view Small_CPU/Src/uart.c @ 916:4832981f9af8 Evo_2_23

External sensor UART: Switch to DMA TX transfers: The previous version used polling tx function to transfer data. Because of the short command length of the protocols supported this was no big issue. New protocolls (like GNSS) have longer command sequence which have an impact to the program flow. That's why the implementation has been changed to DMA transmission.
author Ideenmodellierer
date Mon, 28 Oct 2024 20:34:58 +0100
parents 9e2f9b91e827
children f72613a152dd
line wrap: on
line source

/**
  ******************************************************************************
  * @file    uart.c 
  * @author  heinrichs weikamp gmbh
  * @version V0.0.1
  * @date    27-March-2014
  * @brief   button control
  *           
  @verbatim                 
  ============================================================================== 
                        ##### How to use #####
  ============================================================================== 
  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2015 heinrichs weikamp</center></h2>
  *
  ******************************************************************************
  */ 
/* Includes ------------------------------------------------------------------*/
#include "uart.h"
#include "uartProtocol_O2.h"
#include "uartProtocol_Co2.h"
#include "uartProtocol_Sentinel.h"
#include "externalInterface.h"
#include "data_exchange.h"
#include <string.h>	/* memset */


/* Private variables ---------------------------------------------------------*/



#define CHUNK_SIZE				(25u)		/* the DMA will handle chunk size transfers */
#define CHUNKS_PER_BUFFER		(5u)



DMA_HandleTypeDef  hdma_usart1_rx, hdma_usart1_tx, hdma_usart6_rx, hdma_usart6_tx;

uint8_t rxBuffer[CHUNK_SIZE * CHUNKS_PER_BUFFER];		/* The complete buffer has a X * chunk size to allow variations in buffer read time */
uint8_t txBuffer[CHUNK_SIZE];							/* tx uses less bytes */
uint8_t txBufferQue[CHUNK_SIZE];						/* In MUX mode command may be send shortly after each other => allow q 1 entry que */
uint8_t txBufferQueLen;

uint8_t rxBufferUart6[CHUNK_SIZE * CHUNKS_PER_BUFFER];		/* The complete buffer has a X * chunk size to allow variations in buffer read time */
uint8_t txBufferUart6[CHUNK_SIZE * CHUNKS_PER_BUFFER];		/* The complete buffer has a X * chunk size to allow variations in buffer read time */

static uint8_t rxWriteIndex;							/* Index of the data item which is analysed */
static uint8_t rxReadIndex;								/* Index at which new data is stared */
static uint8_t lastCmdIndex;							/* Index of last command which has not been completely received */
static uint8_t dmaRxActive;								/* Indicator if DMA reception needs to be started */
static uint8_t dmaTxActive;								/* Indicator if DMA reception needs to be started */




/* Exported functions --------------------------------------------------------*/

void clearRxBuffer(void)
{
	uint16_t index = 0;
	do
	{
		rxBuffer[index++] = BUFFER_NODATA_LOW;
		rxBuffer[index++] = BUFFER_NODATA_HIGH;
	} while (index < sizeof(rxBuffer));
}

void MX_USART1_UART_Init(void)
{
/* regular init */	
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 19200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;

  HAL_UART_Init(&huart1);

  MX_USART1_DMA_Init();

  HAL_NVIC_SetPriority(USART1_IRQn, 1, 3);
  HAL_NVIC_EnableIRQ(USART1_IRQn);

  clearRxBuffer();
  rxReadIndex = 0;
  lastCmdIndex = 0;
  rxWriteIndex = 0;
  dmaRxActive = 0;
  dmaTxActive = 0;
  txBufferQueLen = 0;
}



void MX_USART1_UART_DeInit(void)
{
	HAL_DMA_Abort(&hdma_usart1_rx);
	HAL_DMA_DeInit(&hdma_usart1_rx);
	HAL_DMA_Abort(&hdma_usart1_tx);
	HAL_DMA_DeInit(&hdma_usart1_tx);
	HAL_UART_DeInit(&huart1);
	dmaRxActive = 0;
	dmaTxActive = 0;
	txBufferQueLen = 0;
}

void  MX_USART1_DMA_Init()
{
  /* DMA controller clock enable */
  __DMA2_CLK_ENABLE();

  /* Peripheral DMA init*/
  hdma_usart1_rx.Instance = DMA2_Stream5;
  hdma_usart1_rx.Init.Channel = DMA_CHANNEL_4;
  hdma_usart1_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; //DMA_MEMORY_TO_PERIPH;
  hdma_usart1_rx.Init.PeriphInc = DMA_PINC_DISABLE;
  hdma_usart1_rx.Init.MemInc = DMA_MINC_ENABLE;
  hdma_usart1_rx.Init.PeriphDataAlignment = DMA_MDATAALIGN_BYTE;
  hdma_usart1_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  hdma_usart1_rx.Init.Mode = DMA_NORMAL;
  hdma_usart1_rx.Init.Priority = DMA_PRIORITY_LOW;
  hdma_usart1_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  HAL_DMA_Init(&hdma_usart1_rx);

  __HAL_LINKDMA(&huart1,hdmarx,hdma_usart1_rx);

  hdma_usart1_tx.Instance = DMA2_Stream7;
  hdma_usart1_tx.Init.Channel = DMA_CHANNEL_4;
  hdma_usart1_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
  hdma_usart1_tx.Init.PeriphInc = DMA_PINC_DISABLE;
  hdma_usart1_tx.Init.MemInc = DMA_MINC_ENABLE;
  hdma_usart1_tx.Init.PeriphDataAlignment = DMA_MDATAALIGN_BYTE;
  hdma_usart1_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  hdma_usart1_tx.Init.Mode = DMA_NORMAL;
  hdma_usart1_tx.Init.Priority = DMA_PRIORITY_LOW;
  hdma_usart1_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  HAL_DMA_Init(&hdma_usart1_tx);

  __HAL_LINKDMA(&huart1,hdmatx,hdma_usart1_tx);


  /* DMA interrupt init */
  HAL_NVIC_SetPriority(DMA2_Stream5_IRQn, 2, 2);
  HAL_NVIC_EnableIRQ(DMA2_Stream5_IRQn);
  HAL_NVIC_SetPriority(DMA2_Stream7_IRQn, 2, 1);
  HAL_NVIC_EnableIRQ(DMA2_Stream7_IRQn);
}


void GNSS_IO_init() {

	GPIO_InitTypeDef GPIO_InitStruct = { 0 };
	/* Peripheral clock enable */
	__HAL_RCC_USART6_CLK_ENABLE()
	;

	__HAL_RCC_GPIOA_CLK_ENABLE()
	;
	/**USART6 GPIO Configuration
	 PA11     ------> USART6_TX
	 PA12     ------> USART6_RX
	 */
	GPIO_InitStruct.Pin = GPIO_PIN_11 | GPIO_PIN_12;
	GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
	GPIO_InitStruct.Pull = GPIO_NOPULL;
	GPIO_InitStruct.Speed = GPIO_SPEED_FAST;
	GPIO_InitStruct.Alternate = GPIO_AF8_USART6;
	HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

	/* USART6 DMA Init */
	/* USART6_RX Init */
	hdma_usart6_rx.Instance = DMA2_Stream1;
	hdma_usart6_rx.Init.Channel = DMA_CHANNEL_5;
	hdma_usart6_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
	hdma_usart6_rx.Init.PeriphInc = DMA_PINC_DISABLE;
	hdma_usart6_rx.Init.MemInc = DMA_MINC_ENABLE;
	hdma_usart6_rx.Init.PeriphDataAlignment = DMA_MDATAALIGN_BYTE;
	hdma_usart6_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
	hdma_usart6_rx.Init.Mode = DMA_NORMAL;
	hdma_usart6_rx.Init.Priority = DMA_PRIORITY_LOW;
	hdma_usart6_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
	HAL_DMA_Init(&hdma_usart6_rx);

	__HAL_LINKDMA(&huart6, hdmarx, hdma_usart6_rx);

	/* USART6_TX Init */
	hdma_usart6_tx.Instance = DMA2_Stream6;
	hdma_usart6_tx.Init.Channel = DMA_CHANNEL_6;
	hdma_usart6_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
	hdma_usart6_tx.Init.PeriphInc = DMA_PINC_DISABLE;
	hdma_usart6_tx.Init.MemInc = DMA_MINC_ENABLE;
	hdma_usart6_tx.Init.PeriphDataAlignment = DMA_MDATAALIGN_BYTE;
	hdma_usart6_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
	hdma_usart6_tx.Init.Mode = DMA_NORMAL;
	hdma_usart6_tx.Init.Priority = DMA_PRIORITY_LOW;
	hdma_usart6_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
	HAL_DMA_Init(&hdma_usart6_tx);

	__HAL_LINKDMA(&huart6, hdmatx, hdma_usart6_tx);

	/* USART6 interrupt Init */
	HAL_NVIC_SetPriority(USART6_IRQn, 0, 0);
	HAL_NVIC_EnableIRQ(USART6_IRQn);

	MX_USART6_DMA_Init();

}

void MX_USART6_DMA_Init() {
	  /* DMA controller clock enable */
	  __HAL_RCC_DMA2_CLK_ENABLE();

	  /* DMA interrupt init */
	  /* DMA2_Stream2_IRQn interrupt configuration */
	  HAL_NVIC_SetPriority(DMA2_Stream2_IRQn, 0, 0);
	  HAL_NVIC_EnableIRQ(DMA2_Stream2_IRQn);
	  /* DMA2_Stream6_IRQn interrupt configuration */
	  HAL_NVIC_SetPriority(DMA2_Stream6_IRQn, 0, 0);
	  HAL_NVIC_EnableIRQ(DMA2_Stream6_IRQn);
}


void MX_USART6_UART_DeInit(void)
{
	HAL_DMA_Abort(&hdma_usart6_rx);
	HAL_DMA_DeInit(&hdma_usart6_rx);
	HAL_DMA_Abort(&hdma_usart6_tx);
	HAL_DMA_DeInit(&hdma_usart6_tx);
	HAL_UART_DeInit(&huart6);
	HAL_UART_DeInit(&huart6);
}

void MX_USART6_UART_Init(void) {
	huart6.Instance = USART6;
	huart6.Init.BaudRate = 9600;
	huart6.Init.WordLength = UART_WORDLENGTH_8B;
	huart6.Init.StopBits = UART_STOPBITS_1;
	huart6.Init.Parity = UART_PARITY_NONE;
	huart6.Init.Mode = UART_MODE_TX_RX;
	huart6.Init.HwFlowCtl = UART_HWCONTROL_NONE;
	huart6.Init.OverSampling = UART_OVERSAMPLING_16;
	HAL_UART_Init(&huart6);
}

void  UART_MUX_SelectAddress(uint8_t muxAddress)
{
	uint8_t indexstr[4];

	if(muxAddress <= MAX_MUX_CHANNEL)
	{
		indexstr[0] = '~';
		indexstr[1] = muxAddress;
		indexstr[2] = 0x0D;
		indexstr[3] = 0x0A;
		if(!dmaTxActive)
		{
			memcpy(txBuffer, indexstr, 4);
			dmaTxActive = 0;
			if(HAL_OK == HAL_UART_Transmit_DMA(&huart1,txBuffer,4))
			{
				dmaTxActive = 1;
				while(dmaTxActive)
				{
					HAL_Delay(1);
				}
			}
		}
		else
		{
			memcpy(txBufferQue, indexstr, 4);
			txBufferQueLen = 4;
		}
	}
}


void UART_SendCmdString(uint8_t *cmdString)
{
	uint8_t cmdLength = strlen((char*)cmdString);

	if(dmaTxActive == 0)
	{
		if(cmdLength < CHUNK_SIZE)		/* A longer string is an indication for a missing 0 termination */
		{
			if(dmaRxActive == 0)
			{
				UART_StartDMA_Receiption();
			}
			memcpy(txBuffer, cmdString, cmdLength);
			if(HAL_OK == HAL_UART_Transmit_DMA(&huart1,txBuffer,cmdLength))
			{
				dmaTxActive = 1;
			}
		}
	}
	else
	{
		memcpy(txBufferQue, cmdString, cmdLength);
		txBufferQueLen = cmdLength;
	}
}

void UART_SendCmdUbx(uint8_t *cmd, uint8_t len)
{
	if(len < CHUNK_SIZE)		/* A longer string is an indication for a missing 0 termination */
	{
		if(dmaRxActive == 0)
		{
			UART_StartDMA_Receiption();
		}
		memcpy(txBuffer, cmd, len);
		HAL_UART_Transmit_DMA(&huart1,txBuffer,len);
	}
}


void StringToInt(char *pstr, uint32_t *puInt32)
{
	uint8_t index = 0;
	uint32_t result = 0;
	while((pstr[index] >= '0') && (pstr[index] <= '9'))
	{
		result *=10;
		result += pstr[index] - '0';
		index++;
	}
	*puInt32 = result;
}

void StringToUInt64(char *pstr, uint64_t *puint64)
{
	uint8_t index = 0;
	uint64_t result = 0;
	while((pstr[index] >= '0') && (pstr[index] <= '9'))
	{
		result *=10;
		result += pstr[index] - '0';
		index++;
	}
	*puint64 = result;
}

void UART_StartDMA_Receiption()
{
	if(dmaRxActive == 0)
	{
		if(HAL_OK == HAL_UART_Receive_DMA (&huart1, &rxBuffer[rxWriteIndex], CHUNK_SIZE))
		{
			dmaRxActive = 1;
		}
	}
}

void UART_ChangeBaudrate(uint32_t newBaudrate)
{
	uint8_t dmaWasActive = dmaRxActive;
//	HAL_DMA_Abort(&hdma_usart1_rx);
		MX_USART1_UART_DeInit();
		//HAL_UART_Abort(&huart1);
		//HAL_DMA_DeInit(&hdma_usart1_rx);


//	huart1.Instance->BRR = UART_BRR_SAMPLING8(HAL_RCC_GetPCLK2Freq()/2, newBaudrate);
	huart1.Init.BaudRate = newBaudrate;
	HAL_UART_Init(&huart1);
	MX_USART1_DMA_Init();
	HAL_NVIC_SetPriority(USART1_IRQn, 1, 3);
	HAL_NVIC_EnableIRQ(USART1_IRQn);

	if(dmaWasActive)
	{
		clearRxBuffer();
		rxReadIndex = 0;
		rxWriteIndex = 0;
		dmaRxActive = 0;
		txBufferQueLen = 0;
		UART_StartDMA_Receiption();
	}
}

void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
    if(huart == &huart1)
    {
    	dmaRxActive = 0;
    	rxWriteIndex+=CHUNK_SIZE;
    	if(rxWriteIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER)
    	{
    		rxWriteIndex = 0;
    	}
    	if((rxWriteIndex / CHUNK_SIZE) != (rxReadIndex / CHUNK_SIZE) || (rxWriteIndex == rxReadIndex))	/* start next transfer if we did not catch up with read index */
    	{
			UART_StartDMA_Receiption();
    	}
    }
}
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
{
	if(huart == &huart1)
	{
		dmaTxActive = 0;
		UART_WriteData();
		if(txBufferQueLen)
		{
			memcpy(txBuffer, txBufferQue, txBufferQueLen);
			HAL_UART_Transmit_DMA(&huart1,txBuffer,txBufferQueLen);
			dmaTxActive = 1;
			txBufferQueLen = 0;
		}
	}
}

uint8_t isEndIndication(uint8_t index)
{
	uint8_t ret = 0;
	if(index % 2)
	{
		if(rxBuffer[index] == BUFFER_NODATA_HIGH)
		{
			ret = 1;
		}
	}
	else
	{
		if(rxBuffer[index] == BUFFER_NODATA_LOW)
		{
			ret = 1;
		}
	}

	return ret;
}
void UART_ReadData(uint8_t sensorType)
{
	uint8_t localRX = rxReadIndex;
	uint8_t futureIndex = rxReadIndex + 1;
	uint8_t moreData = 0;

	if(futureIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER)
	{
		futureIndex = 0;
	}

	if((!isEndIndication(localRX)) || (!isEndIndication(futureIndex)))	do
	{
		while((!isEndIndication(localRX)) || (moreData))
		{
			moreData = 0;
			switch (sensorType)
			{
				case SENSOR_MUX:
				case SENSOR_DIGO2:	uartO2_ProcessData(rxBuffer[localRX]);
					break;
	#ifdef ENABLE_CO2_SUPPORT
				case SENSOR_CO2:	uartCo2_ProcessData(rxBuffer[localRX]);
					break;
	#endif
	#ifdef ENABLE_GNSS_SUPPORT
					case SENSOR_GNSS:	uartGnss_ProcessData(rxBuffer[localRX]);
							break;
	#endif
	#ifdef ENABLE_SENTINEL_MODE
				case SENSOR_SENTINEL:	uartSentinel_ProcessData(rxBuffer[localRX]);
					break;
	#endif
				default:
					break;
			}
			if(localRX % 2)
			{
				rxBuffer[localRX] = BUFFER_NODATA_HIGH;
			}
			else
			{
				rxBuffer[localRX] = BUFFER_NODATA_LOW;
			}

			localRX++;
			rxReadIndex++;
			if(rxReadIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER)
			{
				localRX = 0;
				rxReadIndex = 0;
			}
			futureIndex++;
			if(futureIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER)
			{
				futureIndex = 0;
			}
		}
		if(!isEndIndication(futureIndex))
		{
			moreData = 1;
		}
	} while(moreData);
}

void UART_WriteData(void)
{
	if(huart1.hdmatx->State == HAL_DMA_STATE_READY)
	{
		huart1.gState = HAL_UART_STATE_READY;
		dmaTxActive = 0;
	}
}

void UART_FlushRxBuffer(void)
{
	uint8_t futureIndex = rxReadIndex + 1;

	if(futureIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER)
	{
		futureIndex = 0;
	}
	while((rxBuffer[rxReadIndex] != BUFFER_NODATA_LOW) && (rxBuffer[futureIndex] != BUFFER_NODATA_HIGH))
	{
		if(rxReadIndex % 2)
		{
			rxBuffer[rxReadIndex++] = BUFFER_NODATA_HIGH;
		}
		else
		{
			rxBuffer[rxReadIndex++] = BUFFER_NODATA_LOW;
		}
		if(rxReadIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER)
		{
			rxReadIndex = 0;
		}
		futureIndex++;
		if(futureIndex >= CHUNK_SIZE * CHUNKS_PER_BUFFER)
		{
			futureIndex = 0;
		}
	}
}

uint8_t UART_isComActive(uint8_t sensorId)
{
	uint8_t active = 1;

	uint8_t ComState = externalInterface_GetSensorState(sensorId + EXT_INTERFACE_MUX_OFFSET);

	if((ComState == UART_COMMON_INIT) || (ComState == UART_COMMON_IDLE) || (ComState == UART_COMMON_ERROR) || (ComState == COMMON_SENSOR_STATE_INVALID))
	{
		active = 0;
	}
	return active;
}

/************************ (C) COPYRIGHT heinrichs weikamp *****END OF FILE****/