc points to the input vector * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in the vector */ void arm_negate_f32( float32_t * pSrc, float32_t * pDst, uint32_t blockSize); /** * @brief Negates the elements of a Q7 vector. * @param[in] pSrc points to the input vector * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in the vector */ void arm_negate_q7( q7_t * pSrc, q7_t * pDst, uint32_t blockSize); /** * @brief Negates the elements of a Q15 vector. * @param[in] pSrc points to the input vector * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in the vector */ void arm_negate_q15( q15_t * pSrc, q15_t * pDst, uint32_t blockSize); /** * @brief Negates the elements of a Q31 vector. * @param[in] pSrc points to the input vector * @param[out] pDst points to the output vector * @param[in] blockSize number of samples in the vector */ void arm_negate_q31( q31_t * pSrc, q31_t * pDst, uint32_t blockSize); /** * @brief Copies the elements of a floating-point vector. * @param[in] pSrc input pointer * @param[out] pDst output pointer * @param[in] blockSize number of samples to process */ void arm_copy_f32( float32_t * pSrc, float32_t * pDst, uint32_t blockSize); /** * @brief Copies the elements of a Q7 vector. * @param[in] pSrc input pointer * @param[out] pDst output pointer * @param[in] blockSize number of samples to process */ void arm_copy_q7( q7_t * pSrc, q7_t * pDst, uint32_t blockSize); /** * @brief Copies the elements of a Q15 vector. * @param[in] pSrc input pointer * @param[out] pDst output pointer * @param[in] blockSize number of samples to process */ void arm_copy_q15( q15_t * pSrc, q15_t * pDst, uint32_t blockSize); /** * @brief Copies the elements of a Q31 vector. * @param[in] pSrc input pointer * @param[out] pDst output pointer * @param[in] blockSize number of samples to process */ void arm_copy_q31( q31_t * pSrc, q31_t * pDst, uint32_t blockSize); /** * @brief Fills a constant value into a floating-point vector. * @param[in] value input value to be filled * @param[out] pDst output pointer * @param[in] blockSize number of samples to process */ void arm_fill_f32( float32_t value, float32_t * pDst, uint32_t blockSize); /** * @brief Fills a constant value into a Q7 vector. * @param[in] value input value to be filled * @param[out] pDst output pointer * @param[in] blockSize number of samples to process */ void arm_fill_q7( q7_t value, q7_t * pDst, uint32_t blockSize); /** * @brief Fills a constant value into a Q15 vector. * @param[in] value input value to be filled * @param[out] pDst output pointer * @param[in] blockSize number of samples to process */ void arm_fill_q15( q15_t value, q15_t * pDst, uint32_t blockSize); /** * @brief Fills a constant value into a Q31 vector. * @param[in] value input value to be filled * @param[out] pDst output pointer * @param[in] blockSize number of samples to process */ void arm_fill_q31( q31_t value, q31_t * pDst, uint32_t blockSize); /** * @brief Convolution of floating-point sequences. * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. */ void arm_conv_f32( float32_t * pSrcA, uint32_t srcALen, float32_t * pSrcB, uint32_t srcBLen, float32_t * pDst); /** * @brief Convolution of Q15 sequences. * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). */ void arm_conv_opt_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, q15_t * pScratch1, q15_t * pScratch2); /** * @brief Convolution of Q15 sequences. * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. */ void arm_conv_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst); /** * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. */ void arm_conv_fast_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst); /** * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). */ void arm_conv_fast_opt_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, q15_t * pScratch1, q15_t * pScratch2); /** * @brief Convolution of Q31 sequences. * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. */ void arm_conv_q31( q31_t * pSrcA, uint32_t srcALen, q31_t * pSrcB, uint32_t srcBLen, q31_t * pDst); /** * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. */ void arm_conv_fast_q31( q31_t * pSrcA, uint32_t srcALen, q31_t * pSrcB, uint32_t srcBLen, q31_t * pDst); /** * @brief Convolution of Q7 sequences. * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). */ void arm_conv_opt_q7( q7_t * pSrcA, uint32_t srcALen, q7_t * pSrcB, uint32_t srcBLen, q7_t * pDst, q15_t * pScratch1, q15_t * pScratch2); /** * @brief Convolution of Q7 sequences. * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. */ void arm_conv_q7( q7_t * pSrcA, uint32_t srcALen, q7_t * pSrcB, uint32_t srcBLen, q7_t * pDst); /** * @brief Partial convolution of floating-point sequences. * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data * @param[in] firstIndex is the first output sample to start with. * @param[in] numPoints is the number of output points to be computed. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ arm_status arm_conv_partial_f32( float32_t * pSrcA, uint32_t srcALen, float32_t * pSrcB, uint32_t srcBLen, float32_t * pDst, uint32_t firstIndex, uint32_t numPoints); /** * @brief Partial convolution of Q15 sequences. * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data * @param[in] firstIndex is the first output sample to start with. * @param[in] numPoints is the number of output points to be computed. * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ arm_status arm_conv_partial_opt_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, uint32_t firstIndex, uint32_t numPoints, q15_t * pScratch1, q15_t * pScratch2); /** * @brief Partial convolution of Q15 sequences. * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data * @param[in] firstIndex is the first output sample to start with. * @param[in] numPoints is the number of output points to be computed. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ arm_status arm_conv_partial_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, uint32_t firstIndex, uint32_t numPoints); /** * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data * @param[in] firstIndex is the first output sample to start with. * @param[in] numPoints is the number of output points to be computed. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ arm_status arm_conv_partial_fast_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, uint32_t firstIndex, uint32_t numPoints); /** * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data * @param[in] firstIndex is the first output sample to start with. * @param[in] numPoints is the number of output points to be computed. * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ arm_status arm_conv_partial_fast_opt_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, uint32_t firstIndex, uint32_t numPoints, q15_t * pScratch1, q15_t * pScratch2); /** * @brief Partial convolution of Q31 sequences. * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data * @param[in] firstIndex is the first output sample to start with. * @param[in] numPoints is the number of output points to be computed. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ arm_status arm_conv_partial_q31( q31_t * pSrcA, uint32_t srcALen, q31_t * pSrcB, uint32_t srcBLen, q31_t * pDst, uint32_t firstIndex, uint32_t numPoints); /** * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data * @param[in] firstIndex is the first output sample to start with. * @param[in] numPoints is the number of output points to be computed. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ arm_status arm_conv_partial_fast_q31( q31_t * pSrcA, uint32_t srcALen, q31_t * pSrcB, uint32_t srcBLen, q31_t * pDst, uint32_t firstIndex, uint32_t numPoints); /** * @brief Partial convolution of Q7 sequences * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data * @param[in] firstIndex is the first output sample to start with. * @param[in] numPoints is the number of output points to be computed. * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ arm_status arm_conv_partial_opt_q7( q7_t * pSrcA, uint32_t srcALen, q7_t * pSrcB, uint32_t srcBLen, q7_t * pDst, uint32_t firstIndex, uint32_t numPoints, q15_t * pScratch1, q15_t * pScratch2); /** * @brief Partial convolution of Q7 sequences. * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data * @param[in] firstIndex is the first output sample to start with. * @param[in] numPoints is the number of output points to be computed. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ arm_status arm_conv_partial_q7( q7_t * pSrcA, uint32_t srcALen, q7_t * pSrcB, uint32_t srcBLen, q7_t * pDst, uint32_t firstIndex, uint32_t numPoints); /** * @brief Instance structure for the Q15 FIR decimator. */ typedef struct { uint8_t M; /**< decimation factor. */ uint16_t numTaps; /**< number of coefficients in the filter. */ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ } arm_fir_decimate_instance_q15; /** * @brief Instance structure for the Q31 FIR decimator. */ typedef struct { uint8_t M; /**< decimation factor. */ uint16_t numTaps; /**< number of coefficients in the filter. */ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ } arm_fir_decimate_instance_q31; /** * @brief Instance structure for the floating-point FIR decimator. */ typedef struct { uint8_t M; /**< decimation factor. */ uint16_t numTaps; /**< number of coefficients in the filter. */ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ } arm_fir_decimate_instance_f32; /** * @brief Processing function for the floating-point FIR decimator. * @param[in] S points to an instance of the floating-point FIR decimator structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data * @param[in] blockSize number of input samples to process per call. */ void arm_fir_decimate_f32( const arm_fir_decimate_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); /** * @brief Initialization function for the floating-point FIR decimator. * @param[in,out] S points to an instance of the floating-point FIR decimator structure. * @param[in] numTaps number of coefficients in the filter. * @param[in] M decimation factor. * @param[in] pCoeffs points to the filter coefficients. * @param[in] pState points to the state buffer. * @param[in] blockSize number of input samples to process per call. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if * <code>blockSize</code> is not a multiple of <code>M</code>. */ arm_status arm_fir_decimate_init_f32( arm_fir_decimate_instance_f32 * S, uint16_t numTaps, uint8_t M, float32_t * pCoeffs, float32_t * pState, uint32_t blockSize); /** * @brief Processing function for the Q15 FIR decimator. * @param[in] S points to an instance of the Q15 FIR decimator structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data * @param[in] blockSize number of input samples to process per call. */ void arm_fir_decimate_q15( const arm_fir_decimate_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); /** * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. * @param[in] S points to an instance of the Q15 FIR decimator structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data * @param[in] blockSize number of input samples to process per call. */ void arm_fir_decimate_fast_q15( const arm_fir_decimate_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); /** * @brief Initialization function for the Q15 FIR decimator. * @param[in,out] S points to an instance of the Q15 FIR decimator structure. * @param[in] numTaps number of coefficients in the filter. * @param[in] M decimation factor. * @param[in] pCoeffs points to the filter coefficients. * @param[in] pState points to the state buffer. * @param[in] blockSize number of input samples to process per call. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if * <code>blockSize</code> is not a multiple of <code>M</code>. */ arm_status arm_fir_decimate_init_q15( arm_fir_decimate_instance_q15 * S, uint16_t numTaps, uint8_t M, q15_t * pCoeffs, q15_t * pState, uint32_t blockSize); /** * @brief Processing function for the Q31 FIR decimator. * @param[in] S points to an instance of the Q31 FIR decimator structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data * @param[in] blockSize number of input samples to process per call. */ void arm_fir_decimate_q31( const arm_fir_decimate_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); /** * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. * @param[in] S points to an instance of the Q31 FIR decimator structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data * @param[in] blockSize number of input samples to process per call. */ void arm_fir_decimate_fast_q31( arm_fir_decimate_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); /** * @brief Initialization function for the Q31 FIR decimator. * @param[in,out] S points to an instance of the Q31 FIR decimator structure. * @param[in] numTaps number of coefficients in the filter. * @param[in] M decimation factor. * @param[in] pCoeffs points to the filter coefficients. * @param[in] pState points to the state buffer. * @param[in] blockSize number of input samples to process per call. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if * <code>blockSize</code> is not a multiple of <code>M</code>. */ arm_status arm_fir_decimate_init_q31( arm_fir_decimate_instance_q31 * S, uint16_t numTaps, uint8_t M, q31_t * pCoeffs, q31_t * pState, uint32_t blockSize); /** * @brief Instance structure for the Q15 FIR interpolator. */ typedef struct { uint8_t L; /**< upsample factor. */ uint16_t phaseLength; /**< length of each polyphase filter component. */ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ } arm_fir_interpolate_instance_q15; /** * @brief Instance structure for the Q31 FIR interpolator. */ typedef struct { uint8_t L; /**< upsample factor. */ uint16_t phaseLength; /**< length of each polyphase filter component. */ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ } arm_fir_interpolate_instance_q31; /** * @brief Instance structure for the floating-point FIR interpolator. */ typedef struct { uint8_t L; /**< upsample factor. */ uint16_t phaseLength; /**< length of each polyphase filter component. */ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ } arm_fir_interpolate_instance_f32; /** * @brief Processing function for the Q15 FIR interpolator. * @param[in] S points to an instance of the Q15 FIR interpolator structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data. * @param[in] blockSize number of input samples to process per call. */ void arm_fir_interpolate_q15( const arm_fir_interpolate_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); /** * @brief Initialization function for the Q15 FIR interpolator. * @param[in,out] S points to an instance of the Q15 FIR interpolator structure. * @param[in] L upsample factor. * @param[in] numTaps number of filter coefficients in the filter. * @param[in] pCoeffs points to the filter coefficient buffer. * @param[in] pState points to the state buffer. * @param[in] blockSize number of input samples to process per call. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. */ arm_status arm_fir_interpolate_init_q15( arm_fir_interpolate_instance_q15 * S, uint8_t L, uint16_t numTaps, q15_t * pCoeffs, q15_t * pState, uint32_t blockSize); /** * @brief Processing function for the Q31 FIR interpolator. * @param[in] S points to an instance of the Q15 FIR interpolator structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data. * @param[in] blockSize number of input samples to process per call. */ void arm_fir_interpolate_q31( const arm_fir_interpolate_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); /** * @brief Initialization function for the Q31 FIR interpolator. * @param[in,out] S points to an instance of the Q31 FIR interpolator structure. * @param[in] L upsample factor. * @param[in] numTaps number of filter coefficients in the filter. * @param[in] pCoeffs points to the filter coefficient buffer. * @param[in] pState points to the state buffer. * @param[in] blockSize number of input samples to process per call. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. */ arm_status arm_fir_interpolate_init_q31( arm_fir_interpolate_instance_q31 * S, uint8_t L, uint16_t numTaps, q31_t * pCoeffs, q31_t * pState, uint32_t blockSize); /** * @brief Processing function for the floating-point FIR interpolator. * @param[in] S points to an instance of the floating-point FIR interpolator structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data. * @param[in] blockSize number of input samples to process per call. */ void arm_fir_interpolate_f32( const arm_fir_interpolate_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); /** * @brief Initialization function for the floating-point FIR interpolator. * @param[in,out] S points to an instance of the floating-point FIR interpolator structure. * @param[in] L upsample factor. * @param[in] numTaps number of filter coefficients in the filter. * @param[in] pCoeffs points to the filter coefficient buffer. * @param[in] pState points to the state buffer. * @param[in] blockSize number of input samples to process per call. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. */ arm_status arm_fir_interpolate_init_f32( arm_fir_interpolate_instance_f32 * S, uint8_t L, uint16_t numTaps, float32_t * pCoeffs, float32_t * pState, uint32_t blockSize); /** * @brief Instance structure for the high precision Q31 Biquad cascade filter. */ typedef struct { uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */ } arm_biquad_cas_df1_32x64_ins_q31; /** * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data * @param[in] blockSize number of samples to process. */ void arm_biquad_cas_df1_32x64_q31( const arm_biquad_cas_df1_32x64_ins_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); /** * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure. * @param[in] numStages number of 2nd order stages in the filter. * @param[in] pCoeffs points to the filter coefficients. * @param[in] pState points to the state buffer. * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format */ void arm_biquad_cas_df1_32x64_init_q31( arm_biquad_cas_df1_32x64_ins_q31 * S, uint8_t numStages, q31_t * pCoeffs, q63_t * pState, uint8_t postShift); /** * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. */ typedef struct { uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ } arm_biquad_cascade_df2T_instance_f32; /** * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. */ typedef struct { uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ } arm_biquad_cascade_stereo_df2T_instance_f32; /** * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. */ typedef struct { uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ } arm_biquad_cascade_df2T_instance_f64; /** * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. * @param[in] S points to an instance of the filter data structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data * @param[in] blockSize number of samples to process. */ void arm_biquad_cascade_df2T_f32( const arm_biquad_cascade_df2T_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); /** * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels * @param[in] S points to an instance of the filter data structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data * @param[in] blockSize number of samples to process. */ void arm_biquad_cascade_stereo_df2T_f32( const arm_biquad_cascade_stereo_df2T_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); /** * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. * @param[in] S points to an instance of the filter data structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data * @param[in] blockSize number of samples to process. */ void arm_biquad_cascade_df2T_f64( const arm_biquad_cascade_df2T_instance_f64 * S, float64_t * pSrc, float64_t * pDst, uint32_t blockSize); /** * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. * @param[in,out] S points to an instance of the filter data structure. * @param[in] numStages number of 2nd order stages in the filter. * @param[in] pCoeffs points to the filter coefficients. * @param[in] pState points to the state buffer. */ void arm_biquad_cascade_df2T_init_f32( arm_biquad_cascade_df2T_instance_f32 * S, uint8_t numStages, float32_t * pCoeffs, float32_t * pState); /** * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. * @param[in,out] S points to an instance of the filter data structure. * @param[in] numStages number of 2nd order stages in the filter. * @param[in] pCoeffs points to the filter coefficients. * @param[in] pState points to the state buffer. */ void arm_biquad_cascade_stereo_df2T_init_f32( arm_biquad_cascade_stereo_df2T_instance_f32 * S, uint8_t numStages, float32_t * pCoeffs, float32_t * pState); /** * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. * @param[in,out] S points to an instance of the filter data structure. * @param[in] numStages number of 2nd order stages in the filter. * @param[in] pCoeffs points to the filter coefficients. * @param[in] pState points to the state buffer. */ void arm_biquad_cascade_df2T_init_f64( arm_biquad_cascade_df2T_instance_f64 * S, uint8_t numStages, float64_t * pCoeffs, float64_t * pState); /** * @brief Instance structure for the Q15 FIR lattice filter. */ typedef struct { uint16_t numStages; /**< number of filter stages. */ q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ } arm_fir_lattice_instance_q15; /** * @brief Instance structure for the Q31 FIR lattice filter. */ typedef struct { uint16_t numStages; /**< number of filter stages. */ q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ } arm_fir_lattice_instance_q31; /** * @brief Instance structure for the floating-point FIR lattice filter. */ typedef struct { uint16_t numStages; /**< number of filter stages. */ float32_t *pState; /**< points to the state variable array. The array is of length numStages. */ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ } arm_fir_lattice_instance_f32; /** * @brief Initialization function for the Q15 FIR lattice filter. * @param[in] S points to an instance of the Q15 FIR lattice structure. * @param[in] numStages number of filter stages. * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. * @param[in] pState points to the state buffer. The array is of length numStages. */ void arm_fir_lattice_init_q15( arm_fir_lattice_instance_q15 * S, uint16_t numStages, q15_t * pCoeffs, q15_t * pState); /** * @brief Processing function for the Q15 FIR lattice filter. * @param[in] S points to an instance of the Q15 FIR lattice structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. */ void arm_fir_lattice_q15( const arm_fir_lattice_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); /** * @brief Initialization function for the Q31 FIR lattice filter. * @param[in] S points to an instance of the Q31 FIR lattice structure. * @param[in] numStages number of filter stages. * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. * @param[in] pState points to the state buffer. The array is of length numStages. */ void arm_fir_lattice_init_q31( arm_fir_lattice_instance_q31 * S, uint16_t numStages, q31_t * pCoeffs, q31_t * pState); /** * @brief Processing function for the Q31 FIR lattice filter. * @param[in] S points to an instance of the Q31 FIR lattice structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data * @param[in] blockSize number of samples to process. */ void arm_fir_lattice_q31( const arm_fir_lattice_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); /** * @brief Initialization function for the floating-point FIR lattice filter. * @param[in] S points to an instance of the floating-point FIR lattice structure. * @param[in] numStages number of filter stages. * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. * @param[in] pState points to the state buffer. The array is of length numStages. */ void arm_fir_lattice_init_f32( arm_fir_lattice_instance_f32 * S, uint16_t numStages, float32_t * pCoeffs, float32_t * pState); /** * @brief Processing function for the floating-point FIR lattice filter. * @param[in] S points to an instance of the floating-point FIR lattice structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data * @param[in] blockSize number of samples to process. */ void arm_fir_lattice_f32( const arm_fir_lattice_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); /** * @brief Instance structure for the Q15 IIR lattice filter. */ typedef struct { uint16_t numStages; /**< number of stages in the filter. */ q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ } arm_iir_lattice_instance_q15; /** * @brief Instance structure for the Q31 IIR lattice filter. */ typedef struct { uint16_t numStages; /**< number of stages in the filter. */ q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ } arm_iir_lattice_instance_q31; /** * @brief Instance structure for the floating-point IIR lattice filter. */ typedef struct { uint16_t numStages; /**< number of stages in the filter. */ float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ } arm_iir_lattice_instance_f32; /** * @brief Processing function for the floating-point IIR lattice filter. * @param[in] S points to an instance of the floating-point IIR lattice structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. */ void arm_iir_lattice_f32( const arm_iir_lattice_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); /** * @brief Initialization function for the floating-point IIR lattice filter. * @param[in] S points to an instance of the floating-point IIR lattice structure. * @param[in] numStages number of stages in the filter. * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1. * @param[in] blockSize number of samples to process. */ void arm_iir_lattice_init_f32( arm_iir_lattice_instance_f32 * S, uint16_t numStages, float32_t * pkCoeffs, float32_t * pvCoeffs, float32_t * pState, uint32_t blockSize); /** * @brief Processing function for the Q31 IIR lattice filter. * @param[in] S points to an instance of the Q31 IIR lattice structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. */ void arm_iir_lattice_q31( const arm_iir_lattice_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); /** * @brief Initialization function for the Q31 IIR lattice filter. * @param[in] S points to an instance of the Q31 IIR lattice structure. * @param[in] numStages number of stages in the filter. * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. * @param[in] pState points to the state buffer. The array is of length numStages+blockSize. * @param[in] blockSize number of samples to process. */ void arm_iir_lattice_init_q31( arm_iir_lattice_instance_q31 * S, uint16_t numStages, q31_t * pkCoeffs, q31_t * pvCoeffs, q31_t * pState, uint32_t blockSize); /** * @brief Processing function for the Q15 IIR lattice filter. * @param[in] S points to an instance of the Q15 IIR lattice structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. */ void arm_iir_lattice_q15( const arm_iir_lattice_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); /** * @brief Initialization function for the Q15 IIR lattice filter. * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure. * @param[in] numStages number of stages in the filter. * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages. * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1. * @param[in] pState points to state buffer. The array is of length numStages+blockSize. * @param[in] blockSize number of samples to process per call. */ void arm_iir_lattice_init_q15( arm_iir_lattice_instance_q15 * S, uint16_t numStages, q15_t * pkCoeffs, q15_t * pvCoeffs, q15_t * pState, uint32_t blockSize); /** * @brief Instance structure for the floating-point LMS filter. */ typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ float32_t mu; /**< step size that controls filter coefficient updates. */ } arm_lms_instance_f32; /** * @brief Processing function for floating-point LMS filter. * @param[in] S points to an instance of the floating-point LMS filter structure. * @param[in] pSrc points to the block of input data. * @param[in] pRef points to the block of reference data. * @param[out] pOut points to the block of output data. * @param[out] pErr points to the block of error data. * @param[in] blockSize number of samples to process. */ void arm_lms_f32( const arm_lms_instance_f32 * S, float32_t * pSrc, float32_t * pRef, float32_t * pOut, float32_t * pErr, uint32_t blockSize); /** * @brief Initialization function for floating-point LMS filter. * @param[in] S points to an instance of the floating-point LMS filter structure. * @param[in] numTaps number of filter coefficients. * @param[in] pCoeffs points to the coefficient buffer. * @param[in] pState points to state buffer. * @param[in] mu step size that controls filter coefficient updates. * @param[in] blockSize number of samples to process. */ void arm_lms_init_f32( arm_lms_instance_f32 * S, uint16_t numTaps, float32_t * pCoeffs, float32_t * pState, float32_t mu, uint32_t blockSize); /** * @brief Instance structure for the Q15 LMS filter. */ typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ q15_t mu; /**< step size that controls filter coefficient updates. */ uint32_t postShift; /**< bit shift applied to coefficients. */ } arm_lms_instance_q15; /** * @brief Initialization function for the Q15 LMS filter. * @param[in] S points to an instance of the Q15 LMS filter structure. * @param[in] numTaps number of filter coefficients. * @param[in] pCoeffs points to the coefficient buffer. * @param[in] pState points to the state buffer. * @param[in] mu step size that controls filter coefficient updates. * @param[in] blockSize number of samples to process. * @param[in] postShift bit shift applied to coefficients. */ void arm_lms_init_q15( arm_lms_instance_q15 * S, uint16_t numTaps, q15_t * pCoeffs, q15_t * pState, q15_t mu, uint32_t blockSize, uint32_t postShift); /** * @brief Processing function for Q15 LMS filter. * @param[in] S points to an instance of the Q15 LMS filter structure. * @param[in] pSrc points to the block of input data. * @param[in] pRef points to the block of reference data. * @param[out] pOut points to the block of output data. * @param[out] pErr points to the block of error data. * @param[in] blockSize number of samples to process. */ void arm_lms_q15( const arm_lms_instance_q15 * S, q15_t * pSrc, q15_t * pRef, q15_t * pOut, q15_t * pErr, uint32_t blockSize); /** * @brief Instance structure for the Q31 LMS filter. */ typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ q31_t mu; /**< step size that controls filter coefficient updates. */ uint32_t postShift; /**< bit shift applied to coefficients. */ } arm_lms_instance_q31; /** * @brief Processing function for Q31 LMS filter. * @param[in] S points to an instance of the Q15 LMS filter structure. * @param[in] pSrc points to the block of input data. * @param[in] pRef points to the block of reference data. * @param[out] pOut points to the block of output data. * @param[out] pErr points to the block of error data. * @param[in] blockSize number of samples to process. */ void arm_lms_q31( const arm_lms_instance_q31 * S, q31_t * pSrc, q31_t * pRef, q31_t * pOut, q31_t * pErr, uint32_t blockSize); /** * @brief Initialization function for Q31 LMS filter. * @param[in] S points to an instance of the Q31 LMS filter structure. * @param[in] numTaps number of filter coefficients. * @param[in] pCoeffs points to coefficient buffer. * @param[in] pState points to state buffer. * @param[in] mu step size that controls filter coefficient updates. * @param[in] blockSize number of samples to process. * @param[in] postShift bit shift applied to coefficients. */ void arm_lms_init_q31( arm_lms_instance_q31 * S, uint16_t numTaps, q31_t * pCoeffs, q31_t * pState, q31_t mu, uint32_t blockSize, uint32_t postShift); /** * @brief Instance structure for the floating-point normalized LMS filter. */ typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ float32_t mu; /**< step size that control filter coefficient updates. */ float32_t energy; /**< saves previous frame energy. */ float32_t x0; /**< saves previous input sample. */ } arm_lms_norm_instance_f32; /** * @brief Processing function for floating-point normalized LMS filter. * @param[in] S points to an instance of the floating-point normalized LMS filter structure. * @param[in] pSrc points to the block of input data. * @param[in] pRef points to the block of reference data. * @param[out] pOut points to the block of output data. * @param[out] pErr points to the block of error data. * @param[in] blockSize number of samples to process. */ void arm_lms_norm_f32( arm_lms_norm_instance_f32 * S, float32_t * pSrc, float32_t * pRef, float32_t * pOut, float32_t * pErr, uint32_t blockSize); /** * @brief Initialization function for floating-point normalized LMS filter. * @param[in] S points to an instance of the floating-point LMS filter structure. * @param[in] numTaps number of filter coefficients. * @param[in] pCoeffs points to coefficient buffer. * @param[in] pState points to state buffer. * @param[in] mu step size that controls filter coefficient updates. * @param[in] blockSize number of samples to process. */ void arm_lms_norm_init_f32( arm_lms_norm_instance_f32 * S, uint16_t numTaps, float32_t * pCoeffs, float32_t * pState, float32_t mu, uint32_t blockSize); /** * @brief Instance structure for the Q31 normalized LMS filter. */ typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ q31_t mu; /**< step size that controls filter coefficient updates. */ uint8_t postShift; /**< bit shift applied to coefficients. */ q31_t *recipTable; /**< points to the reciprocal initial value table. */ q31_t energy; /**< saves previous frame energy. */ q31_t x0; /**< saves previous input sample. */ } arm_lms_norm_instance_q31; /** * @brief Processing function for Q31 normalized LMS filter. * @param[in] S points to an instance of the Q31 normalized LMS filter structure. * @param[in] pSrc points to the block of input data. * @param[in] pRef points to the block of reference data. * @param[out] pOut points to the block of output data. * @param[out] pErr points to the block of error data. * @param[in] blockSize number of samples to process. */ void arm_lms_norm_q31( arm_lms_norm_instance_q31 * S, q31_t * pSrc, q31_t * pRef, q31_t * pOut, q31_t * pErr, uint32_t blockSize); /** * @brief Initialization function for Q31 normalized LMS filter. * @param[in] S points to an instance of the Q31 normalized LMS filter structure. * @param[in] numTaps number of filter coefficients. * @param[in] pCoeffs points to coefficient buffer. * @param[in] pState points to state buffer. * @param[in] mu step size that controls filter coefficient updates. * @param[in] blockSize number of samples to process. * @param[in] postShift bit shift applied to coefficients. */ void arm_lms_norm_init_q31( arm_lms_norm_instance_q31 * S, uint16_t numTaps, q31_t * pCoeffs, q31_t * pState, q31_t mu, uint32_t blockSize, uint8_t postShift); /** * @brief Instance structure for the Q15 normalized LMS filter. */ typedef struct { uint16_t numTaps; /**< Number of coefficients in the filter. */ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ q15_t mu; /**< step size that controls filter coefficient updates. */ uint8_t postShift; /**< bit shift applied to coefficients. */ q15_t *recipTable; /**< Points to the reciprocal initial value table. */ q15_t energy; /**< saves previous frame energy. */ q15_t x0; /**< saves previous input sample. */ } arm_lms_norm_instance_q15; /** * @brief Processing function for Q15 normalized LMS filter. * @param[in] S points to an instance of the Q15 normalized LMS filter structure. * @param[in] pSrc points to the block of input data. * @param[in] pRef points to the block of reference data. * @param[out] pOut points to the block of output data. * @param[out] pErr points to the block of error data. * @param[in] blockSize number of samples to process. */ void arm_lms_norm_q15( arm_lms_norm_instance_q15 * S, q15_t * pSrc, q15_t * pRef, q15_t * pOut, q15_t * pErr, uint32_t blockSize); /** * @brief Initialization function for Q15 normalized LMS filter. * @param[in] S points to an instance of the Q15 normalized LMS filter structure. * @param[in] numTaps number of filter coefficients. * @param[in] pCoeffs points to coefficient buffer. * @param[in] pState points to state buffer. * @param[in] mu step size that controls filter coefficient updates. * @param[in] blockSize number of samples to process. * @param[in] postShift bit shift applied to coefficients. */ void arm_lms_norm_init_q15( arm_lms_norm_instance_q15 * S, uint16_t numTaps, q15_t * pCoeffs, q15_t * pState, q15_t mu, uint32_t blockSize, uint8_t postShift); /** * @brief Correlation of floating-point sequences. * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. */ void arm_correlate_f32( float32_t * pSrcA, uint32_t srcALen, float32_t * pSrcB, uint32_t srcBLen, float32_t * pDst); /** * @brief Correlation of Q15 sequences * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. */ void arm_correlate_opt_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, q15_t * pScratch); /** * @brief Correlation of Q15 sequences. * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. */ void arm_correlate_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst); /** * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. */ void arm_correlate_fast_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst); /** * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. */ void arm_correlate_fast_opt_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, q15_t * pScratch); /** * @brief Correlation of Q31 sequences. * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. */ void arm_correlate_q31( q31_t * pSrcA, uint32_t srcALen, q31_t * pSrcB, uint32_t srcBLen, q31_t * pDst); /** * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. */ void arm_correlate_fast_q31( q31_t * pSrcA, uint32_t srcALen, q31_t * pSrcB, uint32_t srcBLen, q31_t * pDst); /** * @brief Correlation of Q7 sequences. * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). */ void arm_correlate_opt_q7( q7_t * pSrcA, uint32_t srcALen, q7_t * pSrcB, uint32_t srcBLen, q7_t * pDst, q15_t * pScratch1, q15_t * pScratch2); /** * @brief Correlation of Q7 sequences. * @param[in] pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. */ void arm_correlate_q7( q7_t * pSrcA, uint32_t srcALen, q7_t * pSrcB, uint32_t srcBLen, q7_t * pDst); /** * @brief Instance structure for the floating-point sparse FIR filter. */ typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ } arm_fir_sparse_instance_f32; /** * @brief Instance structure for the Q31 sparse FIR filter. */ typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ } arm_fir_sparse_instance_q31; /** * @brief Instance structure for the Q15 sparse FIR filter. */ typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ } arm_fir_sparse_instance_q15; /** * @brief Instance structure for the Q7 sparse FIR filter. */ typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ } arm_fir_sparse_instance_q7; /** * @brief Processing function for the floating-point sparse FIR filter. * @param[in] S points to an instance of the floating-point sparse FIR structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data * @param[in] pScratchIn points to a temporary buffer of size blockSize. * @param[in] blockSize number of input samples to process per call. */ void arm_fir_sparse_f32( arm_fir_sparse_instance_f32 * S, float32_t * pSrc, float32_t * pDst, float32_t * pScratchIn, uint32_t blockSize); /** * @brief Initialization function for the floating-point sparse FIR filter. * @param[in,out] S points to an instance of the floating-point sparse FIR structure. * @param[in] numTaps number of nonzero coefficients in the filter. * @param[in] pCoeffs points to the array of filter coefficients. * @param[in] pState points to the state buffer. * @param[in] pTapDelay points to the array of offset times. * @param[in] maxDelay maximum offset time supported. * @param[in] blockSize number of samples that will be processed per block. */ void arm_fir_sparse_init_f32( arm_fir_sparse_instance_f32 * S, uint16_t numTaps, float32_t * pCoeffs, float32_t * pState, int32_t * pTapDelay, uint16_t maxDelay, uint32_t blockSize); /** * @brief Processing function for the Q31 sparse FIR filter. * @param[in] S points to an instance of the Q31 sparse FIR structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data * @param[in] pScratchIn points to a temporary buffer of size blockSize. * @param[in] blockSize number of input samples to process per call. */ void arm_fir_sparse_q31( arm_fir_sparse_instance_q31 * S, q31_t * pSrc, q31_t * pDst, q31_t * pScratchIn, uint32_t blockSize); /** * @brief Initialization function for the Q31 sparse FIR filter. * @param[in,out] S points to an instance of the Q31 sparse FIR structure. * @param[in] numTaps number of nonzero coefficients in the filter. * @param[in] pCoeffs points to the array of filter coefficients. * @param[in] pState points to the state buffer. * @param[in] pTapDelay points to the array of offset times. * @param[in] maxDelay maximum offset time supported. * @param[in] blockSize number of samples that will be processed per block. */ void arm_fir_sparse_init_q31( arm_fir_sparse_instance_q31 * S, uint16_t numTaps, q31_t * pCoeffs, q31_t * pState, int32_t * pTapDelay, uint16_t maxDelay, uint32_t blockSize); /** * @brief Processing function for the Q15 sparse FIR filter. * @param[in] S points to an instance of the Q15 sparse FIR structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data * @param[in] pScratchIn points to a temporary buffer of size blockSize. * @param[in] pScratchOut points to a temporary buffer of size blockSize. * @param[in] blockSize number of input samples to process per call. */ void arm_fir_sparse_q15( arm_fir_sparse_instance_q15 * S, q15_t * pSrc, q15_t * pDst, q15_t * pScratchIn, q31_t * pScratchOut, uint32_t blockSize); /** * @brief Initialization function for the Q15 sparse FIR filter. * @param[in,out] S points to an instance of the Q15 sparse FIR structure. * @param[in] numTaps number of nonzero coefficients in the filter. * @param[in] pCoeffs points to the array of filter coefficients. * @param[in] pState points to the state buffer. * @param[in] pTapDelay points to the array of offset times. * @param[in] maxDelay maximum offset time supported. * @param[in] blockSize number of samples that will be processed per block. */ void arm_fir_sparse_init_q15( arm_fir_sparse_instance_q15 * S, uint16_t numTaps, q15_t * pCoeffs, q15_t * pState, int32_t * pTapDelay, uint16_t maxDelay, uint32_t blockSize); /** * @brief Processing function for the Q7 sparse FIR filter. * @param[in] S points to an instance of the Q7 sparse FIR structure. * @param[in] pSrc points to the block of input data. * @param[out] pDst points to the block of output data * @param[in] pScratchIn points to a temporary buffer of size blockSize. * @param[in] pScratchOut points to a temporary buffer of size blockSize. * @param[in] blockSize number of input samples to process per call. */ void arm_fir_sparse_q7( arm_fir_sparse_instance_q7 * S, q7_t * pSrc, q7_t * pDst, q7_t * pScratchIn, q31_t * pScratchOut, uint32_t blockSize); /** * @brief Initialization function for the Q7 sparse FIR filter. * @param[in,out] S points to an instance of the Q7 sparse FIR structure. * @param[in] numTaps number of nonzero coefficients in the filter. * @param[in] pCoeffs points to the array of filter coefficients. * @param[in] pState points to the state buffer. * @param[in] pTapDelay points to the array of offset times. * @param[in] maxDelay maximum offset time supported. * @param[in] blockSize number of samples that will be processed per block. */ void arm_fir_sparse_init_q7( arm_fir_sparse_instance_q7 * S, uint16_t numTaps, q7_t * pCoeffs, q7_t * pState, int32_t * pTapDelay, uint16_t maxDelay, uint32_t blockSize); /** * @brief Floating-point sin_cos function. * @param[in] theta input value in degrees * @param[out] pSinVal points to the processed sine output. * @param[out] pCosVal points to the processed cos output. */ void arm_sin_cos_f32( float32_t theta, float32_t * pSinVal, float32_t * pCosVal); /** * @brief Q31 sin_cos function. * @param[in] theta scaled input value in degrees * @param[out] pSinVal points to the processed sine output. * @param[out] pCosVal points to the processed cosine output. */ void arm_sin_cos_q31( q31_t theta, q31_t * pSinVal, q31_t * pCosVal); /** * @brief Floating-point complex conjugate. * @param[in] pSrc points to the input vector * @param[out] pDst points to the output vector * @param[in] numSamples number of complex samples in each vector */ void arm_cmplx_conj_f32( float32_t * pSrc, float32_t * pDst, uint32_t numSamples); /** * @brief Q31 complex conjugate. * @param[in] pSrc points to the input vector * @param[out] pDst points to the output vector * @param[in] numSamples number of complex samples in each vector */ void arm_cmplx_conj_q31( q31_t * pSrc, q31_t * pDst, uint32_t numSamples); /** * @brief Q15 complex conjugate. * @param[in] pSrc points to the input vector * @param[out] pDst points to the output vector * @param[in] numSamples number of complex samples in each vector */ void arm_cmplx_conj_q15( q15_t * pSrc, q15_t * pDst, uint32_t numSamples); /** * @brief Floating-point complex magnitude squared * @param[in] pSrc points to the complex input vector * @param[out] pDst points to the real output vector * @param[in] numSamples number of complex samples in the input vector */ void arm_cmplx_mag_squared_f32( float32_t * pSrc, float32_t * pDst, uint32_t numSamples); /** * @brief Q31 complex magnitude squared * @param[in] pSrc points to the complex input vector * @param[out] pDst points to the real output vector * @param[in] numSamples number of complex samples in the input vector */ void arm_cmplx_mag_squared_q31( q31_t * pSrc, q31_t * pDst, uint32_t numSamples); /** * @brief Q15 complex magnitude squared * @param[in] pSrc points to the complex input vector * @param[out] pDst points to the real output vector * @param[in] numSamples number of complex samples in the input vector */ void arm_cmplx_mag_squared_q15( q15_t * pSrc, q15_t * pDst, uint32_t numSamples); /** * @ingroup groupController */ /** * @defgroup PID PID Motor Control * * A Proportional Integral Derivative (PID) controller is a generic feedback control * loop mechanism widely used in industrial control systems. * A PID controller is the most commonly used type of feedback controller. * * This set of functions implements (PID) controllers * for Q15, Q31, and floating-point data types. The functions operate on a single sample * of data and each call to the function returns a single processed value. * <code>S</code> points to an instance of the PID control data structure. <code>in</code> * is the input sample value. The functions return the output value. * * \par Algorithm: * <pre> * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] * A0 = Kp + Ki + Kd * A1 = (-Kp ) - (2 * Kd ) * A2 = Kd </pre> * * \par * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant * * \par * \image html PID.gif "Proportional Integral Derivative Controller" * * \par * The PID controller calculates an "error" value as the difference between * the measured output and the reference input. * The controller attempts to minimize the error by adjusting the process control inputs. * The proportional value determines the reaction to the current error, * the integral value determines the reaction based on the sum of recent errors, * and the derivative value determines the reaction based on the rate at which the error has been changing. * * \par Instance Structure * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. * A separate instance structure must be defined for each PID Controller. * There are separate instance structure declarations for each of the 3 supported data types. * * \par Reset Functions * There is also an associated reset function for each data type which clears the state array. * * \par Initialization Functions * There is also an associated initialization function for each data type. * The initialization function performs the following operations: * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. * - Zeros out the values in the state buffer. * * \par * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. * * \par Fixed-Point Behavior * Care must be taken when using the fixed-point versions of the PID Controller functions. * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. * Refer to the function specific documentation below for usage guidelines. */ /** * @addtogroup PID * @{ */ /** * @brief Process function for the floating-point PID Control. * @param[in,out] S is an instance of the floating-point PID Control structure * @param[in] in input sample to process * @return out processed output sample. */ static __INLINE float32_t arm_pid_f32( arm_pid_instance_f32 * S, float32_t in) { float32_t out; /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ out = (S->A0 * in) + (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); /* Update state */ S->state[1] = S->state[0]; S->state[0] = in; S->state[2] = out; /* return to application */ return (out); } /** * @brief Process function for the Q31 PID Control. * @param[in,out] S points to an instance of the Q31 PID Control structure * @param[in] in input sample to process * @return out processed output sample. * * <b>Scaling and Overflow Behavior:</b> * \par * The function is implemented using an internal 64-bit accumulator. * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. * Thus, if the accumulator result overflows it wraps around rather than clip. * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. */ static __INLINE q31_t arm_pid_q31( arm_pid_instance_q31 * S, q31_t in) { q63_t acc; q31_t out; /* acc = A0 * x[n] */ acc = (q63_t) S->A0 * in; /* acc += A1 * x[n-1] */ acc += (q63_t) S->A1 * S->state[0]; /* acc += A2 * x[n-2] */ acc += (q63_t) S->A2 * S->state[1]; /* convert output to 1.31 format to add y[n-1] */ out = (q31_t) (acc >> 31u); /* out += y[n-1] */ out += S->state[2]; /* Update state */ S->state[1] = S->state[0]; S->state[0] = in; S->state[2] = out; /* return to application */ return (out); } /** * @brief Process function for the Q15 PID Control. * @param[in,out] S points to an instance of the Q15 PID Control structure * @param[in] in input sample to process * @return out processed output sample. * * <b>Scaling and Overflow Behavior:</b> * \par * The function is implemented using a 64-bit internal accumulator. * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. * Lastly, the accumulator is saturated to yield a result in 1.15 format. */ static __INLINE q15_t arm_pid_q15( arm_pid_instance_q15 * S, q15_t in) { q63_t acc; q15_t out; #ifndef ARM_MATH_CM0_FAMILY __SIMD32_TYPE *vstate; /* Implementation of PID controller */ /* acc = A0 * x[n] */ acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in); /* acc += A1 * x[n-1] + A2 * x[n-2] */ vstate = __SIMD32_CONST(S->state); acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc); #else /* acc = A0 * x[n] */ acc = ((q31_t) S->A0) * in; /* acc += A1 * x[n-1] + A2 * x[n-2] */ acc += (q31_t) S->A1 * S->state[0]; acc += (q31_t) S->A2 * S->state[1]; #endif /* acc += y[n-1] */ acc += (q31_t) S->state[2] << 15; /* saturate the output */ out = (q15_t) (__SSAT((acc >> 15), 16)); /* Update state */ S->state[1] = S->state[0]; S->state[0] = in; S->state[2] = out; /* return to application */ return (out); } /** * @} end of PID group */ /** * @brief Floating-point matrix inverse. * @param[in] src points to the instance of the input floating-point matrix structure. * @param[out] dst points to the instance of the output floating-point matrix structure. * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. */ arm_status arm_mat_inverse_f32( const arm_matrix_instance_f32 * src, arm_matrix_instance_f32 * dst); /** * @brief Floating-point matrix inverse. * @param[in] src points to the instance of the input floating-point matrix structure. * @param[out] dst points to the instance of the output floating-point matrix structure. * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. */ arm_status arm_mat_inverse_f64( const arm_matrix_instance_f64 * src, arm_matrix_instance_f64 * dst); /** * @ingroup groupController */ /** * @defgroup clarke Vector Clarke Transform * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>. * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below * \image html clarke.gif Stator current space vector and its components in (a,b). * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code> * can be calculated using only <code>Ia</code> and <code>Ib</code>. * * The function operates on a single sample of data and each call to the function returns the processed output. * The library provides separate functions for Q31 and floating-point data types. * \par Algorithm * \image html clarkeFormula.gif * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector. * \par Fixed-Point Behavior * Care must be taken when using the Q31 version of the Clarke transform. * In particular, the overflow and saturation behavior of the accumulator used must be considered. * Refer to the function specific documentation below for usage guidelines. */ /** * @addtogroup clarke * @{ */ /** * * @brief Floating-point Clarke transform * @param[in] Ia input three-phase coordinate <code>a</code> * @param[in] Ib input three-phase coordinate <code>b</code> * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha * @param[out] pIbeta points to output two-phase orthogonal vector axis beta */ static __INLINE void arm_clarke_f32( float32_t Ia, float32_t Ib, float32_t * pIalpha, float32_t * pIbeta) { /* Calculate pIalpha using the equation, pIalpha = Ia */ *pIalpha = Ia; /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */ *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib); } /** * @brief Clarke transform for Q31 version * @param[in] Ia input three-phase coordinate <code>a</code> * @param[in] Ib input three-phase coordinate <code>b</code> * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha * @param[out] pIbeta points to output two-phase orthogonal vector axis beta * * <b>Scaling and Overflow Behavior:</b> * \par * The function is implemented using an internal 32-bit accumulator. * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. * There is saturation on the addition, hence there is no risk of overflow. */ static __INLINE void arm_clarke_q31( q31_t Ia, q31_t Ib, q31_t * pIalpha, q31_t * pIbeta) { q31_t product1, product2; /* Temporary variables used to store intermediate results */ /* Calculating pIalpha from Ia by equation pIalpha = Ia */ *pIalpha = Ia; /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */ product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30); /* Intermediate product is calculated by (2/sqrt(3) * Ib) */ product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30); /* pIbeta is calculated by adding the intermediate products */ *pIbeta = __QADD(product1, product2); } /** * @} end of clarke group */ /** * @brief Converts the elements of the Q7 vector to Q31 vector. * @param[in] pSrc input pointer * @param[out] pDst output pointer * @param[in] blockSize number of samples to process */ void arm_q7_to_q31( q7_t * pSrc, q31_t * pDst, uint32_t blockSize); /** * @ingroup groupController */ /** * @defgroup inv_clarke Vector Inverse Clarke Transform * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases. * * The function operates on a single sample of data and each call to the function returns the processed output. * The library provides separate functions for Q31 and floating-point data types. * \par Algorithm * \image html clarkeInvFormula.gif * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector. * \par Fixed-Point Behavior * Care must be taken when using the Q31 version of the Clarke transform. * In particular, the overflow and saturation behavior of the accumulator used must be considered. * Refer to the function specific documentation below for usage guidelines. */ /** * @addtogroup inv_clarke * @{ */ /** * @brief Floating-point Inverse Clarke transform * @param[in] Ialpha input two-phase orthogonal vector axis alpha * @param[in] Ibeta input two-phase orthogonal vector axis beta * @param[out] pIa points to output three-phase coordinate <code>a</code> * @param[out] pIb points to output three-phase coordinate <code>b</code> */ static __INLINE void arm_inv_clarke_f32( float32_t Ialpha, float32_t Ibeta, float32_t * pIa, float32_t * pIb) { /* Calculating pIa from Ialpha by equation pIa = Ialpha */ *pIa = Ialpha; /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */ *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta; } /** * @brief Inverse Clarke transform for Q31 version * @param[in] Ialpha input two-phase orthogonal vector axis alpha * @param[in] Ibeta input two-phase orthogonal vector axis beta * @param[out] pIa points to output three-phase coordinate <code>a</code> * @param[out] pIb points to output three-phase coordinate <code>b</code> * * <b>Scaling and Overflow Behavior:</b> * \par * The function is implemented using an internal 32-bit accumulator. * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. * There is saturation on the subtraction, hence there is no risk of overflow. */ static __INLINE void arm_inv_clarke_q31( q31_t Ialpha, q31_t Ibeta, q31_t * pIa, q31_t * pIb) { q31_t product1, product2; /* Temporary variables used to store intermediate results */ /* Calculating pIa from Ialpha by equation pIa = Ialpha */ *pIa = Ialpha; /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */ product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31); /* Intermediate product is calculated by (1/sqrt(3) * pIb) */ product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31); /* pIb is calculated by subtracting the products */ *pIb = __QSUB(product2, product1); } /** * @} end of inv_clarke group */ /** * @brief Converts the elements of the Q7 vector to Q15 vector. * @param[in] pSrc input pointer * @param[out] pDst output pointer * @param[in] blockSize number of samples to process */ void arm_q7_to_q15( q7_t * pSrc, q15_t * pDst, uint32_t blockSize); /** * @ingroup groupController */ /** * @defgroup park Vector Park Transform * * Forward Park transform converts the input two-coordinate vector to flux and torque components. * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents * from the stationary to the moving reference frame and control the spatial relationship between * the stator vector current and rotor flux vector. * If we consider the d axis aligned with the rotor flux, the diagram below shows the * current vector and the relationship from the two reference frames: * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame" * * The function operates on a single sample of data and each call to the function returns the processed output. * The library provides separate functions for Q31 and floating-point data types. * \par Algorithm * \image html parkFormula.gif * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components, * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the * cosine and sine values of theta (rotor flux position). * \par Fixed-Point Behavior * Care must be taken when using the Q31 version of the Park transform. * In particular, the overflow and saturation behavior of the accumulator used must be considered. * Refer to the function specific documentation below for usage guidelines. */ /** * @addtogroup park * @{ */ /** * @brief Floating-point Park transform * @param[in] Ialpha input two-phase vector coordinate alpha * @param[in] Ibeta input two-phase vector coordinate beta * @param[out] pId points to output rotor reference frame d * @param[out] pIq points to output rotor reference frame q * @param[in] sinVal sine value of rotation angle theta * @param[in] cosVal cosine value of rotation angle theta * * The function implements the forward Park transform. * */ static __INLINE void arm_park_f32( float32_t Ialpha, float32_t Ibeta, float32_t * pId, float32_t * pIq, float32_t sinVal, float32_t cosVal) { /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */ *pId = Ialpha * cosVal + Ibeta * sinVal; /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */ *pIq = -Ialpha * sinVal + Ibeta * cosVal; } /** * @brief Park transform for Q31 version * @param[in] Ialpha input two-phase vector coordinate alpha * @param[in] Ibeta input two-phase vector coordinate beta * @param[out] pId points to output rotor reference frame d * @param[out] pIq points to output rotor reference frame q * @param[in] sinVal sine value of rotation angle theta * @param[in] cosVal cosine value of rotation angle theta * * <b>Scaling and Overflow Behavior:</b> * \par * The function is implemented using an internal 32-bit accumulator. * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. * There is saturation on the addition and subtraction, hence there is no risk of overflow. */ static __INLINE void arm_park_q31( q31_t Ialpha, q31_t Ibeta, q31_t * pId, q31_t * pIq, q31_t sinVal, q31_t cosVal) { q31_t product1, product2; /* Temporary variables used to store intermediate results */ q31_t product3, product4; /* Temporary variables used to store intermediate results */ /* Intermediate product is calculated by (Ialpha * cosVal) */ product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31); /* Intermediate product is calculated by (Ibeta * sinVal) */ product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31); /* Intermediate product is calculated by (Ialpha * sinVal) */ product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31); /* Intermediate product is calculated by (Ibeta * cosVal) */ product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31); /* Calculate pId by adding the two intermediate products 1 and 2 */ *pId = __QADD(product1, product2); /* Calculate pIq by subtracting the two intermediate products 3 from 4 */ *pIq = __QSUB(product4, product3); } /** * @} end of park group */ /** * @brief Converts the elements of the Q7 vector to floating-point vector. * @param[in] pSrc is input pointer * @param[out] pDst is output pointer * @param[in] blockSize is the number of samples to process */ void arm_q7_to_float( q7_t * pSrc, float32_t * pDst, uint32_t blockSize); /** * @ingroup groupController */ /** * @defgroup inv_park Vector Inverse Park transform * Inverse Park transform converts the input flux and torque components to two-coordinate vector. * * The function operates on a single sample of data and each call to the function returns the processed output. * The library provides separate functions for Q31 and floating-point data types. * \par Algorithm * \image html parkInvFormula.gif * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components, * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the * cosine and sine values of theta (rotor flux position). * \par Fixed-Point Behavior * Care must be taken when using the Q31 version of the Park transform. * In particular, the overflow and saturation behavior of the accumulator used must be considered. * Refer to the function specific documentation below for usage guidelines. */ /** * @addtogroup inv_park * @{ */ /** * @brief Floating-point Inverse Park transform * @param[in] Id input coordinate of rotor reference frame d * @param[in] Iq input coordinate of rotor reference frame q * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha * @param[out] pIbeta points to output two-phase orthogonal vector axis beta * @param[in] sinVal sine value of rotation angle theta * @param[in] cosVal cosine value of rotation angle theta */ static __INLINE void arm_inv_park_f32( float32_t Id, float32_t Iq, float32_t * pIalpha, float32_t * pIbeta, float32_t sinVal, float32_t cosVal) { /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */ *pIalpha = Id * cosVal - Iq * sinVal; /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */ *pIbeta = Id * sinVal + Iq * cosVal; } /** * @brief Inverse Park transform for Q31 version * @param[in] Id input coordinate of rotor reference frame d * @param[in] Iq input coordinate of rotor reference frame q * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha * @param[out] pIbeta points to output two-phase orthogonal vector axis beta * @param[in] sinVal sine value of rotation angle theta * @param[in] cosVal cosine value of rotation angle theta * * <b>Scaling and Overflow Behavior:</b> * \par * The function is implemented using an internal 32-bit accumulator. * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. * There is saturation on the addition, hence there is no risk of overflow. */ static __INLINE void arm_inv_park_q31( q31_t Id, q31_t Iq, q31_t * pIalpha, q31_t * pIbeta, q31_t sinVal, q31_t cosVal) { q31_t product1, product2; /* Temporary variables used to store intermediate results */ q31_t product3, product4; /* Temporary variables used to store intermediate results */ /* Intermediate product is calculated by (Id * cosVal) */ product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31); /* Intermediate product is calculated by (Iq * sinVal) */ product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31); /* Intermediate product is calculated by (Id * sinVal) */ product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31); /* Intermediate product is calculated by (Iq * cosVal) */ product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31); /* Calculate pIalpha by using the two intermediate products 1 and 2 */ *pIalpha = __QSUB(product1, product2); /* Calculate pIbeta by using the two intermediate products 3 and 4 */ *pIbeta = __QADD(product4, product3); } /** * @} end of Inverse park group */ /** * @brief Converts the elements of the Q31 vector to floating-point vector. * @param[in] pSrc is input pointer * @param[out] pDst is output pointer * @param[in] blockSize is the number of samples to process */ void arm_q31_to_float( q31_t * pSrc, float32_t * pDst, uint32_t blockSize); /** * @ingroup groupInterpolation */ /** * @defgroup LinearInterpolate Linear Interpolation * * Linear interpolation is a method of curve fitting using linear polynomials. * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line * * \par * \image html LinearInterp.gif "Linear interpolation" * * \par * A Linear Interpolate function calculates an output value(y), for the input(x) * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values) * * \par Algorithm: * <pre> * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)) * where x0, x1 are nearest values of input x * y0, y1 are nearest values to output y * </pre> * * \par * This set of functions implements Linear interpolation process * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single * sample of data and each call to the function returns a single processed value. * <code>S</code> points to an instance of the Linear Interpolate function data structure. * <code>x</code> is the input sample value. The functions returns the output value. * * \par * if x is outside of the table boundary, Linear interpolation returns first value of the table * if x is below input range and returns last value of table if x is above range. */ /** * @addtogroup LinearInterpolate * @{ */ /** * @brief Process function for the floating-point Linear Interpolation Function. * @param[in,out] S is an instance of the floating-point Linear Interpolation structure * @param[in] x input sample to process * @return y processed output sample. * */ static __INLINE float32_t arm_linear_interp_f32( arm_linear_interp_instance_f32 * S, float32_t x) { float32_t y; float32_t x0, x1; /* Nearest input values */ float32_t y0, y1; /* Nearest output values */ float32_t xSpacing = S->xSpacing; /* spacing between input values */ int32_t i; /* Index variable */ float32_t *pYData = S->pYData; /* pointer to output table */ /* Calculation of index */ i = (int32_t) ((x - S->x1) / xSpacing); if(i < 0) { /* Iniatilize output for below specified range as least output value of table */ y = pYData[0]; } else if((uint32_t)i >= S->nValues) { /* Iniatilize output for above specified range as last output value of table */ y = pYData[S->nValues - 1]; } else { /* Calculation of nearest input values */ x0 = S->x1 + i * xSpacing; x1 = S->x1 + (i + 1) * xSpacing; /* Read of nearest output values */ y0 = pYData[i]; y1 = pYData[i + 1]; /* Calculation of output */ y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0)); } /* returns output value */ return (y); } /** * * @brief Process function for the Q31 Linear Interpolation Function. * @param[in] pYData pointer to Q31 Linear Interpolation table * @param[in] x input sample to process * @param[in] nValues number of table values * @return y processed output sample. * * \par * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. * This function can support maximum of table size 2^12. * */ static __INLINE q31_t arm_linear_interp_q31( q31_t * pYData, q31_t x, uint32_t nValues) { q31_t y; /* output */ q31_t y0, y1; /* Nearest output values */ q31_t fract; /* fractional part */ int32_t index; /* Index to read nearest output values */ /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ index = ((x & (q31_t)0xFFF00000) >> 20); if(index >= (int32_t)(nValues - 1)) { return (pYData[nValues - 1]); } else if(index < 0) { return (pYData[0]); } else { /* 20 bits for the fractional part */ /* shift left by 11 to keep fract in 1.31 format */ fract = (x & 0x000FFFFF) << 11; /* Read two nearest output values from the index in 1.31(q31) format */ y0 = pYData[index]; y1 = pYData[index + 1]; /* Calculation of y0 * (1-fract) and y is in 2.30 format */ y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32)); /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */ y += ((q31_t) (((q63_t) y1 * fract) >> 32)); /* Convert y to 1.31 format */ return (y << 1u); } } /** * * @brief Process function for the Q15 Linear Interpolation Function. * @param[in] pYData pointer to Q15 Linear Interpolation table * @param[in] x input sample to process * @param[in] nValues number of table values * @return y processed output sample. * * \par * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. * This function can support maximum of table size 2^12. * */ static __INLINE q15_t arm_linear_interp_q15( q15_t * pYData, q31_t x, uint32_t nValues) { q63_t y; /* output */ q15_t y0, y1; /* Nearest output values */ q31_t fract; /* fractional part */ int32_t index; /* Index to read nearest output values */ /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ index = ((x & (int32_t)0xFFF00000) >> 20); if(index >= (int32_t)(nValues - 1)) { return (pYData[nValues - 1]); } else if(index < 0) { return (pYData[0]); } else { /* 20 bits for the fractional part */ /* fract is in 12.20 format */ fract = (x & 0x000FFFFF); /* Read two nearest output values from the index */ y0 = pYData[index]; y1 = pYData[index + 1]; /* Calculation of y0 * (1-fract) and y is in 13.35 format */ y = ((q63_t) y0 * (0xFFFFF - fract)); /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */ y += ((q63_t) y1 * (fract)); /* convert y to 1.15 format */ return (q15_t) (y >> 20); } } /** * * @brief Process function for the Q7 Linear Interpolation Function. * @param[in] pYData pointer to Q7 Linear Interpolation table * @param[in] x input sample to process * @param[in] nValues number of table values * @return y processed output sample. * * \par * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. * This function can support maximum of table size 2^12. */ static __INLINE q7_t arm_linear_interp_q7( q7_t * pYData, q31_t x, uint32_t nValues) { q31_t y; /* output */ q7_t y0, y1; /* Nearest output values */ q31_t fract; /* fractional part */ uint32_t index; /* Index to read nearest output values */ /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ if (x < 0) { return (pYData[0]); } index = (x >> 20) & 0xfff; if(index >= (nValues - 1)) { return (pYData[nValues - 1]); } else { /* 20 bits for the fractional part */ /* fract is in 12.20 format */ fract = (x & 0x000FFFFF); /* Read two nearest output values from the index and are in 1.7(q7) format */ y0 = pYData[index]; y1 = pYData[index + 1]; /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */ y = ((y0 * (0xFFFFF - fract))); /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */ y += (y1 * fract); /* convert y to 1.7(q7) format */ return (q7_t) (y >> 20); } } /** * @} end of LinearInterpolate group */ /** * @brief Fast approximation to the trigonometric sine function for floating-point data. * @param[in] x input value in radians. * @return sin(x). */ float32_t arm_sin_f32( float32_t x); /** * @brief Fast approximation to the trigonometric sine function for Q31 data. * @param[in] x Scaled input value in radians. * @return sin(x). */ q31_t arm_sin_q31( q31_t x); /** * @brief Fast approximation to the trigonometric sine function for Q15 data. * @param[in] x Scaled input value in radians. * @return sin(x). */ q15_t arm_sin_q15( q15_t x); /** * @brief Fast approximation to the trigonometric cosine function for floating-point data. * @param[in] x input value in radians. * @return cos(x). */ float32_t arm_cos_f32( float32_t x); /** * @brief Fast approximation to the trigonometric cosine function for Q31 data. * @param[in] x Scaled input value in radians. * @return cos(x). */ q31_t arm_cos_q31( q31_t x); /** * @brief Fast approximation to the trigonometric cosine function for Q15 data. * @param[in] x Scaled input value in radians. * @return cos(x). */ q15_t arm_cos_q15( q15_t x); /** * @ingroup groupFastMath */ /** * @defgroup SQRT Square Root * * Computes the square root of a number. * There are separate functions for Q15, Q31, and floating-point data types. * The square root function is computed using the Newton-Raphson algorithm. * This is an iterative algorithm of the form: * <pre> * x1 = x0 - f(x0)/f'(x0) * </pre> * where <code>x1</code> is the current estimate, * <code>x0</code> is the previous estimate, and * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>. * For the square root function, the algorithm reduces to: * <pre> * x0 = in/2 [initial guess] * x1 = 1/2 * ( x0 + in / x0) [each iteration] * </pre> */ /** * @addtogroup SQRT * @{ */ /** * @brief Floating-point square root function. * @param[in] in input value. * @param[out] pOut square root of input value. * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if * <code>in</code> is negative value and returns zero output for negative values. */ static __INLINE arm_status arm_sqrt_f32( float32_t in, float32_t * pOut) { if(in >= 0.0f) { #if (__FPU_USED == 1) && defined ( __CC_ARM ) *pOut = __sqrtf(in); #elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)) *pOut = __builtin_sqrtf(in); #elif (__FPU_USED == 1) && defined(__GNUC__) *pOut = __builtin_sqrtf(in); #elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000) __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in)); #else *pOut = sqrtf(in); #endif return (ARM_MATH_SUCCESS); } else { *pOut = 0.0f; return (ARM_MATH_ARGUMENT_ERROR); } } /** * @brief Q31 square root function. * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF. * @param[out] pOut square root of input value. * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if * <code>in</code> is negative value and returns zero output for negative values. */ arm_status arm_sqrt_q31( q31_t in, q31_t * pOut); /** * @brief Q15 square root function. * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF. * @param[out] pOut square root of input value. * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if * <code>in</code> is negative value and returns zero output for negative values. */ arm_status arm_sqrt_q15( q15_t in, q15_t * pOut); /** * @} end of SQRT group */ /** * @brief floating-point Circular write function. */ static __INLINE void arm_circularWrite_f32( int32_t * circBuffer, int32_t L, uint16_t * writeOffset, int32_t bufferInc, const int32_t * src, int32_t srcInc, uint32_t blockSize) { uint32_t i = 0u; int32_t wOffset; /* Copy the value of Index pointer that points * to the current location where the input samples to be copied */ wOffset = *writeOffset; /* Loop over the blockSize */ i = blockSize; while(i > 0u) { /* copy the input sample to the circular buffer */ circBuffer[wOffset] = *src; /* Update the input pointer */ src += srcInc; /* Circularly update wOffset. Watch out for positive and negative value */ wOffset += bufferInc; if(wOffset >= L) wOffset -= L; /* Decrement the loop counter */ i--; } /* Update the index pointer */ *writeOffset = (uint16_t)wOffset; } /** * @brief floating-point Circular Read function. */ static __INLINE void arm_circularRead_f32( int32_t * circBuffer, int32_t L, int32_t * readOffset, int32_t bufferInc, int32_t * dst, int32_t * dst_base, int32_t dst_length, int32_t dstInc, uint32_t blockSize) { uint32_t i = 0u; int32_t rOffset, dst_end; /* Copy the value of Index pointer that points * to the current location from where the input samples to be read */ rOffset = *readOffset; dst_end = (int32_t) (dst_base + dst_length); /* Loop over the blockSize */ i = blockSize; while(i > 0u) { /* copy the sample from the circular buffer to the destination buffer */ *dst = circBuffer[rOffset]; /* Update the input pointer */ dst += dstInc; if(dst == (int32_t *) dst_end) { dst = dst_base; } /* Circularly update rOffset. Watch out for positive and negative value */ rOffset += bufferInc; if(rOffset >= L) { rOffset -= L; } /* Decrement the loop counter */ i--; } /* Update the index pointer */ *readOffset = rOffset; } /** * @brief Q15 Circular write function. */ static __INLINE void arm_circularWrite_q15( q15_t * circBuffer, int32_t L, uint16_t * writeOffset, int32_t bufferInc, const q15_t * src, int32_t srcInc, uint32_t blockSize) { uint32_t i = 0u; int32_t wOffset; /* Copy the value of Index pointer that points * to the current location where the input samples to be copied */ wOffset = *writeOffset; /* Loop over the blockSize */ i = blockSize; while(i > 0u) { /* copy the input sample to the circular buffer */ circBuffer[wOffset] = *src; /* Update the input pointer */ src += srcInc; /* Circularly update wOffset. Watch out for positive and negative value */ wOffset += bufferInc; if(wOffset >= L) wOffset -= L; /* Decrement the loop counter */ i--; } /* Update the index pointer */ *writeOffset = (uint16_t)wOffset; } /** * @brief Q15 Circular Read function. */ static __INLINE void arm_circularRead_q15( q15_t * circBuffer, int32_t L, int32_t * readOffset, int32_t bufferInc, q15_t * dst, q15_t * dst_base, int32_t dst_length, int32_t dstInc, uint32_t blockSize) { uint32_t i = 0; int32_t rOffset, dst_end; /* Copy the value of Index pointer that points * to the current location from where the input samples to be read */ rOffset = *readOffset; dst_end = (int32_t) (dst_base + dst_length); /* Loop over the blockSize */ i = blockSize; while(i > 0u) { /* copy the sample from the circular buffer to the destination buffer */ *dst = circBuffer[rOffset]; /* Update the input pointer */ dst += dstInc; if(dst == (q15_t *) dst_end) { dst = dst_base; } /* Circularly update wOffset. Watch out for positive and negative value */ rOffset += bufferInc; if(rOffset >= L) { rOffset -= L; } /* Decrement the loop counter */ i--; } /* Update the index pointer */ *readOffset = rOffset; } /** * @brief Q7 Circular write function. */ static __INLINE void arm_circularWrite_q7( q7_t * circBuffer, int32_t L, uint16_t * writeOffset, int32_t bufferInc, const q7_t * src, int32_t srcInc, uint32_t blockSize) { uint32_t i = 0u; int32_t wOffset; /* Copy the value of Index pointer that points * to the current location where the input samples to be copied */ wOffset = *writeOffset; /* Loop over the blockSize */ i = blockSize; while(i > 0u) { /* copy the input sample to the circular buffer */ circBuffer[wOffset] = *src; /* Update the input pointer */ src += srcInc; /* Circularly update wOffset. Watch out for positive and negative value */ wOffset += bufferInc; if(wOffset >= L) wOffset -= L; /* Decrement the loop counter */ i--; } /* Update the index pointer */ *writeOffset = (uint16_t)wOffset; } /** * @brief Q7 Circular Read function. */ static __INLINE void arm_circularRead_q7( q7_t * circBuffer, int32_t L, int32_t * readOffset, int32_t bufferInc, q7_t * dst, q7_t * dst_base, int32_t dst_length, int32_t dstInc, uint32_t blockSize) { uint32_t i = 0; int32_t rOffset, dst_end; /* Copy the value of Index pointer that points * to the current location from where the input samples to be read */ rOffset = *readOffset; dst_end = (int32_t) (dst_base + dst_length); /* Loop over the blockSize */ i = blockSize; while(i > 0u) { /* copy the sample from the circular buffer to the destination buffer */ *dst = circBuffer[rOffset]; /* Update the input pointer */ dst += dstInc; if(dst == (q7_t *) dst_end) { dst = dst_base; } /* Circularly update rOffset. Watch out for positive and negative value */ rOffset += bufferInc; if(rOffset >= L) { rOffset -= L; } /* Decrement the loop counter */ i--; } /* Update the index pointer */ *readOffset = rOffset; } /** * @brief Sum of the squares of the elements of a Q31 vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] pResult is output value. */ void arm_power_q31( q31_t * pSrc, uint32_t blockSize, q63_t * pResult); /** * @brief Sum of the squares of the elements of a floating-point vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] pResult is output value. */ void arm_power_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult); /** * @brief Sum of the squares of the elements of a Q15 vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] pResult is output value. */ void arm_power_q15( q15_t * pSrc, uint32_t blockSize, q63_t * pResult); /** * @brief Sum of the squares of the elements of a Q7 vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] pResult is output value. */ void arm_power_q7( q7_t * pSrc, uint32_t blockSize, q31_t * pResult); /** * @brief Mean value of a Q7 vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] pResult is output value. */ void arm_mean_q7( q7_t * pSrc, uint32_t blockSize, q7_t * pResult); /** * @brief Mean value of a Q15 vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] pResult is output value. */ void arm_mean_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult); /** * @brief Mean value of a Q31 vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] pResult is output value. */ void arm_mean_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult); /** * @brief Mean value of a floating-point vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] pResult is output value. */ void arm_mean_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult); /** * @brief Variance of the elements of a floating-point vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] pResult is output value. */ void arm_var_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult); /** * @brief Variance of the elements of a Q31 vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] pResult is output value. */ void arm_var_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult); /** * @brief Variance of the elements of a Q15 vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] pResult is output value. */ void arm_var_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult); /** * @brief Root Mean Square of the elements of a floating-point vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] pResult is output value. */ void arm_rms_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult); /** * @brief Root Mean Square of the elements of a Q31 vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] pResult is output value. */ void arm_rms_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult); /** * @brief Root Mean Square of the elements of a Q15 vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] pResult is output value. */ void arm_rms_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult); /** * @brief Standard deviation of the elements of a floating-point vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] pResult is output value. */ void arm_std_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult); /** * @brief Standard deviation of the elements of a Q31 vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] pResult is output value. */ void arm_std_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult); /** * @brief Standard deviation of the elements of a Q15 vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] pResult is output value. */ void arm_std_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult); /** * @brief Floating-point complex magnitude * @param[in] pSrc points to the complex input vector * @param[out] pDst points to the real output vector * @param[in] numSamples number of complex samples in the input vector */ void arm_cmplx_mag_f32( float32_t * pSrc, float32_t * pDst, uint32_t numSamples); /** * @brief Q31 complex magnitude * @param[in] pSrc points to the complex input vector * @param[out] pDst points to the real output vector * @param[in] numSamples number of complex samples in the input vector */ void arm_cmplx_mag_q31( q31_t * pSrc, q31_t * pDst, uint32_t numSamples); /** * @brief Q15 complex magnitude * @param[in] pSrc points to the complex input vector * @param[out] pDst points to the real output vector * @param[in] numSamples number of complex samples in the input vector */ void arm_cmplx_mag_q15( q15_t * pSrc, q15_t * pDst, uint32_t numSamples); /** * @brief Q15 complex dot product * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[in] numSamples number of complex samples in each vector * @param[out] realResult real part of the result returned here * @param[out] imagResult imaginary part of the result returned here */ void arm_cmplx_dot_prod_q15( q15_t * pSrcA, q15_t * pSrcB, uint32_t numSamples, q31_t * realResult, q31_t * imagResult); /** * @brief Q31 complex dot product * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[in] numSamples number of complex samples in each vector * @param[out] realResult real part of the result returned here * @param[out] imagResult imaginary part of the result returned here */ void arm_cmplx_dot_prod_q31( q31_t * pSrcA, q31_t * pSrcB, uint32_t numSamples, q63_t * realResult, q63_t * imagResult); /** * @brief Floating-point complex dot product * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[in] numSamples number of complex samples in each vector * @param[out] realResult real part of the result returned here * @param[out] imagResult imaginary part of the result returned here */ void arm_cmplx_dot_prod_f32( float32_t * pSrcA, float32_t * pSrcB, uint32_t numSamples, float32_t * realResult, float32_t * imagResult); /** * @brief Q15 complex-by-real multiplication * @param[in] pSrcCmplx points to the complex input vector * @param[in] pSrcReal points to the real input vector * @param[out] pCmplxDst points to the complex output vector * @param[in] numSamples number of samples in each vector */ void arm_cmplx_mult_real_q15( q15_t * pSrcCmplx, q15_t * pSrcReal, q15_t * pCmplxDst, uint32_t numSamples); /** * @brief Q31 complex-by-real multiplication * @param[in] pSrcCmplx points to the complex input vector * @param[in] pSrcReal points to the real input vector * @param[out] pCmplxDst points to the complex output vector * @param[in] numSamples number of samples in each vector */ void arm_cmplx_mult_real_q31( q31_t * pSrcCmplx, q31_t * pSrcReal, q31_t * pCmplxDst, uint32_t numSamples); /** * @brief Floating-point complex-by-real multiplication * @param[in] pSrcCmplx points to the complex input vector * @param[in] pSrcReal points to the real input vector * @param[out] pCmplxDst points to the complex output vector * @param[in] numSamples number of samples in each vector */ void arm_cmplx_mult_real_f32( float32_t * pSrcCmplx, float32_t * pSrcReal, float32_t * pCmplxDst, uint32_t numSamples); /** * @brief Minimum value of a Q7 vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] result is output pointer * @param[in] index is the array index of the minimum value in the input buffer. */ void arm_min_q7( q7_t * pSrc, uint32_t blockSize, q7_t * result, uint32_t * index); /** * @brief Minimum value of a Q15 vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] pResult is output pointer * @param[in] pIndex is the array index of the minimum value in the input buffer. */ void arm_min_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult, uint32_t * pIndex); /** * @brief Minimum value of a Q31 vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] pResult is output pointer * @param[out] pIndex is the array index of the minimum value in the input buffer. */ void arm_min_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult, uint32_t * pIndex); /** * @brief Minimum value of a floating-point vector. * @param[in] pSrc is input pointer * @param[in] blockSize is the number of samples to process * @param[out] pResult is output pointer * @param[out] pIndex is the array index of the minimum value in the input buffer. */ void arm_min_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult, uint32_t * pIndex); /** * @brief Maximum value of a Q7 vector. * @param[in] pSrc points to the input buffer * @param[in] blockSize length of the input vector * @param[out] pResult maximum value returned here * @param[out] pIndex index of maximum value returned here */ void arm_max_q7( q7_t * pSrc, uint32_t blockSize, q7_t * pResult, uint32_t * pIndex); /** * @brief Maximum value of a Q15 vector. * @param[in] pSrc points to the input buffer * @param[in] blockSize length of the input vector * @param[out] pResult maximum value returned here * @param[out] pIndex index of maximum value returned here */ void arm_max_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult, uint32_t * pIndex); /** * @brief Maximum value of a Q31 vector. * @param[in] pSrc points to the input buffer * @param[in] blockSize length of the input vector * @param[out] pResult maximum value returned here * @param[out] pIndex index of maximum value returned here */ void arm_max_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult, uint32_t * pIndex); /** * @brief Maximum value of a floating-point vector. * @param[in] pSrc points to the input buffer * @param[in] blockSize length of the input vector * @param[out] pResult maximum value returned here * @param[out] pIndex index of maximum value returned here */ void arm_max_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult, uint32_t * pIndex); /** * @brief Q15 complex-by-complex multiplication * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[out] pDst points to the output vector * @param[in] numSamples number of complex samples in each vector */ void arm_cmplx_mult_cmplx_q15( q15_t * pSrcA, q15_t * pSrcB, q15_t * pDst, uint32_t numSamples); /** * @brief Q31 complex-by-complex multiplication * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[out] pDst points to the output vector * @param[in] numSamples number of complex samples in each vector */ void arm_cmplx_mult_cmplx_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t numSamples); /** * @brief Floating-point complex-by-complex multiplication * @param[in] pSrcA points to the first input vector * @param[in] pSrcB points to the second input vector * @param[out] pDst points to the output vector * @param[in] numSamples number of complex samples in each vector */ void arm_cmplx_mult_cmplx_f32( float32_t * pSrcA, float32_t * pSrcB, float32_t * pDst, uint32_t numSamples); /** * @brief Converts the elements of the floating-point vector to Q31 vector. * @param[in] pSrc points to the floating-point input vector * @param[out] pDst points to the Q31 output vector * @param[in] blockSize length of the input vector */ void arm_float_to_q31( float32_t * pSrc, q31_t * pDst, uint32_t blockSize); /** * @brief Converts the elements of the floating-point vector to Q15 vector. * @param[in] pSrc points to the floating-point input vector * @param[out] pDst points to the Q15 output vector * @param[in] blockSize length of the input vector */ void arm_float_to_q15( float32_t * pSrc, q15_t * pDst, uint32_t blockSize); /** * @brief Converts the elements of the floating-point vector to Q7 vector. * @param[in] pSrc points to the floating-point input vector * @param[out] pDst points to the Q7 output vector * @param[in] blockSize length of the input vector */ void arm_float_to_q7( float32_t * pSrc, q7_t * pDst, uint32_t blockSize); /** * @brief Converts the elements of the Q31 vector to Q15 vector. * @param[in] pSrc is input pointer * @param[out] pDst is output pointer * @param[in] blockSize is the number of samples to process */ void arm_q31_to_q15( q31_t * pSrc, q15_t * pDst, uint32_t blockSize); /** * @brief Converts the elements of the Q31 vector to Q7 vector. * @param[in] pSrc is input pointer * @param[out] pDst is output pointer * @param[in] blockSize is the number of samples to process */ void arm_q31_to_q7( q31_t * pSrc, q7_t * pDst, uint32_t blockSize); /** * @brief Converts the elements of the Q15 vector to floating-point vector. * @param[in] pSrc is input pointer * @param[out] pDst is output pointer * @param[in] blockSize is the number of samples to process */ void arm_q15_to_float( q15_t * pSrc, float32_t * pDst, uint32_t blockSize); /** * @brief Converts the elements of the Q15 vector to Q31 vector. * @param[in] pSrc is input pointer * @param[out] pDst is output pointer * @param[in] blockSize is the number of samples to process */ void arm_q15_to_q31( q15_t * pSrc, q31_t * pDst, uint32_t blockSize); /** * @brief Converts the elements of the Q15 vector to Q7 vector. * @param[in] pSrc is input pointer * @param[out] pDst is output pointer * @param[in] blockSize is the number of samples to process */ void arm_q15_to_q7( q15_t * pSrc, q7_t * pDst, uint32_t blockSize); /** * @ingroup groupInterpolation */ /** * @defgroup BilinearInterpolate Bilinear Interpolation * * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process * determines values between the grid points. * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. * Bilinear interpolation is often used in image processing to rescale images. * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types. * * <b>Algorithm</b> * \par * The instance structure used by the bilinear interpolation functions describes a two dimensional data table. * For floating-point, the instance structure is defined as: * <pre> * typedef struct * { * uint16_t numRows; * uint16_t numCols; * float32_t *pData; * } arm_bilinear_interp_instance_f32; * </pre> * * \par * where <code>numRows</code> specifies the number of rows in the table; * <code>numCols</code> specifies the number of columns in the table; * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values. * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes. * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers. * * \par * Let <code>(x, y)</code> specify the desired interpolation point. Then define: * <pre> * XF = floor(x) * YF = floor(y) * </pre> * \par * The interpolated output point is computed as: * <pre> * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF)) * + f(XF+1, YF) * (x-XF)*(1-(y-YF)) * + f(XF, YF+1) * (1-(x-XF))*(y-YF) * + f(XF+1, YF+1) * (x-XF)*(y-YF) * </pre> * Note that the coordinates (x, y) contain integer and fractional components. * The integer components specify which portion of the table to use while the * fractional components control the interpolation processor. * * \par * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. */ /** * @addtogroup BilinearInterpolate * @{ */ /** * * @brief Floating-point bilinear interpolation. * @param[in,out] S points to an instance of the interpolation structure. * @param[in] X interpolation coordinate. * @param[in] Y interpolation coordinate. * @return out interpolated value. */ static __INLINE float32_t arm_bilinear_interp_f32( const arm_bilinear_interp_instance_f32 * S, float32_t X, float32_t Y) { float32_t out; float32_t f00, f01, f10, f11; float32_t *pData = S->pData; int32_t xIndex, yIndex, index; float32_t xdiff, ydiff; float32_t b1, b2, b3, b4; xIndex = (int32_t) X; yIndex = (int32_t) Y; /* Care taken for table outside boundary */ /* Returns zero output when values are outside table boundary */ if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1)) { return (0); } /* Calculation of index for two nearest points in X-direction */ index = (xIndex - 1) + (yIndex - 1) * S->numCols; /* Read two nearest points in X-direction */ f00 = pData[index]; f01 = pData[index + 1]; /* Calculation of index for two nearest points in Y-direction */ index = (xIndex - 1) + (yIndex) * S->numCols; /* Read two nearest points in Y-direction */ f10 = pData[index]; f11 = pData[index + 1]; /* Calculation of intermediate values */ b1 = f00; b2 = f01 - f00; b3 = f10 - f00; b4 = f00 - f01 - f10 + f11; /* Calculation of fractional part in X */ xdiff = X - xIndex; /* Calculation of fractional part in Y */ ydiff = Y - yIndex; /* Calculation of bi-linear interpolated output */ out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; /* return to application */ return (out); } /** * * @brief Q31 bilinear interpolation. * @param[in,out] S points to an instance of the interpolation structure. * @param[in] X interpolation coordinate in 12.20 format. * @param[in] Y interpolation coordinate in 12.20 format. * @return out interpolated value. */ static __INLINE q31_t arm_bilinear_interp_q31( arm_bilinear_interp_instance_q31 * S, q31_t X, q31_t Y) { q31_t out; /* Temporary output */ q31_t acc = 0; /* output */ q31_t xfract, yfract; /* X, Y fractional parts */ q31_t x1, x2, y1, y2; /* Nearest output values */ int32_t rI, cI; /* Row and column indices */ q31_t *pYData = S->pData; /* pointer to output table values */ uint32_t nCols = S->numCols; /* num of rows */ /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ rI = ((X & (q31_t)0xFFF00000) >> 20); /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ cI = ((Y & (q31_t)0xFFF00000) >> 20); /* Care taken for table outside boundary */ /* Returns zero output when values are outside table boundary */ if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) { return (0); } /* 20 bits for the fractional part */ /* shift left xfract by 11 to keep 1.31 format */ xfract = (X & 0x000FFFFF) << 11u; /* Read two nearest output values from the index */ x1 = pYData[(rI) + (int32_t)nCols * (cI) ]; x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1]; /* 20 bits for the fractional part */ /* shift left yfract by 11 to keep 1.31 format */ yfract = (Y & 0x000FFFFF) << 11u; /* Read two nearest output values from the index */ y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ]; y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1]; /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); /* Convert acc to 1.31(q31) format */ return ((q31_t)(acc << 2)); } /** * @brief Q15 bilinear interpolation. * @param[in,out] S points to an instance of the interpolation structure. * @param[in] X interpolation coordinate in 12.20 format. * @param[in] Y interpolation coordinate in 12.20 format. * @return out interpolated value. */ static __INLINE q15_t arm_bilinear_interp_q15( arm_bilinear_interp_instance_q15 * S, q31_t X, q31_t Y) { q63_t acc = 0; /* output */ q31_t out; /* Temporary output */ q15_t x1, x2, y1, y2; /* Nearest output values */ q31_t xfract, yfract; /* X, Y fractional parts */ int32_t rI, cI; /* Row and column indices */ q15_t *pYData = S->pData; /* pointer to output table values */ uint32_t nCols = S->numCols; /* num of rows */ /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ rI = ((X & (q31_t)0xFFF00000) >> 20); /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ cI = ((Y & (q31_t)0xFFF00000) >> 20); /* Care taken for table outside boundary */ /* Returns zero output when values are outside table boundary */ if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) { return (0); } /* 20 bits for the fractional part */ /* xfract should be in 12.20 format */ xfract = (X & 0x000FFFFF); /* Read two nearest output values from the index */ x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; /* 20 bits for the fractional part */ /* yfract should be in 12.20 format */ yfract = (Y & 0x000FFFFF); /* Read two nearest output values from the index */ y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */ out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u); acc = ((q63_t) out * (0xFFFFF - yfract)); /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u); acc += ((q63_t) out * (xfract)); /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u); acc += ((q63_t) out * (yfract)); /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u); acc += ((q63_t) out * (yfract)); /* acc is in 13.51 format and down shift acc by 36 times */ /* Convert out to 1.15 format */ return ((q15_t)(acc >> 36)); } /** * @brief Q7 bilinear interpolation. * @param[in,out] S points to an instance of the interpolation structure. * @param[in] X interpolation coordinate in 12.20 format. * @param[in] Y interpolation coordinate in 12.20 format. * @return out interpolated value. */ static __INLINE q7_t arm_bilinear_interp_q7( arm_bilinear_interp_instance_q7 * S, q31_t X, q31_t Y) { q63_t acc = 0; /* output */ q31_t out; /* Temporary output */ q31_t xfract, yfract; /* X, Y fractional parts */ q7_t x1, x2, y1, y2; /* Nearest output values */ int32_t rI, cI; /* Row and column indices */ q7_t *pYData = S->pData; /* pointer to output table values */ uint32_t nCols = S->numCols; /* num of rows */ /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ rI = ((X & (q31_t)0xFFF00000) >> 20); /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ cI = ((Y & (q31_t)0xFFF00000) >> 20); /* Care taken for table outside boundary */ /* Returns zero output when values are outside table boundary */ if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) { return (0); } /* 20 bits for the fractional part */ /* xfract should be in 12.20 format */ xfract = (X & (q31_t)0x000FFFFF); /* Read two nearest output values from the index */ x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; /* 20 bits for the fractional part */ /* yfract should be in 12.20 format */ yfract = (Y & (q31_t)0x000FFFFF); /* Read two nearest output values from the index */ y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ out = ((x1 * (0xFFFFF - xfract))); acc = (((q63_t) out * (0xFFFFF - yfract))); /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ out = ((x2 * (0xFFFFF - yfract))); acc += (((q63_t) out * (xfract))); /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ out = ((y1 * (0xFFFFF - xfract))); acc += (((q63_t) out * (yfract))); /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ out = ((y2 * (yfract))); acc += (((q63_t) out * (xfract))); /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ return ((q7_t)(acc >> 40)); } /** * @} end of BilinearInterpolate group */ /* SMMLAR */ #define multAcc_32x32_keep32_R(a, x, y) \ a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) /* SMMLSR */ #define multSub_32x32_keep32_R(a, x, y) \ a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) /* SMMULR */ #define mult_32x32_keep32_R(a, x, y) \ a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) /* SMMLA */ #define multAcc_32x32_keep32(a, x, y) \ a += (q31_t) (((q63_t) x * y) >> 32) /* SMMLS */ #define multSub_32x32_keep32(a, x, y) \ a -= (q31_t) (((q63_t) x * y) >> 32) /* SMMUL */ #define mult_32x32_keep32(a, x, y) \ a = (q31_t) (((q63_t) x * y ) >> 32) #if defined ( __CC_ARM ) /* Enter low optimization region - place directly above function definition */ #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) #define LOW_OPTIMIZATION_ENTER \ _Pragma ("push") \ _Pragma ("O1") #else #define LOW_OPTIMIZATION_ENTER #endif /* Exit low optimization region - place directly after end of function definition */ #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) #define LOW_OPTIMIZATION_EXIT \ _Pragma ("pop") #else #define LOW_OPTIMIZATION_EXIT #endif /* Enter low optimization region - place directly above function definition */ #define IAR_ONLY_LOW_OPTIMIZATION_ENTER /* Exit low optimization region - place directly after end of function definition */ #define IAR_ONLY_LOW_OPTIMIZATION_EXIT #elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) #define LOW_OPTIMIZATION_ENTER #define LOW_OPTIMIZATION_EXIT #define IAR_ONLY_LOW_OPTIMIZATION_ENTER #define IAR_ONLY_LOW_OPTIMIZATION_EXIT #elif defined(__GNUC__) #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") )) #define LOW_OPTIMIZATION_EXIT #define IAR_ONLY_LOW_OPTIMIZATION_ENTER #define IAR_ONLY_LOW_OPTIMIZATION_EXIT #elif defined(__ICCARM__) /* Enter low optimization region - place directly above function definition */ #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) #define LOW_OPTIMIZATION_ENTER \ _Pragma ("optimize=low") #else #define LOW_OPTIMIZATION_ENTER #endif /* Exit low optimization region - place directly after end of function definition */ #define LOW_OPTIMIZATION_EXIT /* Enter low optimization region - place directly above function definition */ #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \ _Pragma ("optimize=low") #else #define IAR_ONLY_LOW_OPTIMIZATION_ENTER #endif /* Exit low optimization region - place directly after end of function definition */ #define IAR_ONLY_LOW_OPTIMIZATION_EXIT #elif defined(__CSMC__) #define LOW_OPTIMIZATION_ENTER #define LOW_OPTIMIZATION_EXIT #define IAR_ONLY_LOW_OPTIMIZATION_ENTER #define IAR_ONLY_LOW_OPTIMIZATION_EXIT #elif defined(__TASKING__) #define LOW_OPTIMIZATION_ENTER #define LOW_OPTIMIZATION_EXIT #define IAR_ONLY_LOW_OPTIMIZATION_ENTER #define IAR_ONLY_LOW_OPTIMIZATION_EXIT #endif #ifdef __cplusplus } #endif #if defined ( __GNUC__ ) #pragma GCC diagnostic pop #endif #endif /* _ARM_MATH_H */ /** * * End of file. */