Mercurial > public > ostc4
view Common/Drivers/CMSIS/Include/cmsis_armcc.h @ 934:406d498786e7 Evo_2_23
Position visualization:
Splitted view into two steps. In the first step only the number of available satellietes and 4 states are shown. If a fix (valid position) is available then the display shows the coordinates. This avoids misunderstandings because if there was once a position information then it will be provided even no valid fix is available.
author | Ideenmodellierer |
---|---|
date | Sun, 08 Dec 2024 21:56:48 +0100 |
parents | c78bcbd5deda |
children |
line wrap: on
line source
/**************************************************************************//** * @file cmsis_armcc.h * @brief CMSIS Cortex-M Core Function/Instruction Header File * @version V4.30 * @date 20. October 2015 ******************************************************************************/ /* Copyright (c) 2009 - 2015 ARM LIMITED All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of ARM nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ #ifndef __CMSIS_ARMCC_H #define __CMSIS_ARMCC_H #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 400677) #error "Please use ARM Compiler Toolchain V4.0.677 or later!" #endif /* ########################### Core Function Access ########################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions @{ */ /* intrinsic void __enable_irq(); */ /* intrinsic void __disable_irq(); */ /** \brief Get Control Register \details Returns the content of the Control Register. \return Control Register value */ __STATIC_INLINE uint32_t __get_CONTROL(void) { register uint32_t __regControl __ASM("control"); return(__regControl); } /** \brief Set Control Register \details Writes the given value to the Control Register. \param [in] control Control Register value to set */ __STATIC_INLINE void __set_CONTROL(uint32_t control) { register uint32_t __regControl __ASM("control"); __regControl = control; } /** \brief Get IPSR Register \details Returns the content of the IPSR Register. \return IPSR Register value */ __STATIC_INLINE uint32_t __get_IPSR(void) { register uint32_t __regIPSR __ASM("ipsr"); return(__regIPSR); } /** \brief Get APSR Register \details Returns the content of the APSR Register. \return APSR Register value */ __STATIC_INLINE uint32_t __get_APSR(void) { register uint32_t __regAPSR __ASM("apsr"); return(__regAPSR); } /** \brief Get xPSR Register \details Returns the content of the xPSR Register. \return xPSR Register value */ __STATIC_INLINE uint32_t __get_xPSR(void) { register uint32_t __regXPSR __ASM("xpsr"); return(__regXPSR); } /** \brief Get Process Stack Pointer \details Returns the current value of the Process Stack Pointer (PSP). \return PSP Register value */ __STATIC_INLINE uint32_t __get_PSP(void) { register uint32_t __regProcessStackPointer __ASM("psp"); return(__regProcessStackPointer); } /** \brief Set Process Stack Pointer \details Assigns the given value to the Process Stack Pointer (PSP). \param [in] topOfProcStack Process Stack Pointer value to set */ __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack) { register uint32_t __regProcessStackPointer __ASM("psp"); __regProcessStackPointer = topOfProcStack; } /** \brief Get Main Stack Pointer \details Returns the current value of the Main Stack Pointer (MSP). \return MSP Register value */ __STATIC_INLINE uint32_t __get_MSP(void) { register uint32_t __regMainStackPointer __ASM("msp"); return(__regMainStackPointer); } /** \brief Set Main Stack Pointer \details Assigns the given value to the Main Stack Pointer (MSP). \param [in] topOfMainStack Main Stack Pointer value to set */ __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack) { register uint32_t __regMainStackPointer __ASM("msp"); __regMainStackPointer = topOfMainStack; } /** \brief Get Priority Mask \details Returns the current state of the priority mask bit from the Priority Mask Register. \return Priority Mask value */ __STATIC_INLINE uint32_t __get_PRIMASK(void) { register uint32_t __regPriMask __ASM("primask"); return(__regPriMask); } /** \brief Set Priority Mask \details Assigns the given value to the Priority Mask Register. \param [in] priMask Priority Mask */ __STATIC_INLINE void __set_PRIMASK(uint32_t priMask) { register uint32_t __regPriMask __ASM("primask"); __regPriMask = (priMask); } #if (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U) /** \brief Enable FIQ \details Enables FIQ interrupts by clearing the F-bit in the CPSR. Can only be executed in Privileged modes. */ #define __enable_fault_irq __enable_fiq /** \brief Disable FIQ \details Disables FIQ interrupts by setting the F-bit in the CPSR. Can only be executed in Privileged modes. */ #define __disable_fault_irq __disable_fiq /** \brief Get Base Priority \details Returns the current value of the Base Priority register. \return Base Priority register value */ __STATIC_INLINE uint32_t __get_BASEPRI(void) { register uint32_t __regBasePri __ASM("basepri"); return(__regBasePri); } /** \brief Set Base Priority \details Assigns the given value to the Base Priority register. \param [in] basePri Base Priority value to set */ __STATIC_INLINE void __set_BASEPRI(uint32_t basePri) { register uint32_t __regBasePri __ASM("basepri"); __regBasePri = (basePri & 0xFFU); } /** \brief Set Base Priority with condition \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled, or the new value increases the BASEPRI priority level. \param [in] basePri Base Priority value to set */ __STATIC_INLINE void __set_BASEPRI_MAX(uint32_t basePri) { register uint32_t __regBasePriMax __ASM("basepri_max"); __regBasePriMax = (basePri & 0xFFU); } /** \brief Get Fault Mask \details Returns the current value of the Fault Mask register. \return Fault Mask register value */ __STATIC_INLINE uint32_t __get_FAULTMASK(void) { register uint32_t __regFaultMask __ASM("faultmask"); return(__regFaultMask); } /** \brief Set Fault Mask \details Assigns the given value to the Fault Mask register. \param [in] faultMask Fault Mask value to set */ __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask) { register uint32_t __regFaultMask __ASM("faultmask"); __regFaultMask = (faultMask & (uint32_t)1); } #endif /* (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U) */ #if (__CORTEX_M == 0x04U) || (__CORTEX_M == 0x07U) /** \brief Get FPSCR \details Returns the current value of the Floating Point Status/Control register. \return Floating Point Status/Control register value */ __STATIC_INLINE uint32_t __get_FPSCR(void) { #if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U) register uint32_t __regfpscr __ASM("fpscr"); return(__regfpscr); #else return(0U); #endif } /** \brief Set FPSCR \details Assigns the given value to the Floating Point Status/Control register. \param [in] fpscr Floating Point Status/Control value to set */ __STATIC_INLINE void __set_FPSCR(uint32_t fpscr) { #if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U) register uint32_t __regfpscr __ASM("fpscr"); __regfpscr = (fpscr); #endif } #endif /* (__CORTEX_M == 0x04U) || (__CORTEX_M == 0x07U) */ /*@} end of CMSIS_Core_RegAccFunctions */ /* ########################## Core Instruction Access ######################### */ /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface Access to dedicated instructions @{ */ /** \brief No Operation \details No Operation does nothing. This instruction can be used for code alignment purposes. */ #define __NOP __nop /** \brief Wait For Interrupt \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs. */ #define __WFI __wfi /** \brief Wait For Event \details Wait For Event is a hint instruction that permits the processor to enter a low-power state until one of a number of events occurs. */ #define __WFE __wfe /** \brief Send Event \details Send Event is a hint instruction. It causes an event to be signaled to the CPU. */ #define __SEV __sev /** \brief Instruction Synchronization Barrier \details Instruction Synchronization Barrier flushes the pipeline in the processor, so that all instructions following the ISB are fetched from cache or memory, after the instruction has been completed. */ #define __ISB() do {\ __schedule_barrier();\ __isb(0xF);\ __schedule_barrier();\ } while (0U) /** \brief Data Synchronization Barrier \details Acts as a special kind of Data Memory Barrier. It completes when all explicit memory accesses before this instruction complete. */ #define __DSB() do {\ __schedule_barrier();\ __dsb(0xF);\ __schedule_barrier();\ } while (0U) /** \brief Data Memory Barrier \details Ensures the apparent order of the explicit memory operations before and after the instruction, without ensuring their completion. */ #define __DMB() do {\ __schedule_barrier();\ __dmb(0xF);\ __schedule_barrier();\ } while (0U) /** \brief Reverse byte order (32 bit) \details Reverses the byte order in integer value. \param [in] value Value to reverse \return Reversed value */ #define __REV __rev /** \brief Reverse byte order (16 bit) \details Reverses the byte order in two unsigned short values. \param [in] value Value to reverse \return Reversed value */ #ifndef __NO_EMBEDDED_ASM __attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value) { rev16 r0, r0 bx lr } #endif /** \brief Reverse byte order in signed short value \details Reverses the byte order in a signed short value with sign extension to integer. \param [in] value Value to reverse \return Reversed value */ #ifndef __NO_EMBEDDED_ASM __attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int32_t __REVSH(int32_t value) { revsh r0, r0 bx lr } #endif /** \brief Rotate Right in unsigned value (32 bit) \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. \param [in] value Value to rotate \param [in] value Number of Bits to rotate \return Rotated value */ #define __ROR __ror /** \brief Breakpoint \details Causes the processor to enter Debug state. Debug tools can use this to investigate system state when the instruction at a particular address is reached. \param [in] value is ignored by the processor. If required, a debugger can use it to store additional information about the breakpoint. */ #define __BKPT(value) __breakpoint(value) /** \brief Reverse bit order of value \details Reverses the bit order of the given value. \param [in] value Value to reverse \return Reversed value */ #if (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U) #define __RBIT __rbit #else __attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value) { uint32_t result; int32_t s = 4 /*sizeof(v)*/ * 8 - 1; /* extra shift needed at end */ result = value; /* r will be reversed bits of v; first get LSB of v */ for (value >>= 1U; value; value >>= 1U) { result <<= 1U; result |= value & 1U; s--; } result <<= s; /* shift when v's highest bits are zero */ return(result); } #endif /** \brief Count leading zeros \details Counts the number of leading zeros of a data value. \param [in] value Value to count the leading zeros \return number of leading zeros in value */ #define __CLZ __clz #if (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U) /** \brief LDR Exclusive (8 bit) \details Executes a exclusive LDR instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) #define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr)) #else #define __LDREXB(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint8_t ) __ldrex(ptr)) _Pragma("pop") #endif /** \brief LDR Exclusive (16 bit) \details Executes a exclusive LDR instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) #define __LDREXH(ptr) ((uint16_t) __ldrex(ptr)) #else #define __LDREXH(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint16_t) __ldrex(ptr)) _Pragma("pop") #endif /** \brief LDR Exclusive (32 bit) \details Executes a exclusive LDR instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) #define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr)) #else #define __LDREXW(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint32_t ) __ldrex(ptr)) _Pragma("pop") #endif /** \brief STR Exclusive (8 bit) \details Executes a exclusive STR instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) #define __STREXB(value, ptr) __strex(value, ptr) #else #define __STREXB(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop") #endif /** \brief STR Exclusive (16 bit) \details Executes a exclusive STR instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) #define __STREXH(value, ptr) __strex(value, ptr) #else #define __STREXH(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop") #endif /** \brief STR Exclusive (32 bit) \details Executes a exclusive STR instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) #define __STREXW(value, ptr) __strex(value, ptr) #else #define __STREXW(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop") #endif /** \brief Remove the exclusive lock \details Removes the exclusive lock which is created by LDREX. */ #define __CLREX __clrex /** \brief Signed Saturate \details Saturates a signed value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (1..32) \return Saturated value */ #define __SSAT __ssat /** \brief Unsigned Saturate \details Saturates an unsigned value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (0..31) \return Saturated value */ #define __USAT __usat /** \brief Rotate Right with Extend (32 bit) \details Moves each bit of a bitstring right by one bit. The carry input is shifted in at the left end of the bitstring. \param [in] value Value to rotate \return Rotated value */ #ifndef __NO_EMBEDDED_ASM __attribute__((section(".rrx_text"))) __STATIC_INLINE __ASM uint32_t __RRX(uint32_t value) { rrx r0, r0 bx lr } #endif /** \brief LDRT Unprivileged (8 bit) \details Executes a Unprivileged LDRT instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ #define __LDRBT(ptr) ((uint8_t ) __ldrt(ptr)) /** \brief LDRT Unprivileged (16 bit) \details Executes a Unprivileged LDRT instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ #define __LDRHT(ptr) ((uint16_t) __ldrt(ptr)) /** \brief LDRT Unprivileged (32 bit) \details Executes a Unprivileged LDRT instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ #define __LDRT(ptr) ((uint32_t ) __ldrt(ptr)) /** \brief STRT Unprivileged (8 bit) \details Executes a Unprivileged STRT instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ #define __STRBT(value, ptr) __strt(value, ptr) /** \brief STRT Unprivileged (16 bit) \details Executes a Unprivileged STRT instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ #define __STRHT(value, ptr) __strt(value, ptr) /** \brief STRT Unprivileged (32 bit) \details Executes a Unprivileged STRT instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ #define __STRT(value, ptr) __strt(value, ptr) #endif /* (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U) */ /*@}*/ /* end of group CMSIS_Core_InstructionInterface */ /* ################### Compiler specific Intrinsics ########################### */ /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics Access to dedicated SIMD instructions @{ */ #if (__CORTEX_M >= 0x04U) /* only for Cortex-M4 and above */ #define __SADD8 __sadd8 #define __QADD8 __qadd8 #define __SHADD8 __shadd8 #define __UADD8 __uadd8 #define __UQADD8 __uqadd8 #define __UHADD8 __uhadd8 #define __SSUB8 __ssub8 #define __QSUB8 __qsub8 #define __SHSUB8 __shsub8 #define __USUB8 __usub8 #define __UQSUB8 __uqsub8 #define __UHSUB8 __uhsub8 #define __SADD16 __sadd16 #define __QADD16 __qadd16 #define __SHADD16 __shadd16 #define __UADD16 __uadd16 #define __UQADD16 __uqadd16 #define __UHADD16 __uhadd16 #define __SSUB16 __ssub16 #define __QSUB16 __qsub16 #define __SHSUB16 __shsub16 #define __USUB16 __usub16 #define __UQSUB16 __uqsub16 #define __UHSUB16 __uhsub16 #define __SASX __sasx #define __QASX __qasx #define __SHASX __shasx #define __UASX __uasx #define __UQASX __uqasx #define __UHASX __uhasx #define __SSAX __ssax #define __QSAX __qsax #define __SHSAX __shsax #define __USAX __usax #define __UQSAX __uqsax #define __UHSAX __uhsax #define __USAD8 __usad8 #define __USADA8 __usada8 #define __SSAT16 __ssat16 #define __USAT16 __usat16 #define __UXTB16 __uxtb16 #define __UXTAB16 __uxtab16 #define __SXTB16 __sxtb16 #define __SXTAB16 __sxtab16 #define __SMUAD __smuad #define __SMUADX __smuadx #define __SMLAD __smlad #define __SMLADX __smladx #define __SMLALD __smlald #define __SMLALDX __smlaldx #define __SMUSD __smusd #define __SMUSDX __smusdx #define __SMLSD __smlsd #define __SMLSDX __smlsdx #define __SMLSLD __smlsld #define __SMLSLDX __smlsldx #define __SEL __sel #define __QADD __qadd #define __QSUB __qsub #define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \ ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) ) #define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \ ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) ) #define __SMMLA(ARG1,ARG2,ARG3) ( (int32_t)((((int64_t)(ARG1) * (ARG2)) + \ ((int64_t)(ARG3) << 32U) ) >> 32U)) #endif /* (__CORTEX_M >= 0x04) */ /*@} end of group CMSIS_SIMD_intrinsics */ #endif /* __CMSIS_ARMCC_H */