Mercurial > public > ostc4
view Common/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_qspi.c @ 431:49c3c5f0d0cb
make a 1.5.3 for tests
author | heinrichsweikamp |
---|---|
date | Tue, 18 Feb 2020 09:58:52 +0100 |
parents | c78bcbd5deda |
children |
line wrap: on
line source
/** ****************************************************************************** * @file stm32f4xx_hal_qspi.c * @author MCD Application Team * @brief QSPI HAL module driver. * This file provides firmware functions to manage the following * functionalities of the QuadSPI interface (QSPI). * + Initialization and de-initialization functions * + Indirect functional mode management * + Memory-mapped functional mode management * + Auto-polling functional mode management * + Interrupts and flags management * + DMA channel configuration for indirect functional mode * + Errors management and abort functionality * * @verbatim =============================================================================== ##### How to use this driver ##### =============================================================================== [..] *** Initialization *** ====================== [..] (#) As prerequisite, fill in the HAL_QSPI_MspInit() : (++) Enable QuadSPI clock interface with __HAL_RCC_QSPI_CLK_ENABLE(). (++) Reset QuadSPI IP with __HAL_RCC_QSPI_FORCE_RESET() and __HAL_RCC_QSPI_RELEASE_RESET(). (++) Enable the clocks for the QuadSPI GPIOS with __HAL_RCC_GPIOx_CLK_ENABLE(). (++) Configure these QuadSPI pins in alternate mode using HAL_GPIO_Init(). (++) If interrupt mode is used, enable and configure QuadSPI global interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ(). (++) If DMA mode is used, enable the clocks for the QuadSPI DMA channel with __HAL_RCC_DMAx_CLK_ENABLE(), configure DMA with HAL_DMA_Init(), link it with QuadSPI handle using __HAL_LINKDMA(), enable and configure DMA channel global interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ(). (#) Configure the flash size, the clock prescaler, the fifo threshold, the clock mode, the sample shifting and the CS high time using the HAL_QSPI_Init() function. *** Indirect functional mode *** ================================ [..] (#) Configure the command sequence using the HAL_QSPI_Command() or HAL_QSPI_Command_IT() functions : (++) Instruction phase : the mode used and if present the instruction opcode. (++) Address phase : the mode used and if present the size and the address value. (++) Alternate-bytes phase : the mode used and if present the size and the alternate bytes values. (++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase). (++) Data phase : the mode used and if present the number of bytes. (++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay if activated. (++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode. (#) If no data is required for the command, it is sent directly to the memory : (++) In polling mode, the output of the function is done when the transfer is complete. (++) In interrupt mode, HAL_QSPI_CmdCpltCallback() will be called when the transfer is complete. (#) For the indirect write mode, use HAL_QSPI_Transmit(), HAL_QSPI_Transmit_DMA() or HAL_QSPI_Transmit_IT() after the command configuration : (++) In polling mode, the output of the function is done when the transfer is complete. (++) In interrupt mode, HAL_QSPI_FifoThresholdCallback() will be called when the fifo threshold is reached and HAL_QSPI_TxCpltCallback() will be called when the transfer is complete. (++) In DMA mode, HAL_QSPI_TxHalfCpltCallback() will be called at the half transfer and HAL_QSPI_TxCpltCallback() will be called when the transfer is complete. (#) For the indirect read mode, use HAL_QSPI_Receive(), HAL_QSPI_Receive_DMA() or HAL_QSPI_Receive_IT() after the command configuration : (++) In polling mode, the output of the function is done when the transfer is complete. (++) In interrupt mode, HAL_QSPI_FifoThresholdCallback() will be called when the fifo threshold is reached and HAL_QSPI_RxCpltCallback() will be called when the transfer is complete. (++) In DMA mode, HAL_QSPI_RxHalfCpltCallback() will be called at the half transfer and HAL_QSPI_RxCpltCallback() will be called when the transfer is complete. *** Auto-polling functional mode *** ==================================== [..] (#) Configure the command sequence and the auto-polling functional mode using the HAL_QSPI_AutoPolling() or HAL_QSPI_AutoPolling_IT() functions : (++) Instruction phase : the mode used and if present the instruction opcode. (++) Address phase : the mode used and if present the size and the address value. (++) Alternate-bytes phase : the mode used and if present the size and the alternate bytes values. (++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase). (++) Data phase : the mode used. (++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay if activated. (++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode. (++) The size of the status bytes, the match value, the mask used, the match mode (OR/AND), the polling interval and the automatic stop activation. (#) After the configuration : (++) In polling mode, the output of the function is done when the status match is reached. The automatic stop is activated to avoid an infinite loop. (++) In interrupt mode, HAL_QSPI_StatusMatchCallback() will be called each time the status match is reached. *** Memory-mapped functional mode *** ===================================== [..] (#) Configure the command sequence and the memory-mapped functional mode using the HAL_QSPI_MemoryMapped() functions : (++) Instruction phase : the mode used and if present the instruction opcode. (++) Address phase : the mode used and the size. (++) Alternate-bytes phase : the mode used and if present the size and the alternate bytes values. (++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase). (++) Data phase : the mode used. (++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay if activated. (++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode. (++) The timeout activation and the timeout period. (#) After the configuration, the QuadSPI will be used as soon as an access on the AHB is done on the address range. HAL_QSPI_TimeOutCallback() will be called when the timeout expires. *** Errors management and abort functionality *** ================================================== [..] (#) HAL_QSPI_GetError() function gives the error raised during the last operation. (#) HAL_QSPI_Abort() and HAL_QSPI_AbortIT() functions aborts any on-going operation and flushes the fifo : (++) In polling mode, the output of the function is done when the transfer complete bit is set and the busy bit cleared. (++) In interrupt mode, HAL_QSPI_AbortCpltCallback() will be called when the transfer complete bi is set. *** Control functions *** ========================= [..] (#) HAL_QSPI_GetState() function gives the current state of the HAL QuadSPI driver. (#) HAL_QSPI_SetTimeout() function configures the timeout value used in the driver. (#) HAL_QSPI_SetFifoThreshold() function configures the threshold on the Fifo of the QSPI IP. (#) HAL_QSPI_GetFifoThreshold() function gives the current of the Fifo's threshold *** Workarounds linked to Silicon Limitation *** ==================================================== [..] (#) Workarounds Implemented inside HAL Driver (++) Extra data written in the FIFO at the end of a read transfer @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f4xx_hal.h" /** @addtogroup STM32F4xx_HAL_Driver * @{ */ /** @defgroup QSPI QSPI * @brief QSPI HAL module driver * @{ */ #ifdef HAL_QSPI_MODULE_ENABLED #if defined(STM32F446xx) || defined(STM32F469xx) || defined(STM32F479xx) || defined(STM32F412Zx) || defined(STM32F412Vx) || \ defined(STM32F412Rx) || defined(STM32F413xx) || defined(STM32F423xx) /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /** @addtogroup QSPI_Private_Constants * @{ */ #define QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE 0x00000000U /*!<Indirect write mode*/ #define QSPI_FUNCTIONAL_MODE_INDIRECT_READ ((uint32_t)QUADSPI_CCR_FMODE_0) /*!<Indirect read mode*/ #define QSPI_FUNCTIONAL_MODE_AUTO_POLLING ((uint32_t)QUADSPI_CCR_FMODE_1) /*!<Automatic polling mode*/ #define QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED ((uint32_t)QUADSPI_CCR_FMODE) /*!<Memory-mapped mode*/ /** * @} */ /* Private macro -------------------------------------------------------------*/ /** @addtogroup QSPI_Private_Macros QSPI Private Macros * @{ */ #define IS_QSPI_FUNCTIONAL_MODE(MODE) (((MODE) == QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE) || \ ((MODE) == QSPI_FUNCTIONAL_MODE_INDIRECT_READ) || \ ((MODE) == QSPI_FUNCTIONAL_MODE_AUTO_POLLING) || \ ((MODE) == QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED)) /** * @} */ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /** @addtogroup QSPI_Private_Functions QSPI Private Functions * @{ */ static void QSPI_DMARxCplt(DMA_HandleTypeDef *hdma); static void QSPI_DMATxCplt(DMA_HandleTypeDef *hdma); static void QSPI_DMARxHalfCplt(DMA_HandleTypeDef *hdma); static void QSPI_DMATxHalfCplt(DMA_HandleTypeDef *hdma); static void QSPI_DMAError(DMA_HandleTypeDef *hdma); static void QSPI_DMAAbortCplt(DMA_HandleTypeDef *hdma); static HAL_StatusTypeDef QSPI_WaitFlagStateUntilTimeout(QSPI_HandleTypeDef *hqspi, uint32_t Flag, FlagStatus State, uint32_t tickstart, uint32_t Timeout); static void QSPI_Config(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, uint32_t FunctionalMode); /** * @} */ /* Exported functions ---------------------------------------------------------*/ /** @defgroup QSPI_Exported_Functions QSPI Exported Functions * @{ */ /** @defgroup QSPI_Exported_Functions_Group1 Initialization/de-initialization functions * @brief Initialization and Configuration functions * @verbatim =============================================================================== ##### Initialization and Configuration functions ##### =============================================================================== [..] This subsection provides a set of functions allowing to : (+) Initialize the QuadSPI. (+) De-initialize the QuadSPI. @endverbatim * @{ */ /** * @brief Initializes the QSPI mode according to the specified parameters * in the QSPI_InitTypeDef and creates the associated handle. * @param hqspi qspi handle * @retval HAL status */ HAL_StatusTypeDef HAL_QSPI_Init(QSPI_HandleTypeDef *hqspi) { HAL_StatusTypeDef status = HAL_ERROR; uint32_t tickstart = HAL_GetTick(); /* Check the QSPI handle allocation */ if(hqspi == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_QSPI_ALL_INSTANCE(hqspi->Instance)); assert_param(IS_QSPI_CLOCK_PRESCALER(hqspi->Init.ClockPrescaler)); assert_param(IS_QSPI_FIFO_THRESHOLD(hqspi->Init.FifoThreshold)); assert_param(IS_QSPI_SSHIFT(hqspi->Init.SampleShifting)); assert_param(IS_QSPI_FLASH_SIZE(hqspi->Init.FlashSize)); assert_param(IS_QSPI_CS_HIGH_TIME(hqspi->Init.ChipSelectHighTime)); assert_param(IS_QSPI_CLOCK_MODE(hqspi->Init.ClockMode)); assert_param(IS_QSPI_DUAL_FLASH_MODE(hqspi->Init.DualFlash)); if (hqspi->Init.DualFlash != QSPI_DUALFLASH_ENABLE ) { assert_param(IS_QSPI_FLASH_ID(hqspi->Init.FlashID)); } /* Process locked */ __HAL_LOCK(hqspi); if(hqspi->State == HAL_QSPI_STATE_RESET) { /* Allocate lock resource and initialize it */ hqspi->Lock = HAL_UNLOCKED; /* Init the low level hardware : GPIO, CLOCK */ HAL_QSPI_MspInit(hqspi); /* Configure the default timeout for the QSPI memory access */ HAL_QSPI_SetTimeout(hqspi, HAL_QPSI_TIMEOUT_DEFAULT_VALUE); } /* Configure QSPI FIFO Threshold */ MODIFY_REG(hqspi->Instance->CR, QUADSPI_CR_FTHRES, ((hqspi->Init.FifoThreshold - 1U) << 8U)); /* Wait till BUSY flag reset */ status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout); if(status == HAL_OK) { /* Configure QSPI Clock Prescaler and Sample Shift */ MODIFY_REG(hqspi->Instance->CR,(QUADSPI_CR_PRESCALER | QUADSPI_CR_SSHIFT | QUADSPI_CR_FSEL | QUADSPI_CR_DFM), ((hqspi->Init.ClockPrescaler << 24U)| hqspi->Init.SampleShifting | hqspi->Init.FlashID| hqspi->Init.DualFlash )); /* Configure QSPI Flash Size, CS High Time and Clock Mode */ MODIFY_REG(hqspi->Instance->DCR, (QUADSPI_DCR_FSIZE | QUADSPI_DCR_CSHT | QUADSPI_DCR_CKMODE), ((hqspi->Init.FlashSize << 16U) | hqspi->Init.ChipSelectHighTime | hqspi->Init.ClockMode)); /* Enable the QSPI peripheral */ __HAL_QSPI_ENABLE(hqspi); /* Set QSPI error code to none */ hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; /* Initialize the QSPI state */ hqspi->State = HAL_QSPI_STATE_READY; } /* Release Lock */ __HAL_UNLOCK(hqspi); /* Return function status */ return status; } /** * @brief DeInitializes the QSPI peripheral * @param hqspi qspi handle * @retval HAL status */ HAL_StatusTypeDef HAL_QSPI_DeInit(QSPI_HandleTypeDef *hqspi) { /* Check the QSPI handle allocation */ if(hqspi == NULL) { return HAL_ERROR; } /* Process locked */ __HAL_LOCK(hqspi); /* Disable the QSPI Peripheral Clock */ __HAL_QSPI_DISABLE(hqspi); /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ HAL_QSPI_MspDeInit(hqspi); /* Set QSPI error code to none */ hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; /* Initialize the QSPI state */ hqspi->State = HAL_QSPI_STATE_RESET; /* Release Lock */ __HAL_UNLOCK(hqspi); return HAL_OK; } /** * @brief QSPI MSP Init * @param hqspi QSPI handle * @retval None */ __weak void HAL_QSPI_MspInit(QSPI_HandleTypeDef *hqspi) { /* Prevent unused argument(s) compilation warning */ UNUSED(hqspi); /* NOTE : This function should not be modified, when the callback is needed, the HAL_QSPI_MspInit can be implemented in the user file */ } /** * @brief QSPI MSP DeInit * @param hqspi QSPI handle * @retval None */ __weak void HAL_QSPI_MspDeInit(QSPI_HandleTypeDef *hqspi) { /* Prevent unused argument(s) compilation warning */ UNUSED(hqspi); /* NOTE : This function should not be modified, when the callback is needed, the HAL_QSPI_MspDeInit can be implemented in the user file */ } /** * @} */ /** @defgroup QSPI_Exported_Functions_Group2 IO operation functions * @brief QSPI Transmit/Receive functions * @verbatim =============================================================================== ##### IO operation functions ##### =============================================================================== [..] This subsection provides a set of functions allowing to : (+) Handle the interrupts. (+) Handle the command sequence. (+) Transmit data in blocking, interrupt or DMA mode. (+) Receive data in blocking, interrupt or DMA mode. (+) Manage the auto-polling functional mode. (+) Manage the memory-mapped functional mode. @endverbatim * @{ */ /** * @brief This function handles QSPI interrupt request. * @param hqspi QSPI handle * @retval None. */ void HAL_QSPI_IRQHandler(QSPI_HandleTypeDef *hqspi) { __IO uint32_t *data_reg; uint32_t flag = READ_REG(hqspi->Instance->SR); uint32_t itsource = READ_REG(hqspi->Instance->CR); /* QSPI Fifo Threshold interrupt occurred ----------------------------------*/ if(((flag & QSPI_FLAG_FT)!= RESET) && ((itsource & QSPI_IT_FT)!= RESET)) { data_reg = &hqspi->Instance->DR; if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_TX) { /* Transmission process */ while(__HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_FT) != 0U) { if (hqspi->TxXferCount > 0U) { /* Fill the FIFO until it is full */ *(__IO uint8_t *)data_reg = *hqspi->pTxBuffPtr++; hqspi->TxXferCount--; } else { /* No more data available for the transfer */ /* Disable the QSPI FIFO Threshold Interrupt */ __HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_FT); break; } } } else if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_RX) { /* Receiving Process */ while(__HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_FT) != 0U) { if (hqspi->RxXferCount > 0U) { /* Read the FIFO until it is empty */ *hqspi->pRxBuffPtr++ = *(__IO uint8_t *)data_reg; hqspi->RxXferCount--; } else { /* All data have been received for the transfer */ /* Disable the QSPI FIFO Threshold Interrupt */ __HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_FT); break; } } } /* FIFO Threshold callback */ HAL_QSPI_FifoThresholdCallback(hqspi); } /* QSPI Transfer Complete interrupt occurred -------------------------------*/ else if(((flag & QSPI_FLAG_TC)!= RESET) && ((itsource & QSPI_IT_TC)!= RESET)) { /* Clear interrupt */ WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_TC); /* Disable the QSPI FIFO Threshold, Transfer Error and Transfer complete Interrupts */ __HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_TC | QSPI_IT_TE | QSPI_IT_FT); /* Transfer complete callback */ if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_TX) { if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET) { /* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */ CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); /* Disable the DMA channel */ __HAL_DMA_DISABLE(hqspi->hdma); } /* Clear Busy bit */ HAL_QSPI_Abort_IT(hqspi); /* Change state of QSPI */ hqspi->State = HAL_QSPI_STATE_READY; /* TX Complete callback */ HAL_QSPI_TxCpltCallback(hqspi); } else if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_RX) { if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET) { /* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */ CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); /* Disable the DMA channel */ __HAL_DMA_DISABLE(hqspi->hdma); } else { data_reg = &hqspi->Instance->DR; while(READ_BIT(hqspi->Instance->SR, QUADSPI_SR_FLEVEL) != 0U) { if (hqspi->RxXferCount > 0U) { /* Read the last data received in the FIFO until it is empty */ *hqspi->pRxBuffPtr++ = *(__IO uint8_t *)data_reg; hqspi->RxXferCount--; } else { /* All data have been received for the transfer */ break; } } } /* Workaround - Extra data written in the FIFO at the end of a read transfer */ HAL_QSPI_Abort_IT(hqspi); /* Change state of QSPI */ hqspi->State = HAL_QSPI_STATE_READY; /* RX Complete callback */ HAL_QSPI_RxCpltCallback(hqspi); } else if(hqspi->State == HAL_QSPI_STATE_BUSY) { /* Change state of QSPI */ hqspi->State = HAL_QSPI_STATE_READY; /* Command Complete callback */ HAL_QSPI_CmdCpltCallback(hqspi); } else if(hqspi->State == HAL_QSPI_STATE_ABORT) { /* Change state of QSPI */ hqspi->State = HAL_QSPI_STATE_READY; if (hqspi->ErrorCode == HAL_QSPI_ERROR_NONE) { /* Abort called by the user */ /* Abort Complete callback */ HAL_QSPI_AbortCpltCallback(hqspi); } else { /* Abort due to an error (eg : DMA error) */ /* Error callback */ HAL_QSPI_ErrorCallback(hqspi); } } } /* QSPI Status Match interrupt occurred ------------------------------------*/ else if(((flag & QSPI_FLAG_SM)!= RESET) && ((itsource & QSPI_IT_SM)!= RESET)) { /* Clear interrupt */ WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_SM); /* Check if the automatic poll mode stop is activated */ if(READ_BIT(hqspi->Instance->CR, QUADSPI_CR_APMS) != 0U) { /* Disable the QSPI Transfer Error and Status Match Interrupts */ __HAL_QSPI_DISABLE_IT(hqspi, (QSPI_IT_SM | QSPI_IT_TE)); /* Change state of QSPI */ hqspi->State = HAL_QSPI_STATE_READY; } /* Status match callback */ HAL_QSPI_StatusMatchCallback(hqspi); } /* QSPI Transfer Error interrupt occurred ----------------------------------*/ else if(((flag & QSPI_FLAG_TE)!= RESET) && ((itsource & QSPI_IT_TE)!= RESET)) { /* Clear interrupt */ WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_TE); /* Disable all the QSPI Interrupts */ __HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_SM | QSPI_IT_TC | QSPI_IT_TE | QSPI_IT_FT); /* Set error code */ hqspi->ErrorCode |= HAL_QSPI_ERROR_TRANSFER; if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET) { /* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */ CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); /* Disable the DMA channel */ hqspi->hdma->XferAbortCallback = QSPI_DMAAbortCplt; HAL_DMA_Abort_IT(hqspi->hdma); } else { /* Change state of QSPI */ hqspi->State = HAL_QSPI_STATE_READY; /* Error callback */ HAL_QSPI_ErrorCallback(hqspi); } } /* QSPI Timeout interrupt occurred -----------------------------------------*/ else if(((flag & QSPI_FLAG_TO)!= RESET) && ((itsource & QSPI_IT_TO)!= RESET)) { /* Clear interrupt */ WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_TO); /* Time out callback */ HAL_QSPI_TimeOutCallback(hqspi); } } /** * @brief Sets the command configuration. * @param hqspi QSPI handle * @param cmd structure that contains the command configuration information * @param Timeout Time out duration * @note This function is used only in Indirect Read or Write Modes * @retval HAL status */ HAL_StatusTypeDef HAL_QSPI_Command(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, uint32_t Timeout) { HAL_StatusTypeDef status = HAL_ERROR; uint32_t tickstart = HAL_GetTick(); /* Check the parameters */ assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode)); if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) { assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction)); } assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode)); if (cmd->AddressMode != QSPI_ADDRESS_NONE) { assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize)); } assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode)); if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) { assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize)); } assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles)); assert_param(IS_QSPI_DATA_MODE(cmd->DataMode)); assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode)); assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle)); assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode)); /* Process locked */ __HAL_LOCK(hqspi); if(hqspi->State == HAL_QSPI_STATE_READY) { hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; /* Update QSPI state */ hqspi->State = HAL_QSPI_STATE_BUSY; /* Wait till BUSY flag reset */ status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, Timeout); if (status == HAL_OK) { /* Call the configuration function */ QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE); if (cmd->DataMode == QSPI_DATA_NONE) { /* When there is no data phase, the transfer start as soon as the configuration is done so wait until TC flag is set to go back in idle state */ status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, Timeout); if (status == HAL_OK) { __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); /* Update QSPI state */ hqspi->State = HAL_QSPI_STATE_READY; } } else { /* Update QSPI state */ hqspi->State = HAL_QSPI_STATE_READY; } } } else { status = HAL_BUSY; } /* Process unlocked */ __HAL_UNLOCK(hqspi); /* Return function status */ return status; } /** * @brief Sets the command configuration in interrupt mode. * @param hqspi QSPI handle * @param cmd structure that contains the command configuration information * @note This function is used only in Indirect Read or Write Modes * @retval HAL status */ HAL_StatusTypeDef HAL_QSPI_Command_IT(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd) { __IO uint32_t count = 0U; HAL_StatusTypeDef status = HAL_OK; /* Check the parameters */ assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode)); if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) { assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction)); } assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode)); if (cmd->AddressMode != QSPI_ADDRESS_NONE) { assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize)); } assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode)); if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) { assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize)); } assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles)); assert_param(IS_QSPI_DATA_MODE(cmd->DataMode)); assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode)); assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle)); assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode)); /* Process locked */ __HAL_LOCK(hqspi); if(hqspi->State == HAL_QSPI_STATE_READY) { hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; /* Update QSPI state */ hqspi->State = HAL_QSPI_STATE_BUSY; /* Wait till BUSY flag reset */ count = (hqspi->Timeout) * (SystemCoreClock / 16U / 1000U); do { if (count-- == 0U) { hqspi->State = HAL_QSPI_STATE_ERROR; hqspi->ErrorCode |= HAL_QSPI_ERROR_TIMEOUT; status = HAL_TIMEOUT; } } while ((__HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_BUSY)) != RESET); if (status == HAL_OK) { if (cmd->DataMode == QSPI_DATA_NONE) { /* Clear interrupt */ __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_TC); } /* Call the configuration function */ QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE); if (cmd->DataMode == QSPI_DATA_NONE) { /* When there is no data phase, the transfer start as soon as the configuration is done so activate TC and TE interrupts */ /* Process unlocked */ __HAL_UNLOCK(hqspi); /* Enable the QSPI Transfer Error Interrupt */ __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_TC); } else { /* Update QSPI state */ hqspi->State = HAL_QSPI_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hqspi); } } else { /* Process unlocked */ __HAL_UNLOCK(hqspi); } } else { status = HAL_BUSY; /* Process unlocked */ __HAL_UNLOCK(hqspi); } /* Return function status */ return status; } /** * @brief Transmit an amount of data in blocking mode. * @param hqspi QSPI handle * @param pData pointer to data buffer * @param Timeout Time out duration * @note This function is used only in Indirect Write Mode * @retval HAL status */ HAL_StatusTypeDef HAL_QSPI_Transmit(QSPI_HandleTypeDef *hqspi, uint8_t *pData, uint32_t Timeout) { HAL_StatusTypeDef status = HAL_OK; uint32_t tickstart = HAL_GetTick(); __IO uint32_t *data_reg = &hqspi->Instance->DR; /* Process locked */ __HAL_LOCK(hqspi); if(hqspi->State == HAL_QSPI_STATE_READY) { hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; if(pData != NULL ) { /* Update state */ hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX; /* Configure counters and size of the handle */ hqspi->TxXferCount = READ_REG(hqspi->Instance->DLR) + 1U; hqspi->TxXferSize = READ_REG(hqspi->Instance->DLR) + 1U; hqspi->pTxBuffPtr = pData; /* Configure QSPI: CCR register with functional as indirect write */ MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE); while(hqspi->TxXferCount > 0U) { /* Wait until FT flag is set to send data */ status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_FT, SET, tickstart, Timeout); if (status != HAL_OK) { break; } *(__IO uint8_t *)data_reg = *hqspi->pTxBuffPtr++; hqspi->TxXferCount--; } if (status == HAL_OK) { /* Wait until TC flag is set to go back in idle state */ status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, Timeout); if (status == HAL_OK) { /* Clear Transfer Complete bit */ __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); /* Clear Busy bit */ status = HAL_QSPI_Abort(hqspi); } } /* Update QSPI state */ hqspi->State = HAL_QSPI_STATE_READY; } else { hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; status = HAL_ERROR; } } else { status = HAL_BUSY; } /* Process unlocked */ __HAL_UNLOCK(hqspi); return status; } /** * @brief Receive an amount of data in blocking mode * @param hqspi QSPI handle * @param pData pointer to data buffer * @param Timeout Time out duration * @note This function is used only in Indirect Read Mode * @retval HAL status */ HAL_StatusTypeDef HAL_QSPI_Receive(QSPI_HandleTypeDef *hqspi, uint8_t *pData, uint32_t Timeout) { HAL_StatusTypeDef status = HAL_OK; uint32_t tickstart = HAL_GetTick(); uint32_t addr_reg = READ_REG(hqspi->Instance->AR); __IO uint32_t *data_reg = &hqspi->Instance->DR; /* Process locked */ __HAL_LOCK(hqspi); if(hqspi->State == HAL_QSPI_STATE_READY) { hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; if(pData != NULL ) { /* Update state */ hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX; /* Configure counters and size of the handle */ hqspi->RxXferCount = READ_REG(hqspi->Instance->DLR) + 1U; hqspi->RxXferSize = READ_REG(hqspi->Instance->DLR) + 1U; hqspi->pRxBuffPtr = pData; /* Configure QSPI: CCR register with functional as indirect read */ MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ); /* Start the transfer by re-writing the address in AR register */ WRITE_REG(hqspi->Instance->AR, addr_reg); while(hqspi->RxXferCount > 0U) { /* Wait until FT or TC flag is set to read received data */ status = QSPI_WaitFlagStateUntilTimeout(hqspi, (QSPI_FLAG_FT | QSPI_FLAG_TC), SET, tickstart, Timeout); if (status != HAL_OK) { break; } *hqspi->pRxBuffPtr++ = *(__IO uint8_t *)data_reg; hqspi->RxXferCount--; } if (status == HAL_OK) { /* Wait until TC flag is set to go back in idle state */ status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, Timeout); if (status == HAL_OK) { /* Clear Transfer Complete bit */ __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); /* Workaround - Extra data written in the FIFO at the end of a read transfer */ status = HAL_QSPI_Abort(hqspi); } } /* Update QSPI state */ hqspi->State = HAL_QSPI_STATE_READY; } else { hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; status = HAL_ERROR; } } else { status = HAL_BUSY; } /* Process unlocked */ __HAL_UNLOCK(hqspi); return status; } /** * @brief Send an amount of data in interrupt mode * @param hqspi QSPI handle * @param pData pointer to data buffer * @note This function is used only in Indirect Write Mode * @retval HAL status */ HAL_StatusTypeDef HAL_QSPI_Transmit_IT(QSPI_HandleTypeDef *hqspi, uint8_t *pData) { HAL_StatusTypeDef status = HAL_OK; /* Process locked */ __HAL_LOCK(hqspi); if(hqspi->State == HAL_QSPI_STATE_READY) { hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; if(pData != NULL ) { /* Update state */ hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX; /* Configure counters and size of the handle */ hqspi->TxXferCount = READ_REG(hqspi->Instance->DLR) + 1U; hqspi->TxXferSize = READ_REG(hqspi->Instance->DLR) + 1U; hqspi->pTxBuffPtr = pData; /* Configure QSPI: CCR register with functional as indirect write */ MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE); /* Clear interrupt */ __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_TC); /* Process unlocked */ __HAL_UNLOCK(hqspi); /* Enable the QSPI transfer error, FIFO threshold and transfer complete Interrupts */ __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_FT | QSPI_IT_TC); } else { hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; status = HAL_ERROR; /* Process unlocked */ __HAL_UNLOCK(hqspi); } } else { status = HAL_BUSY; /* Process unlocked */ __HAL_UNLOCK(hqspi); } return status; } /** * @brief Receive an amount of data in no-blocking mode with Interrupt * @param hqspi QSPI handle * @param pData pointer to data buffer * @note This function is used only in Indirect Read Mode * @retval HAL status */ HAL_StatusTypeDef HAL_QSPI_Receive_IT(QSPI_HandleTypeDef *hqspi, uint8_t *pData) { HAL_StatusTypeDef status = HAL_OK; uint32_t addr_reg = READ_REG(hqspi->Instance->AR); /* Process locked */ __HAL_LOCK(hqspi); if(hqspi->State == HAL_QSPI_STATE_READY) { hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; if(pData != NULL ) { /* Update state */ hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX; /* Configure counters and size of the handle */ hqspi->RxXferCount = READ_REG(hqspi->Instance->DLR) + 1U; hqspi->RxXferSize = READ_REG(hqspi->Instance->DLR) + 1U; hqspi->pRxBuffPtr = pData; /* Configure QSPI: CCR register with functional as indirect read */ MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ); /* Start the transfer by re-writing the address in AR register */ WRITE_REG(hqspi->Instance->AR, addr_reg); /* Clear interrupt */ __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_TC); /* Process unlocked */ __HAL_UNLOCK(hqspi); /* Enable the QSPI transfer error, FIFO threshold and transfer complete Interrupts */ __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_FT | QSPI_IT_TC); } else { hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; status = HAL_ERROR; /* Process unlocked */ __HAL_UNLOCK(hqspi); } } else { status = HAL_BUSY; /* Process unlocked */ __HAL_UNLOCK(hqspi); } return status; } /** * @brief Sends an amount of data in non blocking mode with DMA. * @param hqspi QSPI handle * @param pData pointer to data buffer * @note This function is used only in Indirect Write Mode * @note If DMA peripheral access is configured as halfword, the number * of data and the fifo threshold should be aligned on halfword * @note If DMA peripheral access is configured as word, the number * of data and the fifo threshold should be aligned on word * @retval HAL status */ HAL_StatusTypeDef HAL_QSPI_Transmit_DMA(QSPI_HandleTypeDef *hqspi, uint8_t *pData) { HAL_StatusTypeDef status = HAL_OK; uint32_t *tmp; uint32_t data_size = (READ_REG(hqspi->Instance->DLR) + 1U); /* Process locked */ __HAL_LOCK(hqspi); if(hqspi->State == HAL_QSPI_STATE_READY) { /* Clear the error code */ hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; if(pData != NULL ) { /* Configure counters of the handle */ if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_BYTE) { hqspi->TxXferCount = data_size; } else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_HALFWORD) { if (((data_size % 2U) != 0U) || ((hqspi->Init.FifoThreshold % 2U) != 0U)) { /* The number of data or the fifo threshold is not aligned on halfword => no transfer possible with DMA peripheral access configured as halfword */ hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; status = HAL_ERROR; /* Process unlocked */ __HAL_UNLOCK(hqspi); } else { hqspi->TxXferCount = (data_size >> 1); } } else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_WORD) { if (((data_size % 4U) != 0U) || ((hqspi->Init.FifoThreshold % 4U) != 0U)) { /* The number of data or the fifo threshold is not aligned on word => no transfer possible with DMA peripheral access configured as word */ hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; status = HAL_ERROR; /* Process unlocked */ __HAL_UNLOCK(hqspi); } else { hqspi->TxXferCount = (data_size >> 2U); } } if (status == HAL_OK) { /* Update state */ hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX; /* Clear interrupt */ __HAL_QSPI_CLEAR_FLAG(hqspi, (QSPI_FLAG_TE | QSPI_FLAG_TC)); /* Configure size and pointer of the handle */ hqspi->TxXferSize = hqspi->TxXferCount; hqspi->pTxBuffPtr = pData; /* Configure QSPI: CCR register with functional mode as indirect write */ MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE); /* Set the QSPI DMA transfer complete callback */ hqspi->hdma->XferCpltCallback = QSPI_DMATxCplt; /* Set the QSPI DMA Half transfer complete callback */ hqspi->hdma->XferHalfCpltCallback = QSPI_DMATxHalfCplt; /* Set the DMA error callback */ hqspi->hdma->XferErrorCallback = QSPI_DMAError; /* Clear the DMA abort callback */ hqspi->hdma->XferAbortCallback = NULL; #if defined (QSPI1_V2_1L) /* Bug "ES0305 section 2.1.8 In some specific cases, DMA2 data corruption occurs when managing AHB and APB2 peripherals in a concurrent way" Workaround Implementation: Change the following configuration of DMA peripheral - Enable peripheral increment - Disable memory increment - Set DMA direction as peripheral to memory mode */ /* Enable peripheral increment mode of the DMA */ hqspi->hdma->Init.PeriphInc = DMA_PINC_ENABLE; /* Disable memory increment mode of the DMA */ hqspi->hdma->Init.MemInc = DMA_MINC_DISABLE; /* Update peripheral/memory increment mode bits */ MODIFY_REG(hqspi->hdma->Instance->CR, (DMA_SxCR_MINC | DMA_SxCR_PINC), (hqspi->hdma->Init.MemInc | hqspi->hdma->Init.PeriphInc)); /* Configure the direction of the DMA */ hqspi->hdma->Init.Direction = DMA_PERIPH_TO_MEMORY; #else /* Configure the direction of the DMA */ hqspi->hdma->Init.Direction = DMA_MEMORY_TO_PERIPH; #endif /* QSPI1_V2_1L */ /* Update direction mode bit */ MODIFY_REG(hqspi->hdma->Instance->CR, DMA_SxCR_DIR, hqspi->hdma->Init.Direction); /* Enable the QSPI transmit DMA Channel */ tmp = (uint32_t*)&pData; HAL_DMA_Start_IT(hqspi->hdma, *(uint32_t*)tmp, (uint32_t)&hqspi->Instance->DR, hqspi->TxXferSize); /* Process unlocked */ __HAL_UNLOCK(hqspi); /* Enable the QSPI transfer error Interrupt */ __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE); /* Enable the DMA transfer by setting the DMAEN bit in the QSPI CR register */ SET_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); } } else { hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; status = HAL_ERROR; /* Process unlocked */ __HAL_UNLOCK(hqspi); } } else { status = HAL_BUSY; /* Process unlocked */ __HAL_UNLOCK(hqspi); } return status; } /** * @brief Receives an amount of data in non blocking mode with DMA. * @param hqspi QSPI handle * @param pData pointer to data buffer. * @note This function is used only in Indirect Read Mode * @note If DMA peripheral access is configured as halfword, the number * of data and the fifo threshold should be aligned on halfword * @note If DMA peripheral access is configured as word, the number * of data and the fifo threshold should be aligned on word * @retval HAL status */ HAL_StatusTypeDef HAL_QSPI_Receive_DMA(QSPI_HandleTypeDef *hqspi, uint8_t *pData) { HAL_StatusTypeDef status = HAL_OK; uint32_t *tmp; uint32_t addr_reg = READ_REG(hqspi->Instance->AR); uint32_t data_size = (READ_REG(hqspi->Instance->DLR) + 1U); /* Process locked */ __HAL_LOCK(hqspi); if(hqspi->State == HAL_QSPI_STATE_READY) { hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; if(pData != NULL ) { /* Configure counters of the handle */ if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_BYTE) { hqspi->RxXferCount = data_size; } else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_HALFWORD) { if (((data_size % 2U) != 0U) || ((hqspi->Init.FifoThreshold % 2U) != 0U)) { /* The number of data or the fifo threshold is not aligned on halfword => no transfer possible with DMA peripheral access configured as halfword */ hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; status = HAL_ERROR; /* Process unlocked */ __HAL_UNLOCK(hqspi); } else { hqspi->RxXferCount = (data_size >> 1U); } } else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_WORD) { if (((data_size % 4U) != 0U) || ((hqspi->Init.FifoThreshold % 4U) != 0U)) { /* The number of data or the fifo threshold is not aligned on word => no transfer possible with DMA peripheral access configured as word */ hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; status = HAL_ERROR; /* Process unlocked */ __HAL_UNLOCK(hqspi); } else { hqspi->RxXferCount = (data_size >> 2U); } } if (status == HAL_OK) { /* Update state */ hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX; /* Clear interrupt */ __HAL_QSPI_CLEAR_FLAG(hqspi, (QSPI_FLAG_TE | QSPI_FLAG_TC)); /* Configure size and pointer of the handle */ hqspi->RxXferSize = hqspi->RxXferCount; hqspi->pRxBuffPtr = pData; /* Set the QSPI DMA transfer complete callback */ hqspi->hdma->XferCpltCallback = QSPI_DMARxCplt; /* Set the QSPI DMA Half transfer complete callback */ hqspi->hdma->XferHalfCpltCallback = QSPI_DMARxHalfCplt; /* Set the DMA error callback */ hqspi->hdma->XferErrorCallback = QSPI_DMAError; /* Clear the DMA abort callback */ hqspi->hdma->XferAbortCallback = NULL; #if defined (QSPI1_V2_1L) /* Bug "ES0305 section 2.1.8 In some specific cases, DMA2 data corruption occurs when managing AHB and APB2 peripherals in a concurrent way" Workaround Implementation: Change the following configuration of DMA peripheral - Enable peripheral increment - Disable memory increment - Set DMA direction as memory to peripheral mode - 4 Extra words (32-bits) are added for read operation to guarantee the last data is transferred from DMA FIFO to RAM memory */ /* Enable peripheral increment of the DMA */ hqspi->hdma->Init.PeriphInc = DMA_PINC_ENABLE; /* Disable memory increment of the DMA */ hqspi->hdma->Init.MemInc = DMA_MINC_DISABLE; /* Update peripheral/memory increment mode bits */ MODIFY_REG(hqspi->hdma->Instance->CR, (DMA_SxCR_MINC | DMA_SxCR_PINC), (hqspi->hdma->Init.MemInc | hqspi->hdma->Init.PeriphInc)); /* Configure the direction of the DMA */ hqspi->hdma->Init.Direction = DMA_MEMORY_TO_PERIPH; /* 4 Extra words (32-bits) are needed for read operation to guarantee the last data is transferred from DMA FIFO to RAM memory */ WRITE_REG(hqspi->Instance->DLR, (data_size - 1U + 16U)); /* Update direction mode bit */ MODIFY_REG(hqspi->hdma->Instance->CR, DMA_SxCR_DIR, hqspi->hdma->Init.Direction); /* Configure QSPI: CCR register with functional as indirect read */ MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ); /* Start the transfer by re-writing the address in AR register */ WRITE_REG(hqspi->Instance->AR, addr_reg); /* Enable the DMA Channel */ tmp = (uint32_t*)&pData; HAL_DMA_Start_IT(hqspi->hdma, (uint32_t)&hqspi->Instance->DR, *(uint32_t*)tmp, hqspi->RxXferSize); /* Enable the DMA transfer by setting the DMAEN bit in the QSPI CR register */ SET_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); /* Process unlocked */ __HAL_UNLOCK(hqspi); /* Enable the QSPI transfer error Interrupt */ __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE); #else /* Configure the direction of the DMA */ hqspi->hdma->Init.Direction = DMA_PERIPH_TO_MEMORY; MODIFY_REG(hqspi->hdma->Instance->CR, DMA_SxCR_DIR, hqspi->hdma->Init.Direction); /* Enable the DMA Channel */ tmp = (uint32_t*)&pData; HAL_DMA_Start_IT(hqspi->hdma, (uint32_t)&hqspi->Instance->DR, *(uint32_t*)tmp, hqspi->RxXferSize); /* Configure QSPI: CCR register with functional as indirect read */ MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ); /* Start the transfer by re-writing the address in AR register */ WRITE_REG(hqspi->Instance->AR, addr_reg); /* Process unlocked */ __HAL_UNLOCK(hqspi); /* Enable the QSPI transfer error Interrupt */ __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE); /* Enable the DMA transfer by setting the DMAEN bit in the QSPI CR register */ SET_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); #endif /* QSPI1_V2_1L */ } } else { hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; status = HAL_ERROR; /* Process unlocked */ __HAL_UNLOCK(hqspi); } } else { status = HAL_BUSY; /* Process unlocked */ __HAL_UNLOCK(hqspi); } return status; } /** * @brief Configure the QSPI Automatic Polling Mode in blocking mode. * @param hqspi QSPI handle * @param cmd structure that contains the command configuration information. * @param cfg structure that contains the polling configuration information. * @param Timeout Time out duration * @note This function is used only in Automatic Polling Mode * @retval HAL status */ HAL_StatusTypeDef HAL_QSPI_AutoPolling(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_AutoPollingTypeDef *cfg, uint32_t Timeout) { HAL_StatusTypeDef status = HAL_ERROR; uint32_t tickstart = HAL_GetTick(); /* Check the parameters */ assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode)); if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) { assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction)); } assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode)); if (cmd->AddressMode != QSPI_ADDRESS_NONE) { assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize)); } assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode)); if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) { assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize)); } assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles)); assert_param(IS_QSPI_DATA_MODE(cmd->DataMode)); assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode)); assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle)); assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode)); assert_param(IS_QSPI_INTERVAL(cfg->Interval)); assert_param(IS_QSPI_STATUS_BYTES_SIZE(cfg->StatusBytesSize)); assert_param(IS_QSPI_MATCH_MODE(cfg->MatchMode)); /* Process locked */ __HAL_LOCK(hqspi); if(hqspi->State == HAL_QSPI_STATE_READY) { hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; /* Update state */ hqspi->State = HAL_QSPI_STATE_BUSY_AUTO_POLLING; /* Wait till BUSY flag reset */ status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, Timeout); if (status == HAL_OK) { /* Configure QSPI: PSMAR register with the status match value */ WRITE_REG(hqspi->Instance->PSMAR, cfg->Match); /* Configure QSPI: PSMKR register with the status mask value */ WRITE_REG(hqspi->Instance->PSMKR, cfg->Mask); /* Configure QSPI: PIR register with the interval value */ WRITE_REG(hqspi->Instance->PIR, cfg->Interval); /* Configure QSPI: CR register with Match mode and Automatic stop enabled (otherwise there will be an infinite loop in blocking mode) */ MODIFY_REG(hqspi->Instance->CR, (QUADSPI_CR_PMM | QUADSPI_CR_APMS), (cfg->MatchMode | QSPI_AUTOMATIC_STOP_ENABLE)); /* Call the configuration function */ cmd->NbData = cfg->StatusBytesSize; QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_AUTO_POLLING); /* Wait until SM flag is set to go back in idle state */ status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_SM, SET, tickstart, Timeout); if (status == HAL_OK) { __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_SM); /* Update state */ hqspi->State = HAL_QSPI_STATE_READY; } } } else { status = HAL_BUSY; } /* Process unlocked */ __HAL_UNLOCK(hqspi); /* Return function status */ return status; } /** * @brief Configure the QSPI Automatic Polling Mode in non-blocking mode. * @param hqspi QSPI handle * @param cmd structure that contains the command configuration information. * @param cfg structure that contains the polling configuration information. * @note This function is used only in Automatic Polling Mode * @retval HAL status */ HAL_StatusTypeDef HAL_QSPI_AutoPolling_IT(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_AutoPollingTypeDef *cfg) { __IO uint32_t count = 0U; HAL_StatusTypeDef status = HAL_OK; /* Check the parameters */ assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode)); if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) { assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction)); } assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode)); if (cmd->AddressMode != QSPI_ADDRESS_NONE) { assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize)); } assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode)); if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) { assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize)); } assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles)); assert_param(IS_QSPI_DATA_MODE(cmd->DataMode)); assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode)); assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle)); assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode)); assert_param(IS_QSPI_INTERVAL(cfg->Interval)); assert_param(IS_QSPI_STATUS_BYTES_SIZE(cfg->StatusBytesSize)); assert_param(IS_QSPI_MATCH_MODE(cfg->MatchMode)); assert_param(IS_QSPI_AUTOMATIC_STOP(cfg->AutomaticStop)); /* Process locked */ __HAL_LOCK(hqspi); if(hqspi->State == HAL_QSPI_STATE_READY) { hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; /* Update state */ hqspi->State = HAL_QSPI_STATE_BUSY_AUTO_POLLING; /* Wait till BUSY flag reset */ count = (hqspi->Timeout) * (SystemCoreClock / 16U / 1000U); do { if (count-- == 0U) { hqspi->State = HAL_QSPI_STATE_ERROR; hqspi->ErrorCode |= HAL_QSPI_ERROR_TIMEOUT; status = HAL_TIMEOUT; } } while ((__HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_BUSY)) != RESET); if (status == HAL_OK) { /* Configure QSPI: PSMAR register with the status match value */ WRITE_REG(hqspi->Instance->PSMAR, cfg->Match); /* Configure QSPI: PSMKR register with the status mask value */ WRITE_REG(hqspi->Instance->PSMKR, cfg->Mask); /* Configure QSPI: PIR register with the interval value */ WRITE_REG(hqspi->Instance->PIR, cfg->Interval); /* Configure QSPI: CR register with Match mode and Automatic stop mode */ MODIFY_REG(hqspi->Instance->CR, (QUADSPI_CR_PMM | QUADSPI_CR_APMS), (cfg->MatchMode | cfg->AutomaticStop)); /* Clear interrupt */ __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_SM); /* Call the configuration function */ cmd->NbData = cfg->StatusBytesSize; QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_AUTO_POLLING); /* Process unlocked */ __HAL_UNLOCK(hqspi); /* Enable the QSPI Transfer Error and status match Interrupt */ __HAL_QSPI_ENABLE_IT(hqspi, (QSPI_IT_SM | QSPI_IT_TE)); } else { /* Process unlocked */ __HAL_UNLOCK(hqspi); } } else { status = HAL_BUSY; /* Process unlocked */ __HAL_UNLOCK(hqspi); } /* Return function status */ return status; } /** * @brief Configure the Memory Mapped mode. * @param hqspi QSPI handle * @param cmd structure that contains the command configuration information. * @param cfg structure that contains the memory mapped configuration information. * @note This function is used only in Memory mapped Mode * @retval HAL status */ HAL_StatusTypeDef HAL_QSPI_MemoryMapped(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_MemoryMappedTypeDef *cfg) { HAL_StatusTypeDef status = HAL_ERROR; uint32_t tickstart = HAL_GetTick(); /* Check the parameters */ assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode)); if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) { assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction)); } assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode)); if (cmd->AddressMode != QSPI_ADDRESS_NONE) { assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize)); } assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode)); if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) { assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize)); } assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles)); assert_param(IS_QSPI_DATA_MODE(cmd->DataMode)); assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode)); assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle)); assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode)); assert_param(IS_QSPI_TIMEOUT_ACTIVATION(cfg->TimeOutActivation)); /* Process locked */ __HAL_LOCK(hqspi); if(hqspi->State == HAL_QSPI_STATE_READY) { hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; /* Update state */ hqspi->State = HAL_QSPI_STATE_BUSY_MEM_MAPPED; /* Wait till BUSY flag reset */ status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout); if (status == HAL_OK) { /* Configure QSPI: CR register with timeout counter enable */ MODIFY_REG(hqspi->Instance->CR, QUADSPI_CR_TCEN, cfg->TimeOutActivation); if (cfg->TimeOutActivation == QSPI_TIMEOUT_COUNTER_ENABLE) { assert_param(IS_QSPI_TIMEOUT_PERIOD(cfg->TimeOutPeriod)); /* Configure QSPI: LPTR register with the low-power timeout value */ WRITE_REG(hqspi->Instance->LPTR, cfg->TimeOutPeriod); /* Clear interrupt */ __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TO); /* Enable the QSPI TimeOut Interrupt */ __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TO); } /* Call the configuration function */ QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED); } } else { status = HAL_BUSY; } /* Process unlocked */ __HAL_UNLOCK(hqspi); /* Return function status */ return status; } /** * @brief Transfer Error callbacks * @param hqspi QSPI handle * @retval None */ __weak void HAL_QSPI_ErrorCallback(QSPI_HandleTypeDef *hqspi) { /* Prevent unused argument(s) compilation warning */ UNUSED(hqspi); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_QSPI_ErrorCallback could be implemented in the user file */ } /** * @brief Abort completed callback. * @param hqspi QSPI handle * @retval None */ __weak void HAL_QSPI_AbortCpltCallback(QSPI_HandleTypeDef *hqspi) { /* Prevent unused argument(s) compilation warning */ UNUSED(hqspi); /* NOTE: This function should not be modified, when the callback is needed, the HAL_QSPI_AbortCpltCallback could be implemented in the user file */ } /** * @brief Command completed callback. * @param hqspi QSPI handle * @retval None */ __weak void HAL_QSPI_CmdCpltCallback(QSPI_HandleTypeDef *hqspi) { /* Prevent unused argument(s) compilation warning */ UNUSED(hqspi); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_QSPI_CmdCpltCallback could be implemented in the user file */ } /** * @brief Rx Transfer completed callbacks. * @param hqspi QSPI handle * @retval None */ __weak void HAL_QSPI_RxCpltCallback(QSPI_HandleTypeDef *hqspi) { /* Prevent unused argument(s) compilation warning */ UNUSED(hqspi); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_QSPI_RxCpltCallback could be implemented in the user file */ } /** * @brief Tx Transfer completed callbacks. * @param hqspi QSPI handle * @retval None */ __weak void HAL_QSPI_TxCpltCallback(QSPI_HandleTypeDef *hqspi) { /* Prevent unused argument(s) compilation warning */ UNUSED(hqspi); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_QSPI_TxCpltCallback could be implemented in the user file */ } /** * @brief Rx Half Transfer completed callbacks. * @param hqspi QSPI handle * @retval None */ __weak void HAL_QSPI_RxHalfCpltCallback(QSPI_HandleTypeDef *hqspi) { /* Prevent unused argument(s) compilation warning */ UNUSED(hqspi); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_QSPI_RxHalfCpltCallback could be implemented in the user file */ } /** * @brief Tx Half Transfer completed callbacks. * @param hqspi QSPI handle * @retval None */ __weak void HAL_QSPI_TxHalfCpltCallback(QSPI_HandleTypeDef *hqspi) { /* Prevent unused argument(s) compilation warning */ UNUSED(hqspi); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_QSPI_TxHalfCpltCallback could be implemented in the user file */ } /** * @brief FIFO Threshold callbacks * @param hqspi QSPI handle * @retval None */ __weak void HAL_QSPI_FifoThresholdCallback(QSPI_HandleTypeDef *hqspi) { /* Prevent unused argument(s) compilation warning */ UNUSED(hqspi); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_QSPI_FIFOThresholdCallback could be implemented in the user file */ } /** * @brief Status Match callbacks * @param hqspi QSPI handle * @retval None */ __weak void HAL_QSPI_StatusMatchCallback(QSPI_HandleTypeDef *hqspi) { /* Prevent unused argument(s) compilation warning */ UNUSED(hqspi); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_QSPI_StatusMatchCallback could be implemented in the user file */ } /** * @brief Timeout callbacks * @param hqspi QSPI handle * @retval None */ __weak void HAL_QSPI_TimeOutCallback(QSPI_HandleTypeDef *hqspi) { /* Prevent unused argument(s) compilation warning */ UNUSED(hqspi); /* NOTE : This function Should not be modified, when the callback is needed, the HAL_QSPI_TimeOutCallback could be implemented in the user file */ } /** * @} */ /** @defgroup QSPI_Exported_Functions_Group3 Peripheral Control and State functions * @brief QSPI control and State functions * @verbatim =============================================================================== ##### Peripheral Control and State functions ##### =============================================================================== [..] This subsection provides a set of functions allowing to : (+) Check in run-time the state of the driver. (+) Check the error code set during last operation. (+) Abort any operation. @endverbatim * @{ */ /** * @brief Return the QSPI handle state. * @param hqspi QSPI handle * @retval HAL state */ HAL_QSPI_StateTypeDef HAL_QSPI_GetState(QSPI_HandleTypeDef *hqspi) { /* Return QSPI handle state */ return hqspi->State; } /** * @brief Return the QSPI error code * @param hqspi QSPI handle * @retval QSPI Error Code */ uint32_t HAL_QSPI_GetError(QSPI_HandleTypeDef *hqspi) { return hqspi->ErrorCode; } /** * @brief Abort the current transmission * @param hqspi QSPI handle * @retval HAL status */ HAL_StatusTypeDef HAL_QSPI_Abort(QSPI_HandleTypeDef *hqspi) { HAL_StatusTypeDef status = HAL_OK; uint32_t tickstart = HAL_GetTick(); /* Check if the state is in one of the busy states */ if ((hqspi->State & 0x2U) != 0U) { /* Process unlocked */ __HAL_UNLOCK(hqspi); if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET) { /* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */ CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); /* Abort DMA channel */ status = HAL_DMA_Abort(hqspi->hdma); if(status != HAL_OK) { hqspi->ErrorCode |= HAL_QSPI_ERROR_DMA; } } /* Configure QSPI: CR register with Abort request */ SET_BIT(hqspi->Instance->CR, QUADSPI_CR_ABORT); /* Wait until TC flag is set to go back in idle state */ status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, hqspi->Timeout); if(status == HAL_OK) { __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); /* Wait until BUSY flag is reset */ status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout); } if (status == HAL_OK) { /* Update state */ hqspi->State = HAL_QSPI_STATE_READY; } } return status; } /** * @brief Abort the current transmission (non-blocking function) * @param hqspi QSPI handle * @retval HAL status */ HAL_StatusTypeDef HAL_QSPI_Abort_IT(QSPI_HandleTypeDef *hqspi) { HAL_StatusTypeDef status = HAL_OK; /* Check if the state is in one of the busy states */ if ((hqspi->State & 0x2U) != 0U) { /* Process unlocked */ __HAL_UNLOCK(hqspi); /* Update QSPI state */ hqspi->State = HAL_QSPI_STATE_ABORT; /* Disable all interrupts */ __HAL_QSPI_DISABLE_IT(hqspi, (QSPI_IT_TO | QSPI_IT_SM | QSPI_IT_FT | QSPI_IT_TC | QSPI_IT_TE)); if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET) { /* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */ CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); /* Abort DMA channel */ hqspi->hdma->XferAbortCallback = QSPI_DMAAbortCplt; HAL_DMA_Abort_IT(hqspi->hdma); } else { /* Clear interrupt */ __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); /* Enable the QSPI Transfer Complete Interrupt */ __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC); /* Configure QSPI: CR register with Abort request */ SET_BIT(hqspi->Instance->CR, QUADSPI_CR_ABORT); } } return status; } /** @brief Set QSPI timeout * @param hqspi QSPI handle. * @param Timeout Timeout for the QSPI memory access. * @retval None */ void HAL_QSPI_SetTimeout(QSPI_HandleTypeDef *hqspi, uint32_t Timeout) { hqspi->Timeout = Timeout; } /** @brief Set QSPI Fifo threshold. * @param hqspi QSPI handle. * @param Threshold Threshold of the Fifo (value between 1 and 16). * @retval HAL status */ HAL_StatusTypeDef HAL_QSPI_SetFifoThreshold(QSPI_HandleTypeDef *hqspi, uint32_t Threshold) { HAL_StatusTypeDef status = HAL_OK; /* Process locked */ __HAL_LOCK(hqspi); if(hqspi->State == HAL_QSPI_STATE_READY) { /* Synchronize init structure with new FIFO threshold value */ hqspi->Init.FifoThreshold = Threshold; /* Configure QSPI FIFO Threshold */ MODIFY_REG(hqspi->Instance->CR, QUADSPI_CR_FTHRES, ((hqspi->Init.FifoThreshold - 1U) << QUADSPI_CR_FTHRES_Pos)); } else { status = HAL_BUSY; } /* Process unlocked */ __HAL_UNLOCK(hqspi); /* Return function status */ return status; } /** @brief Get QSPI Fifo threshold. * @param hqspi QSPI handle. * @retval Fifo threshold (value between 1 and 16) */ uint32_t HAL_QSPI_GetFifoThreshold(QSPI_HandleTypeDef *hqspi) { return ((READ_BIT(hqspi->Instance->CR, QUADSPI_CR_FTHRES) >> QUADSPI_CR_FTHRES_Pos) + 1U); } /** * @} */ /* Private functions ---------------------------------------------------------*/ /** * @brief DMA QSPI receive process complete callback. * @param hdma DMA handle * @retval None */ static void QSPI_DMARxCplt(DMA_HandleTypeDef *hdma) { QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; hqspi->RxXferCount = 0U; /* Enable the QSPI transfer complete Interrupt */ __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC); } /** * @brief DMA QSPI transmit process complete callback. * @param hdma DMA handle * @retval None */ static void QSPI_DMATxCplt(DMA_HandleTypeDef *hdma) { QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; hqspi->TxXferCount = 0U; /* Enable the QSPI transfer complete Interrupt */ __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC); } /** * @brief DMA QSPI receive process half complete callback * @param hdma DMA handle * @retval None */ static void QSPI_DMARxHalfCplt(DMA_HandleTypeDef *hdma) { QSPI_HandleTypeDef* hqspi = (QSPI_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; HAL_QSPI_RxHalfCpltCallback(hqspi); } /** * @brief DMA QSPI transmit process half complete callback * @param hdma DMA handle * @retval None */ static void QSPI_DMATxHalfCplt(DMA_HandleTypeDef *hdma) { QSPI_HandleTypeDef* hqspi = (QSPI_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; HAL_QSPI_TxHalfCpltCallback(hqspi); } /** * @brief DMA QSPI communication error callback. * @param hdma DMA handle * @retval None */ static void QSPI_DMAError(DMA_HandleTypeDef *hdma) { QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; /* if DMA error is FIFO error ignore it */ if(HAL_DMA_GetError(hdma) != HAL_DMA_ERROR_FE) { hqspi->RxXferCount = 0U; hqspi->TxXferCount = 0U; hqspi->ErrorCode |= HAL_QSPI_ERROR_DMA; /* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */ CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); /* Abort the QSPI */ HAL_QSPI_Abort_IT(hqspi); } } /** * @brief DMA QSPI abort complete callback. * @param hdma DMA handle * @retval None */ static void QSPI_DMAAbortCplt(DMA_HandleTypeDef *hdma) { QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; hqspi->RxXferCount = 0U; hqspi->TxXferCount = 0U; if(hqspi->State == HAL_QSPI_STATE_ABORT) { /* DMA Abort called by QSPI abort */ /* Clear interrupt */ __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); /* Enable the QSPI Transfer Complete Interrupt */ __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC); /* Configure QSPI: CR register with Abort request */ SET_BIT(hqspi->Instance->CR, QUADSPI_CR_ABORT); } else { /* DMA Abort called due to a transfer error interrupt */ /* Change state of QSPI */ hqspi->State = HAL_QSPI_STATE_READY; /* Error callback */ HAL_QSPI_ErrorCallback(hqspi); } } /** * @brief Wait for a flag state until timeout. * @param hqspi QSPI handle * @param Flag Flag checked * @param State Value of the flag expected * @param Timeout Duration of the time out * @param tickstart tick start value * @retval HAL status */ static HAL_StatusTypeDef QSPI_WaitFlagStateUntilTimeout(QSPI_HandleTypeDef *hqspi, uint32_t Flag, FlagStatus State, uint32_t tickstart, uint32_t Timeout) { /* Wait until flag is in expected state */ while((FlagStatus)(__HAL_QSPI_GET_FLAG(hqspi, Flag)) != State) { /* Check for the Timeout */ if (Timeout != HAL_MAX_DELAY) { if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) { hqspi->State = HAL_QSPI_STATE_ERROR; hqspi->ErrorCode |= HAL_QSPI_ERROR_TIMEOUT; return HAL_ERROR; } } } return HAL_OK; } /** * @brief Configure the communication registers. * @param hqspi QSPI handle * @param cmd structure that contains the command configuration information * @param FunctionalMode functional mode to configured * This parameter can be one of the following values: * @arg QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE: Indirect write mode * @arg QSPI_FUNCTIONAL_MODE_INDIRECT_READ: Indirect read mode * @arg QSPI_FUNCTIONAL_MODE_AUTO_POLLING: Automatic polling mode * @arg QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED: Memory-mapped mode * @retval None */ static void QSPI_Config(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, uint32_t FunctionalMode) { assert_param(IS_QSPI_FUNCTIONAL_MODE(FunctionalMode)); if ((cmd->DataMode != QSPI_DATA_NONE) && (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED)) { /* Configure QSPI: DLR register with the number of data to read or write */ WRITE_REG(hqspi->Instance->DLR, (cmd->NbData - 1U)); } if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) { if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) { /* Configure QSPI: ABR register with alternate bytes value */ WRITE_REG(hqspi->Instance->ABR, cmd->AlternateBytes); if (cmd->AddressMode != QSPI_ADDRESS_NONE) { /*---- Command with instruction, address and alternate bytes ----*/ /* Configure QSPI: CCR register with all communications parameters */ WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateBytesSize | cmd->AlternateByteMode | cmd->AddressSize | cmd->AddressMode | cmd->InstructionMode | cmd->Instruction | FunctionalMode)); if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED) { /* Configure QSPI: AR register with address value */ WRITE_REG(hqspi->Instance->AR, cmd->Address); } } else { /*---- Command with instruction and alternate bytes ----*/ /* Configure QSPI: CCR register with all communications parameters */ WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateBytesSize | cmd->AlternateByteMode | cmd->AddressMode | cmd->InstructionMode | cmd->Instruction | FunctionalMode)); } } else { if (cmd->AddressMode != QSPI_ADDRESS_NONE) { /*---- Command with instruction and address ----*/ /* Configure QSPI: CCR register with all communications parameters */ WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateByteMode | cmd->AddressSize | cmd->AddressMode | cmd->InstructionMode | cmd->Instruction | FunctionalMode)); if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED) { /* Configure QSPI: AR register with address value */ WRITE_REG(hqspi->Instance->AR, cmd->Address); } } else { /*---- Command with only instruction ----*/ /* Configure QSPI: CCR register with all communications parameters */ WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateByteMode | cmd->AddressMode | cmd->InstructionMode | cmd->Instruction | FunctionalMode)); } } } else { if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) { /* Configure QSPI: ABR register with alternate bytes value */ WRITE_REG(hqspi->Instance->ABR, cmd->AlternateBytes); if (cmd->AddressMode != QSPI_ADDRESS_NONE) { /*---- Command with address and alternate bytes ----*/ /* Configure QSPI: CCR register with all communications parameters */ WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateBytesSize | cmd->AlternateByteMode | cmd->AddressSize | cmd->AddressMode | cmd->InstructionMode | FunctionalMode)); if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED) { /* Configure QSPI: AR register with address value */ WRITE_REG(hqspi->Instance->AR, cmd->Address); } } else { /*---- Command with only alternate bytes ----*/ /* Configure QSPI: CCR register with all communications parameters */ WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateBytesSize | cmd->AlternateByteMode | cmd->AddressMode | cmd->InstructionMode | FunctionalMode)); } } else { if (cmd->AddressMode != QSPI_ADDRESS_NONE) { /*---- Command with only address ----*/ /* Configure QSPI: CCR register with all communications parameters */ WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateByteMode | cmd->AddressSize | cmd->AddressMode | cmd->InstructionMode | FunctionalMode)); if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED) { /* Configure QSPI: AR register with address value */ WRITE_REG(hqspi->Instance->AR, cmd->Address); } } else { /*---- Command with only data phase ----*/ if (cmd->DataMode != QSPI_DATA_NONE) { /* Configure QSPI: CCR register with all communications parameters */ WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateByteMode | cmd->AddressMode | cmd->InstructionMode | FunctionalMode)); } } } } } /** * @} */ #endif /* STM32F446xx || STM32F469xx || STM32F479xx || STM32F412Zx || STM32F412Vx || STM32F412Rx STM32F413xx || STM32F423xx */ #endif /* HAL_QSPI_MODULE_ENABLED */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/